JPS6221980B2 - - Google Patents

Info

Publication number
JPS6221980B2
JPS6221980B2 JP54058541A JP5854179A JPS6221980B2 JP S6221980 B2 JPS6221980 B2 JP S6221980B2 JP 54058541 A JP54058541 A JP 54058541A JP 5854179 A JP5854179 A JP 5854179A JP S6221980 B2 JPS6221980 B2 JP S6221980B2
Authority
JP
Japan
Prior art keywords
fuel
rectifier
intake pipe
engine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54058541A
Other languages
Japanese (ja)
Other versions
JPS55151151A (en
Inventor
Tadashi Hatsutori
Shinichi Konakano
Hitoshi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP5854179A priority Critical patent/JPS55151151A/en
Publication of JPS55151151A publication Critical patent/JPS55151151A/en
Publication of JPS6221980B2 publication Critical patent/JPS6221980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/12Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
    • F02M31/135Fuel-air mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明はエンジンの吸気装置に関し、特に燃料
供給体よりの燃料の霧化促進に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine intake system, and particularly to promoting atomization of fuel from a fuel supply body.

従来、エンジンの吸気装置は、気化器、燃料噴
射弁等の燃料供給体と、吸気管中に設けられたバ
タフライ型のスロツトル弁と、空気と燃料との混
合気を各気筒に分配する吸気マニホールドとを主
要構成要素としている。
Conventionally, an engine intake system consists of a fuel supply body such as a carburetor or fuel injection valve, a butterfly-type throttle valve installed in the intake pipe, and an intake manifold that distributes a mixture of air and fuel to each cylinder. The main components are:

ところが、このような構成では混合気の気筒間
分配が不均一になりやすく、エンジン性能の悪
化、有害排気ガス成分の増加を招きやすいという
問題がある。これは、気化器等の燃料供給体から
供給される燃料が、吸気管の壁面に付着し液膜状
となつて各気筒に流れ、この液膜状燃料により各
気筒の空燃比が不均一になるためで、吸気装置に
おいて燃料が十分に霧化されないことに起因して
いる。
However, with such a configuration, there is a problem in that the distribution of the air-fuel mixture between the cylinders tends to be uneven, which tends to lead to deterioration in engine performance and an increase in harmful exhaust gas components. This is because the fuel supplied from a fuel supply body such as a carburetor adheres to the wall of the intake pipe and flows into each cylinder in the form of a liquid film, and this liquid film of fuel causes the air-fuel ratio of each cylinder to be uneven. This is because the fuel is not sufficiently atomized in the intake system.

特に、スロツトル弁の上流部に燃料噴射弁を設
けたものにおいては、燃料噴射圧力がかなり高い
ため、空気の流れと関係なく燃料が噴霧され、こ
の結果、燃料が吸気管に一様に噴射されても空気
の流れが大きい所では混合比が大きく(希薄混合
気)、空気の流れが少ない所では混合比が小さく
なる(濃混合気)という現象が生じ、気筒間の混
合比のばらつきが大きくなるという問題が生じ
る。
In particular, in the case where the fuel injection valve is installed upstream of the throttle valve, the fuel injection pressure is quite high, so the fuel is sprayed regardless of the air flow, and as a result, the fuel is not uniformly injected into the intake pipe. However, there is a phenomenon in which the mixture ratio is large in areas where there is a large air flow (lean mixture), and is small in areas where there is little air flow (rich mixture), resulting in large variations in the mixture ratio between cylinders. A problem arises.

