JPS62219567A - Thin-film element - Google Patents

Thin-film element

Info

Publication number
JPS62219567A
JPS62219567A JP61061878A JP6187886A JPS62219567A JP S62219567 A JPS62219567 A JP S62219567A JP 61061878 A JP61061878 A JP 61061878A JP 6187886 A JP6187886 A JP 6187886A JP S62219567 A JPS62219567 A JP S62219567A
Authority
JP
Japan
Prior art keywords
thin film
light
electrode
film
film element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61061878A
Other languages
Japanese (ja)
Inventor
Koichi Hiranaka
弘一 平中
Tadayuki Kimura
忠之 木村
Tetsuzo Yoshimura
徹三 吉村
Tadahisa Yamaguchi
山口 忠久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61061878A priority Critical patent/JPS62219567A/en
Publication of JPS62219567A publication Critical patent/JPS62219567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To realize a low-costing image sensor capable of reading gradation and having higher performance such as high density or the like and to realize a highly functional a-silicon TFT having high definition and capable of displaying gradation, by overlaying a high-resistance light-blocking film for providing a light-blocking film for preventing deterioration in characteristics due to irradiation of light. CONSTITUTION:After a metal film is deposited on an insulating substrate 1, a common ohmic electrode 2 is provided. Amorphous silicon 3 is then deposited to form a 0.5mum-2mum thick film. After ITO or SnO2 4 for providing a transparent electrode is deposited to form a 1,000Angstrom thick layer, resist 5 is applied and patterned and the structure is etched. Amorphous GaAs:H for providing a high- resistance light-blocking film 6 is deposited to form a 1,000-3,000Angstrom thick layer with the resist 5 left in the place. The amorphous GaAs:H is formed by performing the high-frequency sputtering process within mixed gas of Ar and H2 with a target of polycrystalline GaAs.

Description

【発明の詳細な説明】 〔概要〕 イメージセンサや薄膜トランジスタ(TPT)などのよ
うな薄膜素子において、光照射を防止する遮光膜として
、高抵抗遮光膜を用いることで、漏れ電流などの特性低
下を効果的に抑制し、動作の信転性を向上させる。
[Detailed Description of the Invention] [Summary] In thin film devices such as image sensors and thin film transistors (TPT), a high resistance light shielding film is used as a light shielding film to prevent light irradiation, thereby reducing characteristics such as leakage current. Effectively suppresses and improves reliability of movement.

〔産業上の利用分野〕[Industrial application field]

本発明は、イメージセンサや薄膜トランジスタなどのよ
うな、アモルファス・シリコン膜を使用した素子に関す
る。
The present invention relates to elements using an amorphous silicon film, such as image sensors and thin film transistors.

〔従来の技術〕[Conventional technology]

近年ファクシミリ用密着型イメージセンサの製品開発が
精力的に行なわれている。第7図に従来のこの種イメー
ジセンサを示す。基板1上に、共通電極2、光電変換層
3、個別電極4・・・の順に積層されている。光電変換
層3としては、a−Siが用いられるが、a−3tの光
導電特性、即ち白色光5007Ixでの光導電率6 p
=1o−6〜1O−5(Ω−cm) −1、暗導電率σ
d=10−10〜10−8(Ω−cm) −’を有する
。そのため隣接する個別電極4・・・間に光が照射する
ことで低抵抗となって漏れ電流が流れ、信号電流とリー
ク電流の比S/Nの低減を招き高密度化および階調読取
の阻害要因となっている。
In recent years, product development of contact type image sensors for facsimile has been actively conducted. FIG. 7 shows a conventional image sensor of this type. A common electrode 2, a photoelectric conversion layer 3, individual electrodes 4, . . . are laminated in this order on a substrate 1. As the photoelectric conversion layer 3, a-Si is used, but it has a photoconductive property of a-3t, that is, a photoconductivity of 6p under white light 5007Ix.
=1o-6~1O-5 (Ω-cm) -1, dark conductivity σ
d=10-10 to 10-8 (Ω-cm)-'. Therefore, when light shines between adjacent individual electrodes 4, the resistance becomes low and leakage current flows, leading to a decrease in the signal current to leakage current ratio S/N, resulting in higher density and hindering gradation reading. This is a contributing factor.

