JPS62219314A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS62219314A
JPS62219314A JP6221486A JP6221486A JPS62219314A JP S62219314 A JPS62219314 A JP S62219314A JP 6221486 A JP6221486 A JP 6221486A JP 6221486 A JP6221486 A JP 6221486A JP S62219314 A JPS62219314 A JP S62219314A
Authority
JP
Japan
Prior art keywords
film
recording medium
magnetic recording
recording
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6221486A
Other languages
Japanese (ja)
Other versions
JPH061549B2 (en
Inventor
Hideo Kurokawa
英雄 黒川
Tsutomu Mitani
力 三谷
Masaru Odagiri
優 小田桐
Taketoshi Yonezawa
米澤 武敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61062214A priority Critical patent/JPH061549B2/en
Priority to US07/027,895 priority patent/US4833031A/en
Priority to DE8787104123T priority patent/DE3773239D1/en
Priority to EP87104123A priority patent/EP0239028B1/en
Publication of JPS62219314A publication Critical patent/JPS62219314A/en
Publication of JPH061549B2 publication Critical patent/JPH061549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having excellent overall performances including still durability, corrosion resistance and reliability by forming a protective film consisting of an amorphous diamond film and org. material film on a recording film. CONSTITUTION:The recording film 2 consisting of a ferromagnetic metal such as Co, Cr, Ni or Fe is formed by a vacuum deposition method or sputtering method on the surface of a substrate 1. The thickness thereof is about 1,000-3,000Angstrom and the extreme surface layer of the recording film 2 is Cr-rich. The amorphous diamond film 3 by a PI-CVD method is formed on the surface of the recording film 2. The org. material film 4 which effectively removes the dust in air sticking to the surface and transfer stains from near the gap during sliding of the magnetic head and decreases the friction resistance in special environment is formed on the amorphous film 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強磁性体金属の薄膜を記録膜とし、ビデオ、オ
ーディオ、データなどの信号を記録する磁気記録媒体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetic recording medium that uses a thin film of ferromagnetic metal as a recording film and records signals such as video, audio, and data.

従来の技術 高密度磁気記録を実現するための記録媒体として、Go
、Ni、Cr、Fe等の強磁性体金属の薄膜を ・用い
るものが注目され、その実用化が検討されて〜いる。
Conventional technology Go is used as a recording medium to realize high-density magnetic recording.
-Thin films of ferromagnetic metals such as Ni, Cr, and Fe are attracting attention, and their practical application is being considered.

磁気記録では、記録膜と磁気ヘッドとの間に間隙が生じ
るとスペーシング損失になる。特に記録周波数が高い領
域ではこの損失が顕著となり、この間隙を極力小さくし
なければならない。ビデオ信号やオーディオ信号を記録
再生する場合、磁気ヘッドと記録膜を接触させることが
多く、データ信号の場合でもフロッピーディスクのよう
に比較的信頼性への要求がゆるやかな場合は記録膜と磁
気ヘッドを接触させている。高い信頼性を要求される場
合には、磁気ヘッドを記録膜表面から浮上させ非接触と
するが、この場合でも例えば記録媒体を回転させる時の
起動時および停止時には両者が接触するように構成され
た装置が多い。さらにこの場合磁気ヘッドの浮上量はス
ペーシング損失となるため、高密度記録には不適当であ
る。以上のことから磁気記録による高密度記録化を考え
ると、磁気ヘッドと記録膜とが接触してかつ高い信頼性
を確保することが理想である。すなわち、磁気記録にお
いては記録膜と磁気ヘッドが接触するという点で、光記
録方式と基本的に異なる課題を持つわけである。
In magnetic recording, spacing loss occurs when a gap occurs between the recording film and the magnetic head. This loss is particularly noticeable in areas where the recording frequency is high, and this gap must be made as small as possible. When recording and reproducing video and audio signals, the magnetic head and recording film are often in contact, and even in the case of data signals, when the requirements for reliability are relatively loose, such as with floppy disks, the recording film and the magnetic head are is in contact with When high reliability is required, the magnetic head is floated above the surface of the recording film so that it does not make contact. However, even in this case, the magnetic head is configured so that the two come into contact, for example, when starting and stopping the rotation of the recording medium. There are many devices. Furthermore, in this case, the flying height of the magnetic head results in a spacing loss, making it unsuitable for high-density recording. Considering the above, when considering high-density recording by magnetic recording, it is ideal that the magnetic head and the recording film are in contact with each other and that high reliability is ensured. That is, magnetic recording has a fundamentally different problem from optical recording in that the recording film and the magnetic head come into contact with each other.

さて、先に述べたCo 、Or 、Ni 、 Fe等の
強磁性体薄膜を記録膜とする記録媒体は、保磁力が大き
く高密度記録化に適しておシ、また垂直記録用の媒体も
検討されている。しかし、磁気ヘッドとの摺動により短
時間で記録膜がノ1り離する等の損傷を受けるため、記
録膜を保護する有効な保護膜の形成が重要な課題である
Now, the recording media whose recording film is a ferromagnetic thin film such as Co, Or, Ni, or Fe mentioned above have a large coercive force and are suitable for high-density recording, and media for perpendicular recording are also being considered. has been done. However, the recording film suffers damage such as peeling off in a short time due to sliding with the magnetic head, so forming an effective protective film to protect the recording film is an important issue.

従来から一般に使用されている磁性粉末をバインダと混
合してベースフィルムに塗布した磁気記録媒体は、バイ
ンダ中に耐摩耗性および潤滑性に優れた物質を添加する
ことによシ磁気ヘッドとの摺動に関する問題を回避して
きたが、強磁性体金属薄膜を記録膜とする磁気記録媒体
の場合には、記録膜そのものに例えば膜表面を酸化させ
る等の方法で耐摩耗性、潤滑性、耐環境性などめ向上を
求めようとすると、磁気的性質の劣化が避けられない。
Magnetic recording media, which have been commonly used in the past and are made by mixing magnetic powder with a binder and coating it on a base film, improve the sliding contact with the magnetic head by adding a substance with excellent wear resistance and lubricity to the binder. However, in the case of magnetic recording media whose recording film is a ferromagnetic metal thin film, wear resistance, lubricity, and environmental resistance can be improved by oxidizing the film surface of the recording film itself. If we try to improve things like magnetic properties, deterioration of magnetic properties is inevitable.