本発明は、上記の諸点に鑑みてなされたもの
で、吸気管内のうち燃料供給体とスロツトル弁と
の間に流れ方向に沿つて多数の孔を有する通電に
より発熱する発熱体からなる整流器を配置し、か
つこの整流器を燃料供給体と一定距離を保つて対
向させ、整流器の外縁と吸気管の内側との間に全
周にわたつて隙間を有した構成とすることによ
り、整流器上で拡散した燃料は、整流器の孔を通
過する空気流により霧化されると共に、整流器に
付着した液状の燃料も、整流器の発熱により霧化
され、そのとき十分霧化されない燃料が残存して
いても、この燃料は整流器上を拡散して外縁に至
り、この外縁と吸気管の内壁との間の前記隙間を
通過する空気流の乱れによりさらに積極的に霧化
されることから、良好に霧化された燃料がスロツ
トル弁に向う空気と均一に混合されるので、従来
のごとく吸気管の壁面に燃料が付着して液膜状に
なつたり、スロツトル弁によつて混合気の比率が
変化したりすることはほとんどなく、従つて均一
な混合気をエンジンの各気筒に平等に分配でき、
エンジン性能を向上できるとともに、有害排気ガ
ス成分の増加を防止でき、さらに整流器への通電
をエンジンの暖機運転中に実行し、暖機運転を脱
した状態で遮断するスイツチ手段を設けることに
より、燃料霧化性の悪い時のみ、整流器を発熱さ
せて燃料の霧化を促進させ、また燃料霧化性が良
くなつた時では整流器を発熱させないことで、こ
の整流器により混合気が不必要に加熱されて体積
膨張を引き起こし、エンジンの気筒に吸入される
混合気量の低下をもたらし、エンジン出力の低下
をもたらすことのないようにした有用なエンジン
の吸気装置を提供することを目的とするものであ
る。
The present invention has been made in view of the above points, and includes a rectifier consisting of a heating element that generates heat when energized and has a large number of holes along the flow direction between the fuel supply body and the throttle valve in the intake pipe. Moreover, by arranging this rectifier to face the fuel supply body at a certain distance and having a gap around the entire circumference between the outer edge of the rectifier and the inside of the intake pipe, the The fuel is atomized by the air flow passing through the holes in the rectifier, and the liquid fuel adhering to the rectifier is also atomized by the heat generated by the rectifier. The fuel diffuses over the rectifier and reaches the outer edge, and is further actively atomized by the turbulence of the airflow passing through the gap between this outer edge and the inner wall of the intake pipe, resulting in good atomization. Since the fuel is mixed uniformly with the air heading toward the throttle valve, there is no possibility that the fuel will adhere to the wall of the intake pipe and form a liquid film, or that the ratio of the mixture may change due to the throttle valve. Therefore, a homogeneous mixture can be distributed equally to each cylinder of the engine.
In addition to improving engine performance, it is possible to prevent an increase in harmful exhaust gas components, and by providing a switch means that energizes the rectifier while the engine is warming up and shuts off when the engine is no longer warmed up. Only when the fuel atomization is poor, the rectifier generates heat to promote fuel atomization, and when the fuel atomization is good, the rectifier does not generate heat, thereby preventing unnecessary heating of the air-fuel mixture. The object of the present invention is to provide a useful engine intake system that does not cause volumetric expansion due to air-fuel mixture intake, resulting in a decrease in the amount of air-fuel mixture taken into the cylinders of the engine, and thus does not cause a decrease in engine output. be.

以下本発明を図に示す実施例により説明する。
第1図において、この装置は自動車などに用いら
れる火花点火式多気筒エンジンに適用するよう構
成されているもので、図示しないエンジンは矢印
で示すようにエアクリーナ1、空気流量計2、吸
気管3、スロツトル弁4及び吸気マニホールド5
を経て空気あるいは空気―燃料混合気を吸入す
る。
The present invention will be explained below with reference to embodiments shown in the drawings.
In FIG. 1, this device is configured to be applied to a spark ignition multi-cylinder engine used in automobiles, etc. The engine (not shown) has an air cleaner 1, an air flow meter 2, an intake pipe 3, as shown by arrows. , throttle valve 4 and intake manifold 5
Air or air-fuel mixture is inhaled through the air.

ここで、空気流量計2は空気流により開度が変
化する測定板を持つ公知の測定板方式のもので、
これにより燃料可変絞り6の通路面積を変化させ
る。
Here, the air flow meter 2 is of a known measuring plate type having a measuring plate whose opening degree changes depending on the air flow.
This changes the passage area of the variable fuel throttle 6.

また、スロツトル弁4は軸7により回動自在に
支持されたバタフライ型のもので、リンク機構8
を介して自動車のアクセルペダル9に連結されて
おり、スロツトル弁4はアクセルペダル9の操作
により開度が任意に制御される。
Further, the throttle valve 4 is of a butterfly type rotatably supported by a shaft 7, and a link mechanism 8
The throttle valve 4 is connected to the accelerator pedal 9 of the automobile via the throttle valve 4, and the opening degree of the throttle valve 4 can be arbitrarily controlled by operating the accelerator pedal 9.

吸気マニホールド5は、軽合金などで構成され
ており、通路10,11などによりエンジンの各
気筒へ空気―燃料混合気を導く。また、吸気マニ
ホールド5には温水式ヒートライザ部12が一体
的に形成されており、これを加熱する構造となつ
ている。
The intake manifold 5 is made of light alloy or the like, and guides the air-fuel mixture to each cylinder of the engine through passages 10, 11, etc. Further, a hot water type heat riser section 12 is integrally formed in the intake manifold 5, and has a structure for heating this.

吸気管3の上部には、自動外開弁式の燃料噴射
弁14が設置されており、これには燃料ポンプ1
5、燃圧レギユレータ16、定差圧弁17、燃料
タンク18及び燃料可変絞り6からなる燃料系か
らガソリン等の燃料が供給される。
A fuel injection valve 14 of an automatic outward opening type is installed at the upper part of the intake pipe 3, and this includes a fuel pump 1.
5. Fuel such as gasoline is supplied from a fuel system consisting of a fuel pressure regulator 16, a constant pressure differential valve 17, a fuel tank 18, and a variable fuel throttle 6.