また近年a−Si!膜トランジスタa−3t TFTを
用いた大面積液晶ディスプレイの発表がなされている。
In addition, in recent years a-Si! A large area liquid crystal display using a membrane transistor A-3T TFT has been announced.

第8図にa −S i 薄膜トランジスタを使用した液
晶ディスプレイの断面図を示す。基板1)上にゲート電
極12、ゲート絶縁膜13、a−3t活性層14、チャ
ンネル保護膜15、オーミックコンタクト層16、ソー
ス電極17s、ドレイン電極17d 、  TPT保護
膜18および遮光膜19の順に積層されている。なお2
1は液晶表示装置の画素電極、22は液晶、23は対向
電極、24は基板である。
FIG. 8 shows a cross-sectional view of a liquid crystal display using a-Si thin film transistors. A gate electrode 12, a gate insulating film 13, an a-3t active layer 14, a channel protective film 15, an ohmic contact layer 16, a source electrode 17s, a drain electrode 17d, a TPT protective film 18, and a light shielding film 19 are laminated on the substrate 1) in this order. has been done. Note 2
1 is a pixel electrode of a liquid crystal display device, 22 is a liquid crystal, 23 is a counter electrode, and 24 is a substrate.

そして従来は、前記の遮光膜19として、Cr等金属材
料が用いられていた。ところが、この遮光膜19とソー
ス電極17sおよびドレイン電極176間に容量接合が
生じ、TPTがオフ状態になっても、ドレイン・バスの
信号の一部がソース電極17sに印加されてしまうとい
う欠点があった。
Conventionally, a metal material such as Cr has been used as the light shielding film 19. However, a capacitive junction occurs between the light shielding film 19, the source electrode 17s, and the drain electrode 176, and even when the TPT is turned off, a part of the drain bus signal is applied to the source electrode 17s, which is a drawback. there were.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来のイメージセンサや薄膜トランジスタ
などの薄膜素子では、漏れ電流が生じ易いなどの特性低
下を来している。そこで本発明は、イメージセンサや薄
膜トランジスタなどにおけるこのような問題を解消し、
イメージセンサにおける低コスト化および階調読取、高
密度化等高機能化を実現し、かつa−Si TFTの高
機能化の方向として高精細かつ階調表示を可能とするも
のである。
As described above, conventional thin film elements such as image sensors and thin film transistors have deteriorated characteristics such as easy leakage current. Therefore, the present invention solves these problems in image sensors, thin film transistors, etc.
The present invention is intended to realize cost reduction and higher functionality such as gradation reading and higher density in image sensors, and also to enable high-definition and gradation display as a direction toward higher functionality of a-Si TFTs.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による薄膜素子の基本原理を説明する断
面図である。イメージセンサや薄膜トランジスタなどの
ような薄膜素子は、基板a上に、下部電極b、光電変換
層C1上部電極dの順に積層されている。このような薄
膜素子において、光照射による特性低下を防止するため
の遮光膜eを設け、かつ該遮光膜eとして、高抵抗遮光
膜が使用されている。
FIG. 1 is a sectional view illustrating the basic principle of a thin film element according to the present invention. A thin film element such as an image sensor or a thin film transistor is stacked on a substrate a in the order of a lower electrode b and an upper electrode d of the photoelectric conversion layer C1. In such a thin film element, a light-shielding film e is provided to prevent deterioration of characteristics due to light irradiation, and a high-resistance light-shielding film is used as the light-shielding film e.