従ってこの場合には、記録膜の表面に保護膜を形成して
耐摩耗性等の特性を確保することが必要となる。しかし
、その様な保護膜は磁気ヘッドと記録膜との間隙を生じ
るものであり、その厚みは極力小さくなければならない
Therefore, in this case, it is necessary to form a protective film on the surface of the recording film to ensure properties such as wear resistance. However, such a protective film creates a gap between the magnetic head and the recording film, and its thickness must be as small as possible.

強磁性体金属薄膜の保護膜としては、従来から有機系物
質の潤滑材料を塗布もしくは真空蒸着したもの7′+;
甘みl−1h−で衣かづL層すh−家耐廖杉柿r劣シ長
時間の使用に耐えられなかった。あるいは、真空蒸着、
スパッタリング°等の手法で無定形炭素。
Conventionally, as a protective film for a ferromagnetic metal thin film, a lubricating material made of an organic substance is coated or vacuum-deposited7'+;
The sweetness was l-1h-, the coating was low, the durability was poor, and it could not withstand long-term use. Alternatively, vacuum evaporation,
Amorphous carbon by sputtering etc.

グラファイトの膜を形成することが考えられているが、
潤滑性は改善されるものの耐摩耗性に対しては不十分で
あった。
It is thought that it forms a graphite film, but
Although lubricity was improved, wear resistance was insufficient.

発明が解決しようとする問題点 以上に述べたような材料を、強磁性体金属薄膜を記録膜
とする磁気記録媒体の保護膜として使用する場合には、
耐摩耗性が不十分であるために保護膜を厚くせざるを得
す、磁気ヘッドと記録膜との間隙が大きくなシスベーシ
ング損失が生じる。
Problems to be Solved by the Invention When using the above-mentioned materials as a protective film for a magnetic recording medium whose recording film is a ferromagnetic metal thin film,
Due to insufficient wear resistance, the protective film must be made thicker, and the gap between the magnetic head and the recording film is large, resulting in cisbasing loss.

また、これらの保護膜は磁気ヘッドとの摺動によシ摩耗
するため、生じた微粉末が磁気ヘッドに付着し時として
著しい再生出力の低下(例えばヘッド目づまり、ドロッ
プアウト)の原因になる。
In addition, these protective films wear out due to sliding with the magnetic head, and the resulting fine powder adheres to the magnetic head, sometimes causing a significant drop in playback output (e.g. head clogging, dropouts). .

以上の問題点によシ強磁性体金属薄膜を記録膜とする高
密度磁気記録媒体の実用化は著しく制限され、この問題
点を解決しない限り本来の高密度記録は達成できないと
考えられる。
The above-mentioned problems significantly limit the practical application of high-density magnetic recording media using ferromagnetic metal thin films as recording films, and unless these problems are solved, it is thought that original high-density recording will not be achieved.

本発明はこの問題点を解決するもので、強磁性体金属の
記録膜表面に耐摩耗性、耐環境性に優れた保護膜を備え
た磁気記録媒体を提供するものである。
The present invention solves this problem and provides a magnetic recording medium having a protective film with excellent wear resistance and environmental resistance on the surface of a ferromagnetic metal recording film.

問題点を解決するための手段 以上に述べた問題点を解決する保護膜としては(1)す
べり性が良く薄くても耐摩耗性に優れる。
Means for Solving the Problems The protective film that solves the above-mentioned problems has (1) good slip properties and excellent abrasion resistance even if it is thin.

(2)強磁性体金属との密着性に優れる。(2) Excellent adhesion to ferromagnetic metals.

などの特性が必要で、また、 (1)成膜中の温度上昇により基板(例えばテープの場
合、ポリエチレン等のベースフィルム)が損傷されない
The following characteristics are required, and (1) the substrate (for example, in the case of tape, the base film of polyethylene, etc.) is not damaged due to temperature rise during film formation.

(2)厚みが薄くても均質な膜が形成される。(2) A homogeneous film is formed even if it is thin.

(2)成膜速度が大きく量産性に優れる。(2) The film formation rate is high and mass productivity is excellent.

などの形成条件が必要となる。Formation conditions such as these are required.

上記特性を満足する保護膜の材料としてダイヤモンドが
考えられる。ダイヤモンドは物質中で最高の硬度を示す
結晶体で化学的にも極めて安定であり、耐摩耗性、耐環
境性に優れた理想的な保護膜材料と考えられる。ダイヤ
モンドの薄膜を形成する技術に関しては、多くの報告が
なされている。
Diamond can be considered as a material for the protective film that satisfies the above characteristics. Diamond is a crystalline substance that exhibits the highest hardness among substances and is extremely chemically stable, making it an ideal protective film material with excellent wear resistance and environmental resistance. Many reports have been made regarding techniques for forming diamond thin films.

(参考文献) (1)難波義提:ダイヤモンド薄膜の低圧合成の研究、
応用機械工学 (2)松本精一部:ダイヤモンドの低圧合成、現代化学
、1984年9月号 (2)瀬高信雄:ダイヤモンドの低圧合成2日本産業技
術振興協会、技術資料厖138 、59/6/20しか
しながら、いずれも未だ研究段階であり実用化には至っ
ていない。またいずれの方法も、(1)基板の高温加熱
を必要とする(400℃以上)@)成膜速度が低い(最
高でも2o○〜300八/分)の理由から、磁気記録媒
体の保護膜形成手段として用いることは極めて難しかっ
た。
(References) (1) Yoshihide Namba: Research on low-pressure synthesis of diamond thin films,
Applied Mechanical Engineering (2) Seiichi Matsumoto: Low-pressure synthesis of diamonds, Gendai Kagaku, September 1984 issue (2) Nobuo Setaka: Low-pressure synthesis of diamonds 2 Japan Industrial Technology Promotion Association, Technical Documents 138, 59/6/ 20 However, all of these are still in the research stage and have not yet been put into practical use. In addition, both methods (1) require high-temperature heating of the substrate (over 400°C); It was extremely difficult to use it as a forming means.