ここで、燃料ポンプ15は電動式のもので、燃
料可変絞り6にはレギユレータ16によつて調圧
された一定圧力の燃料が供給される。定差圧弁1
7は、燃料可変絞り6の前後燃料圧力差を一定に
するためのもので、燃料流量が燃料可変絞り6の
通路面積に比例するよう動作する。
Here, the fuel pump 15 is an electric type, and fuel at a constant pressure regulated by a regulator 16 is supplied to the variable fuel throttle 6. Constant differential pressure valve 1
Reference numeral 7 is for making the fuel pressure difference before and after the variable fuel throttle 6 constant, and operates so that the fuel flow rate is proportional to the passage area of the variable fuel throttle 6.

しかして、この通路面積は空気流量計2によつ
て変化するので燃料噴射弁14に供給される燃料
流量は空気流量に比例する。
Since this passage area changes depending on the air flow meter 2, the fuel flow rate supplied to the fuel injection valve 14 is proportional to the air flow rate.

20は、本発明の主要部をなす整流器で、第2
図に示すようにPTCセラミツクにより格子形状
に形成されていて流れ方向に沿つて多数の孔21
が形成されている。これは、より詳細には、チタ
ン酸バリウム(BaTiO3)からなり、第3図に示す
ような正の抵抗R―温度T特性を有し、特定温度
To付近でキユーリー点を持ち、通電されるとほ
ぼキユーリー点温度まで温度上昇して発熱する。
20 is a rectifier which forms the main part of the present invention;
As shown in the figure, the PTC ceramic is formed into a lattice shape with many holes 21 along the flow direction.
is formed. More specifically, it is made of barium titanate (BaTiO 3 ), has a positive resistance R-temperature T characteristic as shown in FIG.
It has a Curie point near To, and when energized, the temperature rises to almost the Curie point temperature and generates heat.

この整流器20は、燃料噴射弁14のノズル1
4aとスロツトル弁4との間に設置されており、
ノズル14aと整流器20との間の距離は、燃料
噴射弁14が通常型の場合は30mm程度、渦巻式の
場合は20mm程度に設定するのが好ましい。
This rectifier 20 is connected to the nozzle 1 of the fuel injection valve 14.
4a and the throttle valve 4,
The distance between the nozzle 14a and the rectifier 20 is preferably set to about 30 mm when the fuel injection valve 14 is a normal type, and about 20 mm when the fuel injection valve 14 is a spiral type.

吸気管3において整流器20の設置部分は径が
大きく形成されており、この吸気管3の大径部の
内側壁と整流器20の外周面との間には隙間23
が形成されている。
A portion of the intake pipe 3 where the rectifier 20 is installed has a large diameter, and there is a gap 23 between the inner wall of the large diameter portion of the intake pipe 3 and the outer peripheral surface of the rectifier 20.
is formed.

この隙間23の面積と整流器20の孔21の総
面積とを加えた値は、全開時におけるスロツトル
弁4の部分の通路面積と等しくなるよう設定され
ている。
The sum of the area of this gap 23 and the total area of the holes 21 of the rectifier 20 is set to be equal to the passage area of the throttle valve 4 when fully open.

吸気管3の大径部と小径部との間には傾斜面2
4が形成されているが、この傾斜面24は吸気管
3の管中心に向かう方向に傾斜しており、この端
部は突起25として内周全域で管内に突出してい
る。
An inclined surface 2 is provided between the large diameter portion and the small diameter portion of the intake pipe 3.
4 is formed, and this inclined surface 24 is inclined in the direction toward the center of the intake pipe 3, and this end portion protrudes into the pipe as a projection 25 over the entire inner circumference.

次に整流器20の通電回路について説明する
と、これは常開式リレー26、フエライト式水温
スイツチ27、イグニツシヨンキースイツチ28
及びバツテリ29から構成されていて、キースイ
ツチ28がオンされている状態でエンジンの冷却
水温が50℃以下であると水温スイツチ27がオン
してリレー26がオンし、これにより整流器20
は通電される。
Next, the energizing circuit of the rectifier 20 will be explained. This includes a normally open relay 26, a ferrite water temperature switch 27, and an ignition key switch 28.
and a battery 29, and when the engine cooling water temperature is below 50°C with the key switch 28 turned on, the water temperature switch 27 is turned on and the relay 26 is turned on, thereby turning on the rectifier 20.
is energized.

次に第4図により整流器20の設置構造につい
て説明する。ここで、整流器20は、上面と下面
に薄膜状の白金電極20a,20bが化学メツキ
法あるいはペースト焼付法などの方法で付着され
ている。
Next, the installation structure of the rectifier 20 will be explained with reference to FIG. Here, the rectifier 20 has thin film-like platinum electrodes 20a and 20b attached to its upper and lower surfaces by a method such as chemical plating or paste baking.

