JPS62219010A - Fine adjustment mechanism - Google Patents

Fine adjustment mechanism

Info

Publication number
JPS62219010A
JPS62219010A JP6069786A JP6069786A JPS62219010A JP S62219010 A JPS62219010 A JP S62219010A JP 6069786 A JP6069786 A JP 6069786A JP 6069786 A JP6069786 A JP 6069786A JP S62219010 A JPS62219010 A JP S62219010A
Authority
JP
Japan
Prior art keywords
spring
base
axis
parallel
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6069786A
Other languages
Japanese (ja)
Inventor
Kunitoshi Nishimura
国俊 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6069786A priority Critical patent/JPS62219010A/en
Publication of JPS62219010A publication Critical patent/JPS62219010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized fine adjustment mechanism which has a high precision and is capable of quick positioning, by providing first and second spring supporting base between a fixed base and a moving base and connecting them with the first - fourth parallel flat springs so that the moving base can move only the first or the second spring supporting base independently in X and Y directions. CONSTITUTION:When a mobile body 12 of an X axis-direction linear actuator 11 displaces the second spring supporting base 4 in the X-axis direction, the second spring supporting base 4 is displaced in the X-axis direction while keeping the parallel state, and moving base 2 is displaced in the X-axis direction by the same extent because the fourth flat spring 8 has a high rigidity in the X direction. Through the second parallel flat spring 6 is bent in accordance with movement of the moving base 2 to allow a force to act upon the first spring supporting base 3 in the X-axis direction, the first spring supporting base 3 is not moved in the X-axis direction because the first parallel flat spring 5 has a high rigidity in the X-axis direction. When a mobile body 10 of a Y axis-direction linear actuator pushes the first spring supporting base 3, the moving base 2 is moved in the Y-axis direction by this movement not to have an influence upon the second spring supporting base 4 similarly. That is, one moving base 2 is moved in X-axis and Y-axis directions independently by two actuators 9 and 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光ファイバ等の心合せ等に用いる微動機構に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fine movement mechanism used for alignment of optical fibers, etc.

〔従来の技術〕[Conventional technology]

従来のこの種の装置の一例を第5図に示す。この装置は
下部テーブル31.中間テーブル32゜上部テーブル3
3よりなる。図では説明をわかり易くするため3者を分
離して描いである。下部テーブル31には鋼球34の案
内用のV字形の溝35.36が、中間テーブル32の裏
面にはV字形の溝35.36と対向する位置にV字形の
溝37.38が、またその表面にはやはり鋼球34の案
内用のV字形の溝39.40が、上部テーブル33の裏
面にはV字形の溝39.40と対向する位置にV字形の
溝41.42がそれぞれ設けられている。
An example of a conventional device of this type is shown in FIG. This device has a lower table 31. Intermediate table 32° Upper table 3
Consists of 3. In the figure, the three are drawn separately to make the explanation easier to understand. The lower table 31 has a V-shaped groove 35.36 for guiding the steel ball 34, and the back surface of the intermediate table 32 has a V-shaped groove 37.38 at a position opposite to the V-shaped groove 35.36. A V-shaped groove 39.40 for guiding the steel ball 34 is provided on the surface thereof, and a V-shaped groove 41.42 is provided on the back surface of the upper table 33 at a position opposite to the V-shaped groove 39.40. It is being

したがって、下部テーブル31に対し、中間テーブル3
2はY方向に滑らかに移動可能であり、中間テーブル3
2に対し上部テーブル33はX方向に滑らかに移動可能
となっている。
Therefore, with respect to the lower table 31, the intermediate table 3
2 is movable smoothly in the Y direction, and intermediate table 3
2, the upper table 33 can be smoothly moved in the X direction.

一方、下部テーブル31にはアクチュエータ固定台43
が、中間テーブル32にはアクチュエータ固定台44.
45が、上部テーブル33にはア。
On the other hand, the actuator fixing base 43 is mounted on the lower table 31.
However, the intermediate table 32 has an actuator fixing base 44.
45 is on the upper table 33.

クチュエータ固定台がそれぞれ設けられており、アクチ
ュエータ固定台43と44の中間にはY軸すニアアクチ
ュエータ47が、アクチュエータ固定台45と46の中
間にはX軸すニアアクチュエータ48がそれぞれ両端が
固定されている。
Actuator fixing bases are provided respectively, and a Y-axis near actuator 47 is fixed between the actuator fixing bases 43 and 44, and an X-axis near actuator 48 is fixed at both ends between the actuator fixing bases 45 and 46. ing.

したがって、X軸すニアアクチュエータ48およびY軸
すニアアクチュエータ47を伸縮させることにより上部
テーブル33を下部テーブル31に対し、X軸、Y軸方
向に任意に動かすことができる。
Therefore, by expanding and contracting the X-axis near actuator 48 and the Y-axis near actuator 47, the upper table 33 can be arbitrarily moved with respect to the lower table 31 in the X-axis and Y-axis directions.