我々はダイヤモンドに近い特性を示す高硬度の炭素膜を
形成する方法を開発した(黒用他:プラズマインジエク
ションCVD法による高硬度炭素膜の形成及び評価、昭
和60年度機械学会春季大会学術講演論文集)。この方
法は、炭化水素ガスを材料ガスとして10〜100Pa
の低圧でこれをプラズマ化し、少なくともイオンを加速
しつつこのプラズマを基板に噴射して成膜するもので、
我々はプラズマインジェクションCVD法(PI−CV
D法)と称している。P I −CVD法によると、基
板を加熱することなく室温程度の低温で、ビッカース硬
さ2000Kg+/nuJ以上の高硬度炭素膜を最高6
000人/分程度の高速成膜が可能となる。
We have developed a method to form a high-hardness carbon film that exhibits properties similar to those of diamond (Kuroyo et al.: Formation and evaluation of high-hardness carbon film by plasma injection CVD method, Academic lecture at the 1985 Japan Society of Mechanical Engineers Spring Conference) collection of papers). This method uses hydrocarbon gas as a material gas at a pressure of 10 to 100 Pa.
This process converts this into plasma at low pressure, and injects this plasma onto the substrate while accelerating at least the ions to form a film.
We use plasma injection CVD method (PI-CVD method)
D method). According to the PI-CVD method, a high hardness carbon film with a Vickers hardness of 2000 Kg+/nuJ or more can be formed at a temperature as low as room temperature without heating the substrate.
This makes it possible to perform high-speed film formation at a rate of about 1,000 people/minute.

PI−CVD法で形成した膜を、結晶性(電子線回折、
透過型電子顕微鏡)2組成(2次イオン質量分析)、構
造(ラマン分光分析、エネルギー損失分光分析)につい
て分析を行なったところ、この膜はダイヤモンド結合(
SP電子配置)め中にグラフ1イト結合(SP2電子配
置)と水素が混在する非晶質な炭素膜で、アモルファス
ダイヤモンド膜ともいえるものであることがわかった。
Crystallinity (electron beam diffraction,
Analysis of the composition (secondary ion mass spectrometry) and structure (Raman spectroscopy, energy loss spectroscopy) revealed that this film has diamond bonds (
It was found that the film was an amorphous carbon film in which graphite bonds (SP2 electron configuration) and hydrogen were present in the film, and could be called an amorphous diamond film.

従来の方法で形成した高硬度炭素膜は、ダイヤモンド結
晶の集合膜もしくはアモルファス炭素膜の中にダイヤモ
ンド結晶が点在する膜で完全な非晶質ではなく、アモル
ファスダイヤモンド膜とは本質的に異なるものである。
High-hardness carbon films formed by conventional methods are films with diamond crystals aggregated or amorphous carbon films dotted with diamond crystals, which are not completely amorphous and are essentially different from amorphous diamond films. It is.

アモルファスダイヤモンド膜は、2Q○o Kg/ma
以上のビッカース硬さを示し耐摩耗性に優れる。
Amorphous diamond film is 2Q○o Kg/ma
It exhibits a Vickers hardness of at least 100% and has excellent wear resistance.

更に熱伝導率は0 、6 Ca (1/(yB・渡・℃
程度とほぼ金属並みであり摩擦熱の放散にも優れている
Furthermore, the thermal conductivity is 0,6 Ca (1/(yB・Wat・℃)
It is almost as good as metal and has excellent dissipation of frictional heat.

しかしながら、P l−CVD法でアモルファスダイヤ
モンド膜を形成するためには、基体材質に2つの制限が
ある。第1は、基体材質の比抵抗が1013Ω口程度以
下であることが望ましい。比抵抗が1013Ω・副程度
を超える材料は、一般に良好な電気絶縁材であり、イオ
ンを含むプラズマを基体に吹き付けて成膜するP l−
CVD法では、表面に帯電が生じてイオンが反発し強固
な膜を形成できない。ただし、電子ビームを照射するな
どの中和手段を付加すればこの限りではないが、装置構
成が複雑になるなどの欠点を生じるため好ましくない。
However, in order to form an amorphous diamond film using the Pl-CVD method, there are two limitations on the substrate material. First, it is desirable that the specific resistance of the base material be approximately 1013Ω or less. Materials with a resistivity of more than 1013 Ω are generally good electrical insulators, and P l- is formed by spraying ion-containing plasma onto a substrate.
In the CVD method, the surface is charged and ions are repelled, making it impossible to form a strong film. However, this is not the case if a neutralizing means such as electron beam irradiation is added, but this is not preferable since it causes drawbacks such as complicating the device configuration.

第2の制限として、基板材質は炭素との化学的親和力が
強く、形成される炭化物の原子間の結合力が強いもので
あることが望ましい。
As a second limitation, it is desirable that the substrate material has a strong chemical affinity with carbon and a strong bonding force between the atoms of the carbide formed.

以上2つの条件を満足する材質は、Aβ、Be。Materials that satisfy the above two conditions are Aβ and Be.

Co 、Cr 、 Fe 、Mn 、Ni 、Zn 、
Hf 、V、Nb 、Ta 。
Co, Cr, Fe, Mn, Ni, Zn,
Hf, V, Nb, Ta.

Mo、W等の金属、もしくはそれらを主成分とする合金
、およびSi、Ge、B、SiC等の半導体である。
These include metals such as Mo and W, or alloys containing these as main components, and semiconductors such as Si, Ge, B, and SiC.