陽極固定部材30及び3つの陰極固定部材3
1,32,33(このうち31,33は第2図に
図示)は、いずれもカーボン焼結体で形成されて
おり、このうち陰極固定部材は、その代表例であ
る固定部材32のごとく、ガラスエポキシ樹脂等
の耐熱電気絶縁材より成る長方形状の絶縁板34
と銅材より成る長方形状の金属板35とを介して
整流器20を支持している。つまり、絶縁板34
は整流器20の下面電極20b側に、金属板35
は上面電極20a側に当接して整流器20を挾持
する状態でボルト36、ナツト37を介して固定
部材32に固定してある。
Anode fixing member 30 and three cathode fixing members 3
1, 32, and 33 (of which 31 and 33 are shown in FIG. 2) are all made of carbon sintered bodies, and among these, the cathode fixing member, like the fixing member 32, is a typical example. Rectangular insulating plate 34 made of heat-resistant electrical insulating material such as glass epoxy resin
The rectifier 20 is supported via a rectangular metal plate 35 made of copper material. In other words, the insulating plate 34
is a metal plate 35 on the lower electrode 20b side of the rectifier 20.
is fixed to the fixing member 32 via a bolt 36 and a nut 37 in such a manner that it comes into contact with the upper surface electrode 20a side and holds the rectifier 20 therebetween.

この固定部材32は吸気管3を通して外部ビス
38によつて吸気管3に固定してある。勿論、他
の固定部材31,33も固定部材32と同じ構造
になつている。なお、上記構造により電極20a
は吸気管3を介して接地される。
This fixing member 32 passes through the intake pipe 3 and is fixed to the intake pipe 3 by an external screw 38. Of course, the other fixing members 31 and 33 also have the same structure as the fixing member 32. Note that due to the above structure, the electrode 20a
is grounded via the intake pipe 3.

一方、陽極固定部材30には、銅材より成る長
方形状の金属板39とガラスエポキシ樹脂等の耐
熱電気絶縁材より成る長方形状の絶縁板40とが
ボルト41およびナツト42により固定してあ
る。このうち金属板39は整流器20の電極20
bに当接し、絶縁板40は整流器20の電極20
aに当接し、これらで整流器20を挾持する構成
になつている。
On the other hand, a rectangular metal plate 39 made of a copper material and a rectangular insulating plate 40 made of a heat-resistant electrical insulating material such as glass epoxy resin are fixed to the anode fixing member 30 with bolts 41 and nuts 42. Of these, the metal plate 39 is connected to the electrode 20 of the rectifier 20.
b, the insulating plate 40 is in contact with the electrode 20 of the rectifier 20.
a, and the rectifier 20 is held between them.

固定部材30は、吸気管3に圧入して接着固定
したガラスエポキシ樹脂等の耐熱電気絶縁材より
成る固定体43にビス44を介して固定してあ
る。なお、ビス44と固定体43との間にはリー
ド線45の端子46が接続してあり、このリード
線45はバツテリ29の陽極側に結線してある。
このように、整流器20は、その円周等分4ケ所
にて固定部材を介して吸気管3に固定されている
のである。
The fixing member 30 is fixed via screws 44 to a fixing body 43 made of a heat-resistant electrical insulating material such as glass epoxy resin, which is press-fitted into the intake pipe 3 and fixed with adhesive. Note that a terminal 46 of a lead wire 45 is connected between the screw 44 and the fixed body 43, and this lead wire 45 is connected to the anode side of the battery 29.
In this way, the rectifier 20 is fixed to the intake pipe 3 via fixing members at four equal locations on its circumference.

上記構成において、作動を説明する。キースイ
ツチ28を閉じてエンジンを始動する。冷間始動
時は冷却水温が低いため、水温スイツチ27はオ
ンしておりリレー26のコイルに電流が流れリレ
ー接点がオンする。これにより整流器20の電極
20a,20bに通電され、整流器20が発熱す
る。
In the above configuration, the operation will be explained. Close the key switch 28 and start the engine. During a cold start, the cooling water temperature is low, so the water temperature switch 27 is on, current flows through the coil of the relay 26, and the relay contact is turned on. As a result, the electrodes 20a and 20b of the rectifier 20 are energized, and the rectifier 20 generates heat.

一方、自動車の運転者がアクセルペダル9を踏
込むとスロツトル弁4が開き、このスロツトル弁
4と吸気管3との間に開口面積が大きくなる。こ
れにより、燃焼用空気がエアクリート1、空気流
量計2、吸気管3および吸気マニホールド5を通
つてエンジンに吸入される。
On the other hand, when the driver of the automobile depresses the accelerator pedal 9, the throttle valve 4 opens, and the opening area between the throttle valve 4 and the intake pipe 3 increases. As a result, combustion air is drawn into the engine through the air cleat 1, the air flow meter 2, the intake pipe 3, and the intake manifold 5.