〔作用〕[Effect]

この高抵抗遮光膜eは、イメージセンサの場合であれば
、各個別電極間の隙間に設けられ、薄膜トランジスタの
場合であれば、ソース・ドレイン電極の上の絶縁保護膜
の上に設けられる。そのため、イメージセンサの場合で
あれば、各個別電極間の光電変換層が遮光されるので、
光照射による漏れ電流が未然に防止され、イメージセン
サにおける高密度化が促進される。また薄膜トランジス
タの場合は、ソース・ドレイン電極の上の絶縁保護膜の
上に高抵抗遮光膜が設けられることで、ソース・ドレイ
ン電極と高抵抗遮光膜間における容量接合が低減し、オ
フ電流が減少する。
In the case of an image sensor, this high-resistance light-shielding film e is provided in the gap between each individual electrode, and in the case of a thin film transistor, it is provided on the insulating protective film on the source/drain electrodes. Therefore, in the case of an image sensor, the photoelectric conversion layer between each individual electrode is shielded from light.
Leakage current due to light irradiation is prevented, and higher density in the image sensor is promoted. In addition, in the case of thin film transistors, a high-resistance light-shielding film is provided on top of the insulating protective film on the source/drain electrodes, which reduces the capacitive junction between the source/drain electrodes and the high-resistance light-shielding film, reducing off-current. do.

〔第1実施例〕 第2図は本発明をイメージセンサに実施した例で、製造
方法を工程順に示す。まず(a)のように、絶縁性基板
1上にCrやNtCrまたはTi等金属膜を堆積した後
、パターニングしてオーミックの共通電極2を形成する
。その後(b)のように、高周波グロー放電分解法によ
り、アモルファス・シリコン膜3を0.5 μm〜2μ
m形成する。なおアモルファス・シリコン膜にボロンQ
II)あるいはリン(pl等の不鈍物をドーピングして
も良い。またn+a−3t (〜100人)/1a−3
t(0,5〜2 、Ij m)またはp+a−5i(〜
500人)/1a−3t(0,5〜2 II m)の2
層構造としてもよい。次に(C1のように、透明電極と
なるITOまたはSnO□4を1000人堆積した後、
td)のようにレジスト5を塗布してパターン形成の後
、エツチングする。次いでtelのように、レジスト5
を残したまま、高抵抗遮光膜となるa−GaAs:■を
1000〜3000人堆積する。a−GaAs:■の形
成は、多結晶GaAsターゲットを用い、Ar−■2混
合ガス中で高周波スパッター法で行なう。条件としては
、Ar圧力l×10−”TorrSn!分圧10−To
rr〜10−”Torr、 rfパワー4o−sowが
望ましい。なお基板温度は室温である。
[First Embodiment] FIG. 2 shows an example in which the present invention is applied to an image sensor, and the manufacturing method is shown in the order of steps. First, as shown in (a), a metal film such as Cr, NtCr, or Ti is deposited on an insulating substrate 1, and then patterned to form an ohmic common electrode 2. Thereafter, as shown in (b), the amorphous silicon film 3 is 0.5 μm to 2 μm thick by high-frequency glow discharge decomposition method.
m form. In addition, boron Q is added to the amorphous silicon film.
II) Or doping with an inert substance such as phosphorus (pl) may be used.Also, n+a-3t (~100 people)/1a-3
t(0,5~2, Ij m) or p+a-5i(~
500 people) / 2 of 1a-3t (0.5-2 II m)
It may also have a layered structure. Next (as in C1, after depositing 1000 ITO or SnO□4 to become a transparent electrode,
After applying a resist 5 and forming a pattern as shown in td), etching is performed. Then register 5 like tel
1,000 to 3,000 layers of a-GaAs (■), which will become a high-resistance light-shielding film, are deposited while leaving . Formation of a-GaAs: (1) is carried out by high-frequency sputtering in an Ar-2 mixed gas using a polycrystalline GaAs target. The conditions are: Ar pressure l×10-”TorrSn!partial pressure 10-To
Desirably, the RF power is 40-sow, and the substrate temperature is room temperature.