特に、SL、B、Crは炭素と共有結合等の強固な結合
が可能である。また、アモルファスダイヤモンド膜の比
抵抗はほぼ10〜10 Ω・鋸の範囲にあり、当然のこ
とながら第1の条件を満足している。
In particular, SL, B, and Cr can form strong bonds such as covalent bonds with carbon. Further, the specific resistance of the amorphous diamond film is approximately in the range of 10 to 10 Ω·saw, which naturally satisfies the first condition.

Co、Cr、Ni、Fe等の強磁性体金属は、以上に述
べたPI−CVD法による成膜条件を満足しており、こ
の表面にアモルファスダイヤモンド膜の保護膜を強固に
形成することが可能となる。この時、記録膜の表面を例
えばA r 、 02等のプラズマ処理によりクリーニ
ングするとより効果的である。また、例えばテープ状の
磁気記録媒体は素意性が必要とナリ、ポリエチレン等を
ベースフィルムとして使用する場合には成膜中の温度上
昇にも制限がある。
Ferromagnetic metals such as Co, Cr, Ni, and Fe satisfy the film formation conditions for the PI-CVD method described above, and it is possible to form a strong protective film of amorphous diamond film on this surface. becomes. At this time, it is more effective to clean the surface of the recording film by plasma treatment such as Ar, 02 or the like. Further, for example, a tape-shaped magnetic recording medium requires a certain level of precision, and when polyethylene or the like is used as a base film, there is a limit to the temperature rise during film formation.

このような磁気記録媒体の表面にアモルファスダイヤモ
ンド膜を形成することは、P l−CVD法によりはじ
めて可能となるものである。
It is only possible to form an amorphous diamond film on the surface of such a magnetic recording medium by using the Pl-CVD method.

以上述べたように、P l−CVD法によれば強磁性体
金属の記録膜表面にアモルファスダイヤモンドの保護膜
を形成することが可能となり、耐久性、耐摩耗性に優れ
た磁気記録媒体を得ることができる。しかし、アモルフ
ァスダイヤモンドを保護膜として用いた場合でも、空気
中のホコリ、テープ状媒体であればテープ端面からのハ
ガレ、チー、プ裏面からの汚れ転写などが原因となるヘ
ッド目づまり、ドロップアウトは発生する。またアモル
ファスダイヤモンドの保護膜は高温高湿などの特殊環境
下で摩耗係数が大きくなる。これを防止するには、アモ
ルファスダイヤモンド保護膜の表面に先述のホコリ、汚
れ等を除去する作用があり、例えば含フツ素有機物など
の優れたすべり性を示す有機物膜を形成するのが最も効
果的である。この有機物膜は、アモルファスダイヤモン
ド膜の表面に直接形成しても、また転写などの方法で間
接的に形成されてもかまわない。また、有機物膜の形成
法は、従来から一般によく使用される湿式塗布性以外に
、スパッタリング、蒸着等のドライプロセス法でもかま
わない。
As described above, the Pl-CVD method makes it possible to form a protective film of amorphous diamond on the surface of a ferromagnetic metal recording film, thereby obtaining a magnetic recording medium with excellent durability and wear resistance. be able to. However, even when amorphous diamond is used as a protective film, head clogging and dropouts caused by dust in the air, peeling from the edge of the tape, chips, and dirt transfer from the back of the tape can occur. Occur. Furthermore, the wear coefficient of the amorphous diamond protective film increases under special environments such as high temperature and high humidity. To prevent this, the most effective way to prevent this is to form an organic material film with excellent slip properties, such as a fluorine-containing organic material, on the surface of the amorphous diamond protective film, which has the effect of removing the aforementioned dust and dirt. It is. This organic film may be formed directly on the surface of the amorphous diamond film, or may be formed indirectly by a method such as transfer. In addition, the method for forming the organic film may be a dry process method such as sputtering or vapor deposition, in addition to the conventionally commonly used wet coating method.

作  用 以上述べたように、Co、Or、Ni、Fe等の強磁性
体金属からなる記録膜の表面にはアモルファスダイヤモ
ンド膜の形成が可能であり、特にCo1Cr系の強磁性
体金属薄膜の場合には表面にCrが多く偏在することが
知られており、とりわけ強固な膜が形成される。
Function As described above, it is possible to form an amorphous diamond film on the surface of a recording film made of a ferromagnetic metal such as Co, Or, Ni, or Fe, especially in the case of a Co1Cr-based ferromagnetic metal thin film. It is known that a large amount of Cr is unevenly distributed on the surface, and a particularly strong film is formed.

アモルファスダイヤモンド膜は、非晶質状態でダイヤモ
ンドに準じる特性を有するため記録膜を極めて有効に保
護することができる。更に、アモルファスダイヤモンド
膜が非晶質であるために若干の柔軟性を有しており、ポ
リエチレン等のフレキシブルなベースフィルム上の記録
膜に対する保護膜としても有効である。
Since the amorphous diamond film has properties similar to diamond in an amorphous state, it can protect the recording film extremely effectively. Furthermore, since the amorphous diamond film is amorphous, it has some flexibility and is effective as a protective film for a recording film on a flexible base film such as polyethylene.

アモルファスダイヤモンド膜の厚みは、500八程度以
上になると曲げ剛性が大きくなり磁気ヘッドとの接触が
不安定になるばかりか、フレキシブルな媒体では微少な
変形によりクラックが生じて好ましくない。また、20
〜30人程度以下になると均一な膜にはならず島状構造
となるため、スチル耐久性、耐蝕性が極端に低下する。
If the thickness of the amorphous diamond film exceeds about 500 mm, the bending rigidity increases and contact with the magnetic head becomes unstable, and in the case of a flexible medium, cracks may occur due to minute deformation, which is undesirable. Also, 20
If the number of people is less than about 30, the film will not be uniform but will have an island-like structure, resulting in extremely low still durability and corrosion resistance.