そして、この吸入空気流量に対してエンジンの
運転状態に適した空燃比の空気―燃料混合気を生
成するよう燃料噴射弁14から燃料が供給され
る。この燃料は、燃料噴射弁14と一定の距離を
保つて設けられている整流器20に向つて噴射さ
れ、整流器20に当接する。当接した燃料の大部
分は、整流器20の孔21を通り、残りの一部は
整流器20の格子壁に付着する。
Then, fuel is supplied from the fuel injection valve 14 so as to generate an air-fuel mixture having an air-fuel ratio suitable for the operating condition of the engine with respect to this intake air flow rate. This fuel is injected toward the rectifier 20, which is provided at a constant distance from the fuel injection valve 14, and comes into contact with the rectifier 20. Most of the contacting fuel passes through the holes 21 of the rectifier 20, and the remaining part adheres to the grid wall of the rectifier 20.

いずれの燃料も隔壁を通る空気流で細かく霧化
され、ここで燃料と空気が良好に混合されて均一
な混合気が生成される。この際、整流器20は発
熱しているので、液滴燃料の一層の霧化を助け非
常に微粒化された、あるいは蒸気化された混合気
ができる。
Both types of fuel are finely atomized by the air flow passing through the partition walls, where the fuel and air are well mixed to produce a homogeneous air-fuel mixture. At this time, since the rectifier 20 is generating heat, it helps to further atomize the droplet fuel and creates a highly atomized or vaporized air-fuel mixture.

そして第2図からもわかるように、整流器20
の外縁と吸気管3内側壁との間には全周にわたつ
て隙間23が形成されているため、整流器20の
孔21にて十分霧化されきれない燃料が整流器2
0上を拡散して外縁に至り、整流器20の外縁と
吸気管3内側壁との間を通過する高速の空気流の
乱れにより積極的に霧化されることから、燃料は
整流器20上に残らずに、非常に良好に安定した
状態の混合気ができる。
As can be seen from Fig. 2, the rectifier 20
Since a gap 23 is formed around the entire circumference between the outer edge of the rectifier 20 and the inner wall of the intake pipe 3, the fuel that cannot be sufficiently atomized by the holes 21 of the rectifier 20 flows into the rectifier 2.
The fuel diffuses over the rectifier 20 and reaches the outer edge, and is actively atomized by the turbulence of the high-speed airflow passing between the outer edge of the rectifier 20 and the inner wall of the intake pipe 3, so that the fuel does not remain on the rectifier 20. A very stable mixture can be created without any problems.

そして、得られた混合気は、吸気管3の傾斜面
24に沿うとともに、突起部25の傾斜面に沿つ
て流れて更に混合され、その後スロツトル弁4に
衝突する。混合気がスロツトル弁4の外周方向に
広がつてスロツトル弁4の端部から剥離する時に
スロツトル弁4と吸気管3との間の絞り部を通る
高速空気流で混合気は非常に細かく霧化され均一
混合気となつてエンジンの各気筒に吸入される。
The obtained air-fuel mixture flows along the slope 24 of the intake pipe 3 and the slope of the protrusion 25 to be further mixed, and then collides with the throttle valve 4. When the air-fuel mixture spreads toward the outer circumference of the throttle valve 4 and separates from the end of the throttle valve 4, the air-fuel mixture is atomized very finely by the high-speed air flow that passes through the constriction between the throttle valve 4 and the intake pipe 3. The mixture becomes a homogeneous mixture and is inhaled into each cylinder of the engine.

しかして、エンジンは均一混合気で高性能を発
揮し、かつHCなどの有害排気ガス成分も低減さ
れる。ここで、燃料噴射弁14と整流器20との
間の間隙はエンジン1の運転状態とは無関係に常
に一定であり、燃料噴射弁14から供給された燃
料の整流器20の上面への分布はほぼ均一とな
り、吸気管3中の混合気の偏向分布は容易に解消
される。
As a result, the engine achieves high performance with a homogeneous air-fuel mixture, and harmful exhaust gas components such as HC are also reduced. Here, the gap between the fuel injection valve 14 and the rectifier 20 is always constant regardless of the operating state of the engine 1, and the distribution of the fuel supplied from the fuel injection valve 14 to the upper surface of the rectifier 20 is almost uniform. Therefore, the deflection distribution of the air-fuel mixture in the intake pipe 3 is easily eliminated.

ここで整流器20は、燃料噴射弁14からの燃
料噴霧が全体に当たる大きさとなつており、整流
器20の上面に噴射された燃料は、整流器20の
孔21あるいは外縁の全周から霧化されるが、霧
化燃料は吸気管3の傾斜面24、突起部25の傾
斜面に沿つて吸気管3の中心方向に流れるため、
これによつても混合気の偏向分布は低減される。
さらに、これらによつて吸気管3の内側壁に付着
する燃料量は極めて少なくなり液膜状燃料の生成
が低減される。
Here, the rectifier 20 is sized so that the fuel spray from the fuel injection valve 14 covers the entire area, and the fuel injected onto the upper surface of the rectifier 20 is atomized from the hole 21 or the entire circumference of the outer edge of the rectifier 20. , since the atomized fuel flows toward the center of the intake pipe 3 along the slope 24 of the intake pipe 3 and the slope of the protrusion 25,
This also reduces the deflection distribution of the air-fuel mixture.
Furthermore, due to these, the amount of fuel adhering to the inner wall of the intake pipe 3 is extremely reduced, and the generation of liquid film fuel is reduced.