その後、リフトオフすることにより、隣接する個別電極
5・・・間にa−GaAs:$1層6が残される。
Thereafter, the a-GaAs:$1 layer 6 is left between adjacent individual electrodes 5 by lift-off.

第3図はa−5iおよびa−GaAs:Ilの分光感度
特性を示す図である。本発明によれば、この図に示され
るように、アモルファス・シリコン層が光導電特性を有
する波長900nm以下の光が、1000〜2000人
程度のa−GaAs:H膜6により90%以上吸収され
るため、個別電極4・・・間に発生する光電流によるリ
ークを10%以下に低減できる利点がある。
FIG. 3 is a diagram showing the spectral sensitivity characteristics of a-5i and a-GaAs:Il. According to the present invention, as shown in this figure, more than 90% of light with a wavelength of 900 nm or less, for which the amorphous silicon layer has photoconductive properties, is absorbed by the a-GaAs:H film 6 of about 1,000 to 2,000 layers. Therefore, there is an advantage that leakage due to photocurrent generated between the individual electrodes 4 can be reduced to 10% or less.

〔第2実施例〕 第4図は本発明を実施した薄膜トランジスタの製造方法
を工程順に示す断面図である。まず(alのように、ガ
ラス等の絶縁性基板上1)上に、ゲート電極12をパタ
ーン形成する。電極材としては、Mo、Crs NiC
r等が用いられる。その後、(b)に示すように、高周
波グロー放電分解法によりゲート絶縁膜13(SiOz
または5iN)を3000人、活性層a−5i膜14を
1000人、チャンネル保護膜15(Si(hまたは5
iN)を1000人程度2真空を破らずに連続堆積する
。然る後に、(b)のようにポジレジスト20を塗布し
た後、(C)の如くチャンネル部保護膜15が残るよう
に、選択的にエツチングする。その後(d)のように、
オーミック改善のためリンドープa−3t層16を30
0人堆積し、その上に上部電極膜(Ti/NiCrまた
はAI、Cr、 NiCr等)を堆積してバターニング
し、ソース・ドレイン電極17とする。その後(e)の
ように、ポリミド等のTPT保護膜(第2の絶縁膜)1
8を形成し、パターン形成の後、本発明の高抵抗遮光膜
a−GaAs:HI3を堆積する。
[Second Embodiment] FIG. 4 is a cross-sectional view showing a method for manufacturing a thin film transistor according to the present invention in order of steps. First, a gate electrode 12 is patterned on an insulating substrate 1 made of glass or the like (like Al). As electrode material, Mo, Crs NiC
r etc. are used. Thereafter, as shown in (b), the gate insulating film 13 (SiOz
or 5iN) for 3000 people, active layer a-5i film 14 for 1000 people, channel protective film 15 (Si(h or
iN) by about 1000 people 2 Continuously deposit without breaking the vacuum. After that, a positive resist 20 is applied as shown in (b), and then selectively etched so that the channel protective film 15 remains as shown in (c). Then, as in (d),
Phosphorus doped A-3T layer 16 for ohmic improvement
After that, an upper electrode film (Ti/NiCr or AI, Cr, NiCr, etc.) is deposited and buttered to form the source/drain electrodes 17. After that, as shown in (e), a TPT protective film (second insulating film) 1 made of polyimide etc.
8 is formed, and after patterning, a high resistance light shielding film a-GaAs:HI3 of the present invention is deposited.

a−GaAs :旧9の形成は、多結晶GaAsターゲ
ットを用い、Ar−■2混合中で高周波スパッタ法によ
り、Ar圧力I X 10− ”Torrのもとで、H
2分圧1O−3Torr〜10−”Torr、 rfパ
ワー40〜80Wで行なうのが望ましい。なお基板温度
は室温である。遮光膜19のパターン形成は、リフトオ
フ法が簡便である。
a-GaAs: Former 9 was formed using a polycrystalline GaAs target by high-frequency sputtering in an Ar-2 mixture under an Ar pressure of I x 10-'' Torr.
It is preferable to carry out the process at a partial pressure of 10-3 Torr to 10-'' Torr and an RF power of 40 to 80 W. The substrate temperature is room temperature. The lift-off method is convenient for patterning the light-shielding film 19.