このように構成された従来のX−Yの微動機構において
は、Y軸すニアアクチュエータ47は中間テーブル32
を介して上部テーブル33を動かすため慣性負荷が大き
くなり高速起動停止動作が困難となるという問題点があ
った。
In the conventional X-Y fine movement mechanism configured in this way, the Y-axis near actuator 47 is connected to the intermediate table 32.
Since the upper table 33 is moved through the upper table 33, there is a problem in that the inertial load becomes large, making it difficult to perform high-speed starting and stopping operations.

また各テーブルの相対的な移動は鋼球34のころがりに
よるため、その摩擦抵抗は極めて小さいが、1gm以下
の位置決め精度を達成するためには、さらに摩擦抵抗力
を減らす必要がある。
Furthermore, since the relative movement of each table is caused by the rolling of the steel balls 34, the frictional resistance is extremely small, but in order to achieve positioning accuracy of 1 gm or less, it is necessary to further reduce the frictional resistance.

以上の欠点を解決するため先に提案したものとして、特
願昭59−208335号に示されるような、板ばねを
案内機構とし、しかも2軸方向に互いに独立に移動可能
な移動機構がある。
In order to solve the above-mentioned drawbacks, there has been previously proposed a moving mechanism, as shown in Japanese Patent Application No. 59-208335, which uses a leaf spring as a guide mechanism and is movable independently of each other in two axial directions.

第6図は上記光に提案した移動機構である。この図で、
移動台51は2対の平行板ばね52゜53と54.55
に支えられている。平行板ばね52.53の他端は支持
体56を介してY軸アクチュエータ58に接続され、平
行板ばね54゜55の他端は支持体57を介してX軸ア
クチュエータ59に接続されている。
FIG. 6 shows the moving mechanism proposed for the above-mentioned light. In this diagram,
The moving table 51 has two pairs of parallel leaf springs 52, 53 and 54,55.
is supported by The other ends of the parallel plate springs 52 and 53 are connected to the Y-axis actuator 58 via the support 56, and the other ends of the parallel plate springs 54 and 55 are connected to the X-axis actuator 59 via the support 57.

支持体56は平行板ばね52.53のほか、それと直角
方向の平行板ばね60,61に支持され、支持体57は
平行板ばね54.55のほか、それと直角方向の平行板
ばね52.53に支持されている。平行板ばね60,6
1および平行板ばね62.63の他端、Y軸アクチュエ
ータ58およびX軸アクチュエータ59の他端はいずれ
も基板64に接続されている。
The support body 56 is supported by parallel leaf springs 52.53 and parallel leaf springs 60, 61 perpendicular thereto, and the support body 57 is supported by parallel leaf springs 54.55 and parallel leaf springs 52.53 perpendicular thereto. is supported by Parallel leaf spring 60,6
1 and the other ends of the parallel plate springs 62 and 63, and the other ends of the Y-axis actuator 58 and the X-axis actuator 59 are all connected to the substrate 64.

さて、このような構造体においてY軸アクチュエータ5
8が伸びる場合を考えると、移動台51と支持体56は
それぞれ平行板ばね54.55と60.61に支持され
ているのでY軸方向に平行に移動する。一方、平行板ば
ね82,83はY軸方向には剛性が高いので両者は一体
となって動く。同様に移動台51はX軸アクチュエータ
59の伸縮に従って、X軸方向に一体となって動く。
Now, in such a structure, the Y-axis actuator 5
8 is extended, the movable table 51 and the support body 56 are supported by parallel plate springs 54.55 and 60.61, respectively, and thus move in parallel to the Y-axis direction. On the other hand, since the parallel plate springs 82 and 83 have high rigidity in the Y-axis direction, they move together. Similarly, the moving table 51 moves integrally in the X-axis direction as the X-axis actuator 59 expands and contracts.

すなわち、移動台51はそれぞれY軸アクチュエータ5
8.x軸アクチュエータ59の動きに忠実に従い、互に
相手の動きに干渉されないことがわかる。
That is, each moving table 51 has a Y-axis actuator 5.
8. It can be seen that they faithfully follow the movement of the x-axis actuator 59 and are not interfered with by the movement of the other.

このように、移動台51はX軸、Y軸アクチュエータ5
9.58によりX軸、Y軸方向に任意に動かすことがで
きるので、例えば、この移動台51にハンド65を固定
し、それに光フアイバケーブル66をつかませ、固定台
67に支持される光フアイバケーブル68と対向させれ
ば、両光ファイバケーブル66.68の心合せを正確に
行うことができる。
In this way, the moving table 51 has an X-axis and a Y-axis actuator 5.
9.58, it can be moved arbitrarily in the X-axis and Y-axis directions, so for example, by fixing the hand 65 to this moving table 51 and having it grip the optical fiber cable 66, the optical fiber cable supported by the fixed table 67 can be moved. By facing the cable 68, both optical fiber cables 66, 68 can be accurately aligned.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の移動機構は平面的に配置されるため移動部分の大
きさに比べ案内部分が大きくなるという欠点があった。
Since the above-mentioned moving mechanism is arranged in a planar manner, there is a drawback that the guide portion is large compared to the size of the moving portion.