一方、冷却水温が上昇して50℃を越える、つま
り暖機状態を脱したとみなされると、整流器20
の電極20a,20b間には通電されなくなる
が、スロツトル弁4の下流の吸気マニホールド5
の外側のヒートライザ部12の冷却水の熱によつ
て液滴燃料の霧化が助けられ、良好な混合気を作
ることができる。なお、噴射弁より噴射された燃
料は冷却水温の低い時と同様に整流器20によつ
て霧化されることは勿論である。
On the other hand, when the cooling water temperature rises and exceeds 50°C, that is, it is considered that it has left the warm-up state, the rectifier 2
Although current is no longer supplied between the electrodes 20a and 20b, the intake manifold 5 downstream of the throttle valve 4
The heat of the cooling water in the outer heat riser section 12 helps atomize the droplet fuel, making it possible to create a good air-fuel mixture. Incidentally, it goes without saying that the fuel injected from the injection valve is atomized by the rectifier 20 in the same way as when the cooling water temperature is low.

第5図は電極20a,20bを交互に設けると
共に整流器20の隔壁20dの表面にまで電極2
0a,20bを延長して設けた他の実施例を示す
ものである。かかる例によれば電流は隔壁20d
の直角方向に流れるため、整流器20自身の抵抗
値が小さくなり、低い電圧でも大きな発熱量が得
られる。
In FIG. 5, electrodes 20a and 20b are provided alternately, and electrodes 20a and 20b are provided even on the surface of the partition wall 20d of the rectifier 20.
This shows another embodiment in which 0a and 20b are extended. According to this example, the current flows through the partition wall 20d.
Since the current flows in the direction perpendicular to the rectifier 20, the resistance value of the rectifier 20 itself becomes small, and a large amount of heat generation can be obtained even at a low voltage.

第6図は、ほぼ円錐状のスロツトル弁4を上下
動可能に設けた本発明の他の実施例を示すもの
で、第1図のバタフライ型のものと比較して吸気
管3の中心軸に対して対称な構造となつているた
め、混合気の気筒分配の不均一をさらに良好に解
消できる。なお、この実施例で噴射弁は整流器2
0の全体に燃料が噴射されるような渦巻式を使用
する方がより良好である。
FIG. 6 shows another embodiment of the present invention in which a substantially conical throttle valve 4 is provided so as to be movable up and down. Since it has a symmetrical structure, it is possible to better eliminate uneven distribution of the air-fuel mixture into the cylinders. In this embodiment, the injection valve is connected to the rectifier 2.
It is better to use a spiral system where the fuel is injected all over the 0.

なお、本発明は上記各実施例に限定されず、種
種変形可能である。
Note that the present invention is not limited to the above embodiments, and can be modified in various ways.

(1) 上記各実施例のいずれも整流器20を正の抵
抗温度特性を有するPTCセラミツクで構成し
たが、通電により発熱する発熱体で構成されて
いればPTCセラミツクでなくてもよい。
(1) In each of the above embodiments, the rectifier 20 is made of PTC ceramic having a positive resistance temperature characteristic, but it does not need to be made of PTC ceramic as long as it is made of a heating element that generates heat when energized.

(2) 吸気管3は円筒形状としたが、エンジンの要
求に応じて適宜変更可能である。
(2) Although the intake pipe 3 has a cylindrical shape, it can be changed as appropriate depending on the requirements of the engine.

(3) 整流器20の固定構造も第4図の構造に限定
されず、種々の構造が考えられる。
(3) The fixing structure of the rectifier 20 is not limited to the structure shown in FIG. 4, and various structures can be considered.

(4) 吸気マニホールド5を排気熱で加熱するよう
にしてもよい。
(4) The intake manifold 5 may be heated with exhaust heat.

(5) 整流器20への通電を制御するためにエンジ
ンの冷却水温を検出したが、エンジンの潤滑油
温、エンジン1のシリンダブロツク温を検出し
てもよい。
(5) Although the engine cooling water temperature is detected in order to control the energization to the rectifier 20, the engine lubricating oil temperature or the cylinder block temperature of the engine 1 may also be detected.

(6) エンジン1の始動後、所定時間後に暖機運転
が終了するものとして、タイマ装置によつて通
電を制御するようにしてもよい。
(6) The energization may be controlled by a timer device, assuming that the warm-up operation ends after a predetermined period of time after the engine 1 is started.