この実施例におけるa−Siの分光特性およびa−Ga
As:H膜の分光特性も、第3図に示すとおりである。
Spectral characteristics of a-Si and a-Ga in this example
The spectral characteristics of the As:H film are also as shown in FIG.

すなわちこの図から、a−GaAs:H膜の膜厚200
0人程度7、a−Siの光感度を有する波長の光はほと
んど吸収されることがわかる。しかもa−GaAs:H
膜の比抵抗は1) 〜108(Ω−cWl)である。第
5図に、a−Si TFTの分光感度特性を示す。入射
光の波長900nm以下で、光電流は、10−”Aであ
り、従来法に比べ、2桁以上光電流を低減できる。
That is, from this figure, the film thickness of the a-GaAs:H film is 200
It can be seen that most of the light having a wavelength having a photosensitivity of about 0.7 and a-Si is absorbed. Moreover, a-GaAs:H
The specific resistance of the film is 1) to 108 (Ω-cWl). FIG. 5 shows the spectral sensitivity characteristics of the a-Si TFT. When the wavelength of the incident light is 900 nm or less, the photocurrent is 10-''A, and the photocurrent can be reduced by more than two orders of magnitude compared to the conventional method.

第6図は、本発明の更に別の実施例を示すものであり、
遮光膜19をチャンネル部に近づけて成膜することで、
多重反射による光電流も低減可能としている。
FIG. 6 shows yet another embodiment of the present invention,
By forming the light shielding film 19 close to the channel part,
It is also possible to reduce photocurrent due to multiple reflections.

なお、絶縁性基板上にゲート電極を有する逆スタガード
型TPTについて説明したが、絶縁性基板上にソース・
ドレイン電極を有するスタガード型TPTについても、
応用できることは言うまでもな、  い。このとき、基
板上にまず高抵抗遮光膜を形成し、その上にソース・ド
レイン電極を形成することになる。
Note that although we have described an inverted staggered TPT that has a gate electrode on an insulating substrate,
Regarding the staggered TPT having a drain electrode,
Needless to say, it can be applied. At this time, a high-resistance light-shielding film is first formed on the substrate, and then source/drain electrodes are formed on it.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、イメージセンサの隣接す
る個別電極間に高抵抗遮光膜を形成する東 が実現される。また、薄膜トランジスタの遮光膜として
、a−GaAs:Hなどの高抵抗並光膜を設けることで
、オフ電、流の低減を実現でき、高精細かつ階調表示可
能なa−Si%i膜トランジス、夕が得られる。
As described above, according to the present invention, it is possible to form a high resistance light shielding film between adjacent individual electrodes of an image sensor. In addition, by providing a high-resistance parallel light film such as a-GaAs:H as a light-shielding film for thin film transistors, it is possible to reduce off-state current and current, and to achieve high-definition and gradation display in a-Si%i film transistors. , the evening is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による薄膜素子の基本原理を説明する断
面図、第2図は本発明をイメージセンサに実施した例を
示す製造工程図、第3図はa−3tおよびa−GaAs
:Hの分光感度特性を示す図、第4図は本発明を実施し
た薄膜トランジスタの製造方法を工程順に示す断面図、
第5図はa−Si TFTの分光感度特性を示す図、第
6図は本発明の更に別の実施例を示す断面図、第7図は
イメージセンサの断面図、第8図はa−Sim膜トラン
ジスタを使用した液晶ディスプレイの断面図である。 図において、aは基板、bは下部電極、Cは光電変換層
、dは上部電極、eは高抵抗遮光膜をそれぞれ示す。 特許出願人     富士通株式会社 代理人 弁理士   青 柳   稔 ホ壇細肋狗燻離 第1図 Jave Ler+gt)+ (nrn)a−s; c
m a−atm:l−I L:Aる噴I力梗諮JL句テ
 リ  勧 5PJ′6凶 Wavelerfh (nm) a−6訂F:Te械胸眼也 第5図 第6図 第8図
FIG. 1 is a cross-sectional view explaining the basic principle of a thin film element according to the present invention, FIG. 2 is a manufacturing process diagram showing an example of implementing the present invention in an image sensor, and FIG. 3 is a-3T and a-GaAs.
: A diagram showing the spectral sensitivity characteristics of H; FIG.
Fig. 5 is a diagram showing the spectral sensitivity characteristics of a-Si TFT, Fig. 6 is a cross-sectional view showing another embodiment of the present invention, Fig. 7 is a cross-sectional view of an image sensor, and Fig. 8 is a diagram showing the a-Si TFT. 1 is a cross-sectional view of a liquid crystal display using film transistors. In the figure, a represents a substrate, b represents a lower electrode, C represents a photoelectric conversion layer, d represents an upper electrode, and e represents a high-resistance light-shielding film. Patent Applicant: Fujitsu Limited Agent, Patent Attorney: Minoru Aoyagi
m a-atm: l-I L: Aruki Ikyou Kousin JL phrase teri kan5PJ'6KyouWavelerfh (nm) a-6 revision F: Te machine chest eye figure 5 figure 6 figure 8