以上のことから、P l−CVD法で形成したアモルフ
ァスダイヤモンド膜を磁気記録媒体の保護膜として使用
する場合には300〜500への膜厚が望ましい。さら
にテープ状磁気記録媒体の場合、磁気ヘッドとの接触安
定性、信頼性を考えると50〜300人の膜厚が望まし
い。さらに、垂直記録8wn V T R用MEテープ
など高密度記録化を目ざした媒体の場合、アモルファス
ダイヤモンド膜によるスペーシング損失(ex記録波長
0.5μmの場合、300への厚みで約6dbのスペー
シング損失)を少なくしその特徴を生かすために50〜
150人程度の膜厚が望ましい。
From the above, when an amorphous diamond film formed by the Pl-CVD method is used as a protective film for a magnetic recording medium, a film thickness of 300 to 500 mm is desirable. Further, in the case of a tape-shaped magnetic recording medium, a film thickness of 50 to 300 layers is desirable in consideration of contact stability and reliability with the magnetic head. Furthermore, in the case of media aimed at high-density recording, such as ME tape for perpendicular recording 8wn VTR, the spacing loss due to the amorphous diamond film (for an ex recording wavelength of 0.5 μm, a spacing of about 6 db at a thickness of 300 mm) 50~ to reduce loss) and take advantage of its characteristics.
A film thickness of about 150 people is desirable.

空気中のホコリ、転写した汚れ等は、アモルファスダイ
ヤモンド膜上の有機物膜により効果的に除去され、ヘッ
ド目づまり、ドロップアウトは未然に防止される。有機
物膜はその材質を選択することで、特殊環境下(例えば
温度40℃、湿度90%RH)における摩擦係数を低下
させる効果を兼ね備えることも可能で、走行安定性がさ
らに向上する。
Dust in the air, transferred dirt, etc. are effectively removed by the organic film on the amorphous diamond film, and head clogging and dropouts are prevented. By selecting the material of the organic film, it is possible to have the effect of lowering the coefficient of friction under special environments (for example, temperature of 40° C. and humidity of 90% RH), further improving running stability.

実施例 図に本発明の一実施例を示す。図において、1はテープ
状、カード状、もしくはディスク状等の形態をもつ基体
で、プラスチック、ガラス、金属等の非磁性材料で構成
される。基体1の表面にはCo、Cr、Ni、Fe等、
強磁性体金属の記録膜2が、真空蒸着法、スパッタリン
グ法等で形成されている。この厚みは1000〜300
0人程度であり、例えばCo、Cr系合金の垂直磁気記
録媒体では、COを主成分とじCrを10〜30%添加
することによりCOを柱状組識が形成され、その境界部
にCrが偏析した構造となっている。従ってこの場合に
は、記録膜2の最表部はCr−rlchになっている。
An embodiment of the present invention is shown in the drawings. In the figure, reference numeral 1 denotes a base body in the form of a tape, card, or disk, and is made of a nonmagnetic material such as plastic, glass, or metal. Co, Cr, Ni, Fe, etc. are on the surface of the base 1.
A recording film 2 made of ferromagnetic metal is formed by vacuum evaporation, sputtering, or the like. This thickness is 1000~300
For example, in a perpendicular magnetic recording medium made of a Co, Cr-based alloy, CO is the main component and 10 to 30% Cr is added to form a columnar structure of CO, with Cr segregated at the boundaries. It has a similar structure. Therefore, in this case, the outermost portion of the recording film 2 is Cr-rlch.

記録膜2の表面には、PI−CVD法によるアモルファ
スダイヤモンド膜3が形成されている。
An amorphous diamond film 3 is formed on the surface of the recording film 2 by the PI-CVD method.

先に述べたように例えばCo−Cr合金薄膜を記録膜と
する垂直記録媒体では、表面がCr−richになって
いるため付着力の強いアモルファスダイヤモンド膜が形
成される。この膜厚は1000Å以下、望ましくは30
0Å以下であるが、要求される信頼性及び磁気記録装置
に応じて適時決定される。
As mentioned above, for example, in a perpendicular recording medium whose recording film is a Co--Cr alloy thin film, an amorphous diamond film with strong adhesion is formed because the surface is Cr-rich. This film thickness is 1000 Å or less, preferably 30 Å or less.
Although it is 0 Å or less, it will be determined as appropriate depending on the required reliability and magnetic recording device.

アモルファスダイヤモンド膜3上には、表面に付着する
空気中のホコリ、転写汚れなどを磁気ヘッド摺動時にギ
ャップ近傍から効果的に除去し、さらに特殊環境下で摩
擦抵抗を低減する有機物膜4が形成されている。ホコリ
、転写汚れなどを効果的に除去し、特殊環境下で摩擦係
数を低減する有機物膜としては4グループが考えられる
An organic film 4 is formed on the amorphous diamond film 3, which effectively removes dust in the air, transfer dirt, etc. adhering to the surface from near the gap when the magnetic head slides, and further reduces frictional resistance under special environments. has been done. There are four groups of organic films that can effectively remove dust, transfer stains, etc. and reduce the coefficient of friction under special environments.

◎Aグループ:分子末端にカルボキシル基域はメルカプ
ト基と、炭素数8以上の脂 肪アルキル基とをそれぞれ1個以 上有する有機化合物膜 (実施例) ■ C1□H36COOH。
◎Group A: An organic compound film in which the carboxyl group at the end of the molecule has one or more mercapto groups and one or more fatty alkyl groups having 8 or more carbon atoms (Example) ■ C1□H36COOH.

■ CH3(CH2)7CH=CH(CH2)7C○O
H。
■ CH3(CH2)7CH=CH(CH2)7C○O
H.