(7) 燃料供給体を燃料噴射弁で構成したが気化器
としてもよい。
(7) Although the fuel supply body is configured with a fuel injection valve, it may also be a carburetor.

以上述べたように本発明によれば吸気管のう
ち、燃料供給体とスロツトル弁との間に燃料供給
体と一定の距離を保つて対向する多数の孔を持つ
通電により発熱する発熱体からなる整流器を配置
し、整流器の外縁と吸気管の内側壁との間に全周
にわたつて隙間を形成したことから、燃料供給体
から供給された燃料流は、整流器により弱められ
て燃料は整流器内で孔を通過する空気流により霧
化されると共に、整流器に付着した液状の燃料
も、整流器の発熱により霧化され、そのとき十分
霧化されきれない燃料が残存していても、この燃
料は整流器上を拡散して外縁に流れて外縁から剥
離する際に前記隙間を通過する空気流によりさら
に霧化が促進され、また空気流もこの整流器で均
一な流れとなるので一層混合が良くなる。また、
その後スロツトル弁に向う空気に均一に混合され
るため、従来のごとく吸気管の内側壁に燃料が付
着して液膜状になつたり、あるいはスロツトル弁
の開度によつて燃料と空気との混合比率が変化し
たりすることはほとんどなく、均一な混合状態に
ある混合気をエンジンの各気筒に平等に分配で
き、エンジン性能を向上できるとともに、有害排
気ガス成分を低減できるという優れた効果を奏す
る。
As described above, according to the present invention, the intake pipe includes a heating element that generates heat when energized and has a large number of holes facing the fuel supply body at a certain distance between the fuel supply body and the throttle valve. Since the rectifier is arranged and a gap is formed around the entire circumference between the outer edge of the rectifier and the inner wall of the intake pipe, the flow of fuel supplied from the fuel supply body is weakened by the rectifier, and the fuel flows inside the rectifier. At the same time, the liquid fuel adhering to the rectifier is also atomized by the air flow passing through the holes, and the liquid fuel that has adhered to the rectifier is also atomized by the heat generated by the rectifier. Atomization is further promoted by the airflow that passes through the gap when it diffuses over the rectifier, flows to the outer edge, and is separated from the outer edge, and the airflow also becomes a uniform flow through the rectifier, resulting in even better mixing. Also,
After that, it is mixed uniformly with the air heading towards the throttle valve, so unlike conventional fuel, the fuel adheres to the inner wall of the intake pipe and forms a liquid film, or the fuel and air are mixed depending on the opening degree of the throttle valve. There is almost no change in the ratio, and a uniformly mixed mixture can be distributed equally to each cylinder of the engine, which has the excellent effect of improving engine performance and reducing harmful exhaust gas components. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、
第2図は第1図のA―A断面図、第3図は作動説
明に供するグラフ、第4図は整流器の設置構造を
示す要部拡大断面図、第5図は整流器の他の実施
例を示す要部拡大断面図、第6図はスロツトル弁
の他の実施例を示す断面図である。 3…吸気管、4…スロツトル弁、5…吸気マニ
ホールド、14…燃料供給体をなす燃料噴射弁、
20…整流器、21…孔。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention;
Fig. 2 is a cross-sectional view taken along line AA in Fig. 1, Fig. 3 is a graph used to explain the operation, Fig. 4 is an enlarged sectional view of main parts showing the installation structure of the rectifier, and Fig. 5 is another embodiment of the rectifier. FIG. 6 is an enlarged sectional view of a main part showing another embodiment of the throttle valve. 3... Intake pipe, 4... Throttle valve, 5... Intake manifold, 14... Fuel injection valve forming a fuel supply body,
20... Rectifier, 21... Hole.

Claims (1)

【特許請求の範囲】 1 吸気管中に燃料を供給する燃料供給体と、空
気―燃料混合気をエンジンの各気筒に分配する吸
気マニホールドと、前記燃料供給体からこの吸気
マニホールドに至る吸気管内に設けられたスロツ
トル弁と、前記吸気管内のうち前記燃料供給体と
前記スロツトル弁との間に位置し前記燃料供給体
と一定距離を保つて対向して設けられ、流れ方向
に沿つて多数の孔が形成され、通電により発熱す
る発熱体からなる整流器とを備え、この整流器の
外縁と前記吸気管の内側壁との間に全周にわたり
隙間を有することを特徴とするエンジンの吸気装
置。 2 前記通電による発熱する発熱体からなる整流
器は、正の抵抗温度特性を持ち、かつ特定の温度
でキユーリー点を有するセラミツクで構成されて
いる特許請求の範囲第1項記載のエンジン吸気装
置。
[Scope of Claims] 1. A fuel supply body that supplies fuel into an intake pipe, an intake manifold that distributes an air-fuel mixture to each cylinder of the engine, and a fuel supply body that supplies fuel into the intake pipe from the fuel supply body to the intake manifold. a throttle valve provided in the intake pipe; and a plurality of holes located in the intake pipe between the fuel supply body and the throttle valve, provided facing the fuel supply body at a constant distance, and arranged along the flow direction. and a rectifier made of a heat generating element that generates heat when energized, and a gap is provided over the entire circumference between the outer edge of the rectifier and the inner wall of the intake pipe. 2. The engine intake system according to claim 1, wherein the rectifier made of the heating element that generates heat when energized is made of ceramic that has a positive resistance temperature characteristic and has a Curie point at a specific temperature.
JP5854179A 1979-05-11 1979-05-11 Intake system for engine Granted JPS55151151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5854179A JPS55151151A (en) 1979-05-11 1979-05-11 Intake system for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5854179A JPS55151151A (en) 1979-05-11 1979-05-11 Intake system for engine