Claims (6)

【特許請求の範囲】[Claims] (1)、イメージセンサや薄膜トランジスタなどのよう
な薄膜素子において、 光照射による特性低下を防止するための遮光膜として、
高抵抗遮光膜を積層してなることを特徴とする薄膜素子
(1) As a light shielding film to prevent characteristic deterioration due to light irradiation in thin film devices such as image sensors and thin film transistors.
A thin film element characterized by being formed by laminating high-resistance light-shielding films.
(2)、前記薄膜素子は、金属電極が形成された絶縁性
基板上に、光電変換層、透明電極を積層してなるイメー
ジセンサであり、かつその隣接する個別電極間に前記高
抵抗遮光膜を具備することを特徴とする特許請求の範囲
第(1)項記載の薄膜素子。
(2) The thin film element is an image sensor in which a photoelectric conversion layer and a transparent electrode are laminated on an insulating substrate on which a metal electrode is formed, and the high resistance light shielding film is formed between adjacent individual electrodes. A thin film element according to claim (1), characterized in that it comprises:
(3)、前記薄膜素子は、絶縁基板上にゲート電極が設
けられ、該ゲート電極を覆ってゲート絶縁膜、活性層が
設けられ、該活性層を挟んで、該活性層上同一平面にソ
ース電極とドレイン電極とが設けられてなる薄膜トラン
ジスタであり、かつ該活性層上部が第2の絶縁層で覆わ
れ、このチャンネル部上部の第2の絶縁層上に前記高抵
抗遮光膜が設けられてなることを特徴とする特許請求の
範囲第(1)項記載の薄膜素子。
(3) In the thin film element, a gate electrode is provided on an insulating substrate, a gate insulating film and an active layer are provided covering the gate electrode, and a source is provided on the same plane on the active layer with the active layer in between. A thin film transistor comprising an electrode and a drain electrode, an upper part of the active layer is covered with a second insulating layer, and the high-resistance light-shielding film is provided on the second insulating layer above the channel part. A thin film element according to claim (1), characterized in that:
(4)、前記の高抵抗遮光膜が導電率σ<10^−^8
(Ω−cm)^−^1、光学ギャップEg<1.4eV
を有するものであることを特徴とする特許請求の範囲第
(2)項または(3)項記載の薄膜素子。
(4) The high-resistance light-shielding film has a conductivity σ<10^-^8
(Ω-cm)^-^1, optical gap Eg<1.4eV
A thin film element according to claim (2) or (3), characterized in that it has:
(5)、前記の高抵抗遮光膜が、a−GaAs:Hであ
ることを特徴とする特許請求の範囲第(2)項または(
3)項記載の薄膜素子。
(5) Claim (2) or (2) characterized in that the high resistance light shielding film is a-GaAs:H.
3) The thin film element described in item 3).
(6)、前記の光電変換層がa−Si、またはp^+a
−Si/ia−Siまたはn^+a−Si/ia−Si
膜で構成されることを特徴とする特許請求の範囲第(2
)項または(3)項記載の薄膜素子。
(6), the photoelectric conversion layer is a-Si or p^+a
-Si/ia-Si or n^+a-Si/ia-Si
Claim No. 2 characterized in that it is composed of a membrane.
) or (3).
JP61061878A 1986-03-19 1986-03-19 Thin-film element Pending JPS62219567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61061878A JPS62219567A (en) 1986-03-19 1986-03-19 Thin-film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61061878A JPS62219567A (en) 1986-03-19 1986-03-19 Thin-film element