CH2C0oH ■ Cl8H3□sH ■ CHoCoC3H1□ CHoCoC3H1□ H2SH ◎Bグループ二分子末端に炭素数が3以上のフロロアル
キル基と炭素数8以上の脂 肪族アルキル基をそれぞれ1個以 上有する有機化合物 (実施例) ■ CHoCoC3H1□ CHOCOCI2H2゜ CH2oCocI2H2゜ ■ CHC00C8F1ア ■ Cl8H3□CH2−8−CH2CH2C8F1□
■ Cl8H37CH2 o−08F17 ■ 018H37CH2 0−CH2−CH2−No5oC8F1□CF3 ■ Cl2H2,UCOCH2CH2C8F18CF3 ■ C3F17S02UC18H3了 CF3 ■ CH3(cE(2)7CH=CH(CH2)7CO
O(CF2)9H■ C3H1□−0−P−QC8F1
□C3F17 ◎Cグループ二分子末端に炭素数3以上のフロロアルキ
ル基と炭素数8以上の脂肪 族アルキル基とカルボキシル基と をそれぞれ1個以上有する有機化 金物膜 (実施例) ■ CH20COC6F、1 CHOCOC1゜H26 CH2CoOH ■      H Cl8H37−C−COOH O−08F17゜ ■      H Cl8H37−C−COOH ! S−CH20H208F1□ ■       H 0−08F17 ■        H 0−CH2CH2No5OC8F1□ H3 の      H ■ S−CH2CH2C8F1□ ■ Cl2H26NCOCH2CH2C8F1□CH2
CooH ■ C3F17S02NC18H37 CH2COoH COOH ◎Dグループ:分子末端に炭素数3以上のフロロアルキ
ル基と炭素数8以上の脂肪族ア ルキル基とメルカプト基とをそれ ぞれ1個以上有する有機化合物膜 (実施例) ■ CH20COC8F1了 CHOCOCH23H CH20CoC1゜H25 CH20COC1□H35 ■ SH CHCO○Cl8H3□ CH2C00CH2CH2C8H3□ ■ これらの有機化合物膜は、トルエン、n−ヘキサン、イ
ソプロピルアルコール等の溶媒に溶かして塗布乾燥させ
るか、真空蒸着(有機蒸着)により形成される。
CH2C0oH ■ Cl8H3□sH ■ CHoCoC3H1□ CHoCoC3H1□ H2SH ◎Organic compound having at least one fluoroalkyl group with 3 or more carbon atoms and one or more aliphatic alkyl group with 8 or more carbon atoms at the bimolecular terminal of group B (Example) ■ CHoCoC3H1□ CHOCOCI2H2゜CH2oCocI2H2゜■ CHC00C8F1a■ Cl8H3□CH2-8-CH2CH2C8F1□
■ Cl8H37CH2 o-08F17 ■ 018H37CH2 0-CH2-CH2-No5oC8F1□CF3 ■ Cl2H2, UCOCH2CH2C8F18CF3 ■ C3F17S02UC18H3 CF3 ■ CH3 (cE(2)7CH=CH(CH2) 7CO
O(CF2)9H■ C3H1□-0-P-QC8F1
□C3F17 ◎Organized metal film having at least one fluoroalkyl group having 3 or more carbon atoms, an aliphatic alkyl group having 8 or more carbon atoms, and a carboxyl group at the bimolecular terminal of C group (Example) ■ CH20COC6F, 1 CHOCOC1゜H26 CH2CoOH ■ H Cl8H37-C-COOH O-08F17゜■ H Cl8H37-C-COOH ! S-CH20H208F1□ ■ H 0-08F17 ■ H 0-CH2CH2No5OC8F1□ H3 H ■ S-CH2CH2C8F1□ ■ Cl2H26NCOCH2CH2C8F1□CH2
CooH ■ C3F17S02NC18H37 CH2COoH COOH ◎D group: Organic compound film having one or more each of a fluoroalkyl group with 3 or more carbon atoms, an aliphatic alkyl group with 8 or more carbon atoms, and a mercapto group at the molecular end (Example) ■ CH20COC8F1 Chococh23h CH20COC1 ゜ H25 CH20COC1 □ H35 ■ SH CHCO ○ CL8H3 □ CH2C00ch2CH2CH2C8H3 □ It is formed by dissolving and applying drying, or by vacuum vapor (organic vapor) be done.

これらの有機化合物膜を形成したMEテープについて、
スチル耐久性、耐蝕性、特殊環境下における摩擦係数、
ヘッド摩耗などの実用特性を検討した結果を下表に示す
Regarding the ME tape formed with these organic compound films,
Steel durability, corrosion resistance, friction coefficient under special environments,
The table below shows the results of examining practical characteristics such as head wear.

これかられかるように有機物のみの保護膜では、摩擦係
数は低くなるもののスチル耐久性、耐蝕性は改善されな
い。またアモルファスダイヤモンドの保護膜は、スチル
耐久性は改善され記録膜2は有効に保護されるが、特殊
環境下での摩擦係数が大きくなりヘッド摩耗が改善され
ない。また、非晶質構造であるため防湿効果は少なく、
耐蝕性は有機物の保護膜と同等以下である。これに対し
てアモルファスダイヤモンド膜3の上に前記の如き有機
物膜4を形成することによシ、相乗効果でそれぞれ単独
で用いた時に比べ、スチル耐久性、耐蝕性が飛躍的に向
上する。さらに、特殊環境下における摩擦係数の低下に
伴いヘッド摩耗量も減少し、総合性能に優れた磁気記録
媒体を得ることができる。
As will be seen from now on, a protective film made only of organic matter lowers the coefficient of friction, but does not improve still durability or corrosion resistance. Furthermore, although the amorphous diamond protective film improves the still durability and effectively protects the recording film 2, it increases the coefficient of friction under special environments and does not improve head wear. In addition, because of its amorphous structure, it has little moisture-proofing effect.
The corrosion resistance is equal to or lower than that of an organic protective film. On the other hand, by forming the organic film 4 as described above on the amorphous diamond film 3, the still durability and corrosion resistance are dramatically improved due to a synergistic effect compared to when each is used alone. Furthermore, as the coefficient of friction decreases under special environments, the amount of wear on the head also decreases, making it possible to obtain a magnetic recording medium with excellent overall performance.