Publications (2)

Publication Number Publication Date
JPS55151151A JPS55151151A (en) 1980-11-25
JPS6221980B2 true JPS6221980B2 (en) 1987-05-15

Family

ID=13087296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5854179A Granted JPS55151151A (en) 1979-05-11 1979-05-11 Intake system for engine

Country Status (1)

Country Link
JP (1) JPS55151151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105722A1 (en) * 2006-03-16 2007-09-20 Kokoku Intech Co., Ltd. Air intake noise reducing device, internal combustion engine with the same, and installation structure for air intake noise reducing device of internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328879Y2 (en) * 1980-03-27 1988-08-03
USRE32396E (en) * 1982-08-16 1987-04-14 Casco Products Corporation PTC heater construction
JPH0348872Y2 (en) * 1984-11-07 1991-10-18
JPH0323364A (en) * 1989-06-20 1991-01-31 Texas Instr Japan Ltd Heating device for fuel feed device
KR101490907B1 (en) * 2013-06-07 2015-02-06 현대자동차 주식회사 Cold starting device and cold starting method for vehicle
JP5671720B1 (en) * 2014-06-04 2015-02-18 合同会社堀高 Static eliminator and method thereof
JP2015230894A (en) * 2014-11-27 2015-12-21 合同会社堀高 Electrostatic eliminator and method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232819U (en) * 1975-08-29 1977-03-08
JPS5359130A (en) * 1976-09-09 1978-05-27 Texas Instruments Inc Carburettor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369623U (en) * 1976-11-12 1978-06-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232819U (en) * 1975-08-29 1977-03-08
JPS5359130A (en) * 1976-09-09 1978-05-27 Texas Instruments Inc Carburettor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105722A1 (en) * 2006-03-16 2007-09-20 Kokoku Intech Co., Ltd. Air intake noise reducing device, internal combustion engine with the same, and installation structure for air intake noise reducing device of internal combustion engine
JP2007247547A (en) * 2006-03-16 2007-09-27 Kokoku Intech Co Ltd Abnormal intake noise reduction device, internal combustion engine provided with the same, and abnormal intake noise reduction device mounting structure for engine
JP4615463B2 (en) * 2006-03-16 2011-01-19 興国インテック株式会社 Intake noise reduction device, internal combustion engine equipped with the same, and intake noise reduction device mounting structure of the internal combustion engine

Also Published As

Publication number Publication date
JPS55151151A (en) 1980-11-25

Similar Documents

Publication Publication Date Title
JPS5925113B2 (en) engine intake system
US4108125A (en) High efficiency early fuel evaporation carburetion system
US4279234A (en) Early fuel evaporation of carburetion system
US4177778A (en) Carburetors with heating device
US4141327A (en) Early fuel evaporation carburetion system
US4384563A (en) Apparatus for redirection of fuel-air mixture in carburetion system
US4361125A (en) Fuel evaporator for internal combustion engine
JPS6221980B2 (en)
JPS6342109B2 (en)
JPH0532583B2 (en)
US3973543A (en) Apparatus for promoting a vaporization of a fuel for an internal combustion engine
JPS6237223B2 (en)
GB2037894A (en) A Heated Intake Throttle Valve Assembly for an Internal Combustion Engine
JPS6147975B2 (en)
US3215417A (en) Carburetor idle valve heater
JP3735590B2 (en) Heater unit for fuel vaporization promotion device and fuel vaporization promotion device provided with the same
US4528967A (en) Apparatus for heating the fuel-air mixture being supplied by a fuel metering system for use in a fuel injection type combustion engine
JP3921338B2 (en) Fuel supply device for internal combustion engine
US4536356A (en) Carburetor
JPS63170555A (en) Fuel injection valve
JPS6060030B2 (en) Engine intake air heating device
JPH04175454A (en) Fuel feeding device for internal combustion engine
JP3914773B2 (en) Fuel vaporization promotion device
CA1091111A (en) High efficiency early fuel evaporation carburetion system
JPS6088861A (en) Fuel atomization promoting device in internal-combustion engine