Publications (1)

Publication Number Publication Date
JPS62219567A true JPS62219567A (en) 1987-09-26

Family

ID=13183832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61061878A Pending JPS62219567A (en) 1986-03-19 1986-03-19 Thin-film element

Country Status (1)

Country Link
JP (1) JPS62219567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016181A1 (en) * 2016-07-20 2018-01-25 ソニー株式会社 Light reception element, light reception element manufacturing method, imaging apparatus, and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016181A1 (en) * 2016-07-20 2018-01-25 ソニー株式会社 Light reception element, light reception element manufacturing method, imaging apparatus, and electronic device
KR20190028376A (en) * 2016-07-20 2019-03-18 소니 주식회사 Receiving element, a method of manufacturing a light-receiving element, an imaging apparatus, and an electronic apparatus
JPWO2018016181A1 (en) * 2016-07-20 2019-05-09 ソニー株式会社 Light receiving element, method of manufacturing light receiving element, imaging device and electronic apparatus
US10818718B2 (en) 2016-07-20 2020-10-27 Sony Corporation Light receiving element, method of manufacturing light receiving element, imaging device, and electronic apparatus

Similar Documents

Publication Publication Date Title
JPH05251705A (en) Thin-film transistor
JPS6045219A (en) Active matrix type display device
US8294837B2 (en) Sensor array substrate, display device including the same, and method of manufacturing the same
JPH11133450A (en) Liquid crystal display device and its production
FR2899982A1 (en) NETWORK SUBSTRATE, METHOD FOR MANUFACTURING SAME, AND LIQUID CRYSTAL DISPLAY DEVICE COMPRISING THE SAME
WO2018043472A1 (en) Active matrix substrate and method for manufacturing same
US20060258080A1 (en) Vertical diode, matrix position sensitive apparatus and manufacturing method of the same
JP2803713B2 (en) Active matrix substrate and manufacturing method thereof
JPH09218425A (en) Liquid crystal display device and its production
JP2002141509A (en) Thin-film transistor and liquid crystal display
KR100629174B1 (en) Thin Film Transistor Substrate And Method for Fabricating the Same
JPH04313729A (en) Liquid crystal display device
US6570161B2 (en) X-ray detecting device and fabricating method thereof
JP2546982B2 (en) Thin film transistor
JPS62219567A (en) Thin-film element
US7417696B2 (en) Liquid crystal display device and fabricating method thereof
JPH09197434A (en) Production of display device
JP2639980B2 (en) Liquid crystal display
JPH0933944A (en) Liquid crystal display device
JPH04132263A (en) Thin film transistor and manufacture thereof
JPS60117690A (en) Semiconductor device
JPS62213165A (en) Thin-film transistor
JP3463005B2 (en) Liquid crystal display device and method of manufacturing the same
JPH08313934A (en) Array substrate, its production, liquid crystal display device and its production
JP2515981B2 (en) Thin film transistor