有機化合物の中ではC,Dグループのものが優れ゛てい
る。炭素数3以上のフロロアルキル基を有するものはス
チル耐久性、耐蝕性、ヘッド摩耗性が極めて優れており
、これは非凝着性とぬれ性が改善され、アモルファスダ
イヤモンド膜との相乗効果が顕著に高まったものと考え
られる。さらに、カルボキシル基或はメルカプト基を有
するものは、特に特殊環境下におけるすべり性やスチル
耐久性を一段と改善するという特徴を有する。
Among organic compounds, those in groups C and D are excellent. Those with a fluoroalkyl group having 3 or more carbon atoms have extremely excellent still durability, corrosion resistance, and head wear resistance.This improves non-adhesion and wettability, and has a remarkable synergistic effect with the amorphous diamond film. It is thought that this has increased. Furthermore, those having a carboxyl group or a mercapto group have the characteristic of further improving slip properties and still durability, especially under special environments.

また、炭素数8以上の脂肪族アルキル基をもたないもの
は上記の相乗効果が得られず、また成膜も不均一になり
やすい。これはアモルファスダイヤモンド膜の親和性が
不十分なためと考えられる。
Furthermore, those without an aliphatic alkyl group having 8 or more carbon atoms cannot obtain the above-mentioned synergistic effect, and the film formation tends to be non-uniform. This is considered to be due to insufficient affinity of the amorphous diamond film.

なお、脂肪酸アルキル基及びフロロアルキル基は直鎖型
でも分岐型でもかまわない。
Note that the fatty acid alkyl group and the fluoroalkyl group may be of a linear type or a branched type.

有機物膜4は、普通アモルファスダイヤモンド膜3上に
直接形成するが、テープ状記録媒体の場合、記録膜2と
反対側の基体1表面に塗布するバックコート膜5を有機
物膜と同じ材料で形成するか、もしくはバックコート膜
5の表面に有機物膜を形成し、リール等に巻回された時
膜の一部がアモルファスダイヤモンド膜3表面に転写す
るなどの間接的手法で形成してもかまわない。
The organic film 4 is normally formed directly on the amorphous diamond film 3, but in the case of a tape-shaped recording medium, the back coat film 5 coated on the surface of the substrate 1 on the opposite side from the recording film 2 is formed of the same material as the organic film. Alternatively, it may be formed by an indirect method such as forming an organic film on the surface of the back coat film 5 and transferring a part of the film to the surface of the amorphous diamond film 3 when the film is wound on a reel or the like.

また、有機化合物の塗布量は0.1〜600〜/−でよ
く、特に0.5〜2001Mf/lr?が最も望ましい
Moreover, the coating amount of the organic compound may be 0.1 to 600~/-, particularly 0.5 to 2001 Mf/lr? is the most desirable.

発明の効果 強磁性金属薄膜の記録膜上に、アモルファスダイヤモン
ド膜と前記有機物膜から構成される保護膜を形成するこ
とにより、スチル耐久性、耐蝕性。
Effects of the Invention By forming a protective film composed of an amorphous diamond film and the organic film on a recording film of a ferromagnetic metal thin film, the still durability and corrosion resistance are improved.

信頼性などを総合性能に優れた磁気記録媒体を得ること
ができる。
A magnetic recording medium with excellent overall performance such as reliability can be obtained.

このように、本発明は強磁性体金属を記録膜とするする
磁気記録媒体を用いた高密度記録を実現する上で極めて
有効なものである。
As described above, the present invention is extremely effective in realizing high-density recording using a magnetic recording medium whose recording film is made of ferromagnetic metal.

【図面の簡単な説明】[Brief explanation of drawings]

蚤二図は本発明の一実施例における磁気記録媒体の拡大
断面図である。 2・・・・・・記録膜、3・・・・・・アモルファスダ
イヤモンド膜、4・・・・・・有機物膜。
Figure 2 is an enlarged sectional view of a magnetic recording medium in an embodiment of the present invention. 2...Recording film, 3...Amorphous diamond film, 4...Organic substance film.

Claims (1)

【特許請求の範囲】 (1)非磁性材料の基体上に強磁性体金属の記録膜を有
し、この記録膜上に高硬度炭素膜を形成しかつ高硬度炭
素膜の表面に有機物膜を備えた磁気記録媒体。 (2)有機物膜が、分子末端に炭素数3以上のフロロア
ルキル基と炭素数8以上の脂肪族アルキル基とカルボキ
シル基とをそれぞれ1個以上有する有機化合物から構成
された特許請求の範囲第1項記載の磁気記録媒体。 (2)有機物膜が、分子末端に炭素数3以上のフロロア
ルキル基と炭素数8以上の脂肪族アルキル基とメルカプ
ト基とをそれぞれ1個以上有する有機化合物から構成さ
れた特許請求の範囲第1項記載の磁気記録媒体。 (4)有機物膜が、分子末端に炭素数3以上のフロロア
ルキル基と炭素数8以上の脂肪族アルキル基をそれぞれ
1個以上有する有機化合物から構成された特許請求の範
囲第1項記載の磁気記録媒体。 (5)有機物膜が、分子末端にカルボキシ基或はメルカ
プト基と、炭素数8以上の脂肪族アルキル基とをそれぞ
れ1個以上有する有機化合物から構成された特許請求の
範囲第1項記載の磁気記録媒体。 (6)高硬度炭素膜が、炭化水素ガスを含むプラズマ中
の少なくともイオンを加速しつつ前記プラズマを吹きつ
けることにより低温低圧で合成される特許請求の範囲第
1項記載の磁気記録媒体。 (7)高硬度炭素膜が、ダイヤモンド結合、もしくはダ
イヤモンド結合とグラファイト結合、もしくはダイヤモ
ンド結合とグラファイト結合と水素から構成された非晶
質炭素膜である特許請求の範囲第1項記載の磁気記録媒
体。 (8)高硬度炭素膜が、ビッカース硬さ2000Kg/
mm^2以上である特許請求の範囲第1項記載の磁気記
録媒体。 (9)高硬度炭素膜が、比抵抗10^1^3Ωcm以下
である特許請求の範囲第1項記載の磁気記録媒体。 (10)高硬度炭素膜が、膜厚30〜500Åである特
許請求の範囲第1項記載の磁気記録媒体。 (11)有機物膜が、0.1〜500mg/m^2の塗
布量で形成された特許請求の範囲第1項記載の磁気記録
媒体。
[Claims] (1) A recording film of a ferromagnetic metal is provided on a base of a non-magnetic material, a high-hardness carbon film is formed on the recording film, and an organic film is formed on the surface of the high-hardness carbon film. magnetic recording medium. (2) Claim 1, wherein the organic film is composed of an organic compound having at least one fluoroalkyl group having 3 or more carbon atoms, an aliphatic alkyl group having 8 or more carbon atoms, and a carboxyl group at the molecular terminal. Magnetic recording medium described in Section 1. (2) Claim 1, wherein the organic film is composed of an organic compound having at least one fluoroalkyl group having 3 or more carbon atoms, an aliphatic alkyl group having 8 or more carbon atoms, and mercapto group at the molecular terminal. Magnetic recording medium described in Section 1. (4) The magnetism according to claim 1, wherein the organic film is composed of an organic compound having at least one fluoroalkyl group having 3 or more carbon atoms and one or more aliphatic alkyl group having 8 or more carbon atoms at the molecular terminal. recoding media. (5) The magnetic material according to claim 1, wherein the organic film is composed of an organic compound having at least one carboxy group or mercapto group and one or more aliphatic alkyl groups having 8 or more carbon atoms at the molecular terminals. recoding media. (6) The magnetic recording medium according to claim 1, wherein the high-hardness carbon film is synthesized at low temperature and pressure by spraying plasma containing hydrocarbon gas while accelerating at least ions in the plasma. (7) The magnetic recording medium according to claim 1, wherein the high-hardness carbon film is an amorphous carbon film composed of diamond bonds, diamond bonds and graphite bonds, or diamond bonds, graphite bonds, and hydrogen. . (8) High hardness carbon film has a Vickers hardness of 2000 kg/
The magnetic recording medium according to claim 1, which has a diameter of mm^2 or more. (9) The magnetic recording medium according to claim 1, wherein the high hardness carbon film has a specific resistance of 10^1^3 Ωcm or less. (10) The magnetic recording medium according to claim 1, wherein the high hardness carbon film has a thickness of 30 to 500 Å. (11) The magnetic recording medium according to claim 1, wherein the organic film is formed in a coating amount of 0.1 to 500 mg/m^2.
JP61062214A 1986-03-20 1986-03-20 Magnetic recording medium Expired - Lifetime JPH061549B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61062214A JPH061549B2 (en) 1986-03-20 1986-03-20 Magnetic recording medium
US07/027,895 US4833031A (en) 1986-03-20 1987-03-19 Magnetic recording medium
DE8787104123T DE3773239D1 (en) 1986-03-20 1987-03-20 MAGNETIC RECORDING MEDIUM.
EP87104123A EP0239028B1 (en) 1986-03-20 1987-03-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062214A JPH061549B2 (en) 1986-03-20 1986-03-20 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS62219314A true JPS62219314A (en) 1987-09-26
JPH061549B2 JPH061549B2 (en) 1994-01-05

Family

ID=13193670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062214A Expired - Lifetime JPH061549B2 (en) 1986-03-20 1986-03-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH061549B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486313A (en) * 1987-09-29 1989-03-31 Fuji Electric Co Ltd Magnetic disk
JPH01138612A (en) * 1987-11-26 1989-05-31 Nec Corp Magnetic disk
JPH01245417A (en) * 1988-03-28 1989-09-29 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH02108218A (en) * 1988-10-14 1990-04-20 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH03132913A (en) * 1989-10-17 1991-06-06 Matsushita Electric Ind Co Ltd Magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127322A (en) * 1982-12-30 1984-07-23 株式会社フジクラ Device for supplying fluid to arbitrary range in tube
JPS59213030A (en) * 1983-05-17 1984-12-01 Denki Kagaku Kogyo Kk Magnetic recording medium and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127322A (en) * 1982-12-30 1984-07-23 株式会社フジクラ Device for supplying fluid to arbitrary range in tube
JPS59213030A (en) * 1983-05-17 1984-12-01 Denki Kagaku Kogyo Kk Magnetic recording medium and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486313A (en) * 1987-09-29 1989-03-31 Fuji Electric Co Ltd Magnetic disk
JPH01138612A (en) * 1987-11-26 1989-05-31 Nec Corp Magnetic disk
JPH01245417A (en) * 1988-03-28 1989-09-29 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH02108218A (en) * 1988-10-14 1990-04-20 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPH03132913A (en) * 1989-10-17 1991-06-06 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPH061549B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
EP0239028B1 (en) Magnetic recording medium
JPH0556567B2 (en)
JPS62219314A (en) Magnetic recording medium
JPS62241124A (en) Magnetic recording medium
JPH052737A (en) Magnetic recording medium
JPH0319602B2 (en)
JPH10289436A (en) Magnetic recording medium
JPH05128498A (en) Magnetic recording medium
JP3962962B2 (en) Magnetic recording medium
JPH07102271A (en) Lubricant and magnetic recording medium
JP2500896B2 (en) Magnetic tape
JPH0520675A (en) Magnetic recording medium
JPH10289441A (en) Magnetic recording medium
JP2513688B2 (en) Magnetic recording media
JPS62283412A (en) Magnetic recording medium
JP3168674B2 (en) Magnetic recording media
JPS59146443A (en) Magnetic recording medium
JPS59112432A (en) Magnetic recording medium
JPS63217519A (en) Magnetic recording medium
JPH0610854B2 (en) Magnetic recording medium
JPH065574B2 (en) Magnetic recording medium
JPH0679377B2 (en) Magnetic recording medium and manufacturing method thereof
JPS61278013A (en) Magnetic recording medium
JPH069976A (en) Lubricant and magnetic recording medium coated with same
JPH08185619A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term