この発明は、上記問題点を解決するためになされたもの
で、高精度な位置決め、かつ高速位置決め可能な小形な
微動機構を提供することを目的とする。
The present invention was made to solve the above problems, and an object of the present invention is to provide a small fine movement mechanism capable of highly accurate positioning and high-speed positioning.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる微動機構は、移動台と固定台の間に第
1.第2のばね支持台を設置し、第1のばね支持台と固
定台を第1の平行ばねで接続し、第1のばね支持台と移
動台を第2の平行ばねで接続し、第2のばね支持台と固
定台を第3の平行ばねで接続し、第2のばね支持台と移
動台とを第4の平行ばねで接続し、これら第1と第4の
平行ばねと、第2.第3の平行ばねは互いに直角をなす
ようにし、第1のばね支持台と第2のばね支持台にそれ
ぞれ直交する方向に力が作用するアクチュエータを設け
たものである。
The fine movement mechanism according to the present invention has a first movable mechanism between a movable base and a fixed base. A second spring support is installed, the first spring support and the fixed base are connected by the first parallel spring, the first spring support and the moving base are connected by the second parallel spring, and the second spring support is connected to the fixed base by the first parallel spring. The spring support base and the fixed base are connected by a third parallel spring, the second spring support base and the movable base are connected by a fourth parallel spring, and these first and fourth parallel springs and the second .. The third parallel springs are arranged at right angles to each other, and are provided with actuators that apply forces in directions orthogonal to each of the first and second spring supports.

〔作用〕[Effect]

この発明は、第1のばね支持台をアクチュエータで移動
させると、第2のばね支持台に関係なく移動台が移動し
、第2のばね支持台をアクチュエータで移動させると第
1のばね支持台に関係なく移動台が移動する。
In this invention, when the first spring support base is moved by the actuator, the movable base moves regardless of the second spring support base, and when the second spring support base is moved by the actuator, the first spring support base is moved. The moving table moves regardless of the

〔実施例〕〔Example〕

第1図はこの発明の第1の実施例を示す図で、1は固定
台、2は移動台、3,4は中間の第1゜第2のばね支持
台である。以上4つの台は、互いに平行に配置され、各
々は板ばねで接続される。
FIG. 1 shows a first embodiment of the present invention, in which 1 is a fixed base, 2 is a movable base, and 3 and 4 are intermediate first and second spring support bases. The above four tables are arranged parallel to each other and connected to each other by leaf springs.

すなわち固定台1と第1のばね支持台3は対向する2辺
において、つまり両側で第1の平行板ばね5で支持され
る。第1の平行板ばね5は両側で同一形状であり固定台
1と第1のばね支持台3に対し、対称の位置に配置され
、その両端が接着あるいはねじ止め等により固定されて
いる。
That is, the fixed base 1 and the first spring support base 3 are supported by the first parallel leaf springs 5 on two opposing sides, that is, on both sides. The first parallel leaf spring 5 has the same shape on both sides, is arranged in a symmetrical position with respect to the fixed base 1 and the first spring support base 3, and is fixed at both ends by adhesive or screwing.

次に固定台1と第1のばね支持台4は第3の平行板ばね
7により、また移動台2と第2のばね支持台3は第2の
平行板ばね6により、支持される。このとき第2のばね
支持台4には第2の平行板ばね6が挿通でき、X方向の
移動に対しである範囲内で接触しない大きさの透孔4A
が両側A(第1図では一方の側のみが見えている)に構
成されている。さらに移動台2と第2のばね支持台4は
第4の平行板ばね8により同様に支持されている。第1
の平行板ばね5と第4の平行板ばね8は平行状態であり
、また第2の平行板ばね6と第3の平行板ばね7も平行
状態である。一方、第1の平行板ばね5と第2の平行板
ばね6は直角をなす状態に設置される。したがって、第
3の平行板ばね7と第4の平行板ばね8も直角をなす。
Next, the fixed base 1 and the first spring support base 4 are supported by the third parallel leaf spring 7, and the movable base 2 and the second spring support base 3 are supported by the second parallel leaf spring 6. At this time, the second parallel leaf spring 6 can be inserted into the second spring support base 4, and the through hole 4A is large enough to prevent contact within a certain range with respect to movement in the X direction.
are arranged on both sides A (only one side is visible in FIG. 1). Furthermore, the movable table 2 and the second spring support table 4 are similarly supported by a fourth parallel plate spring 8. 1st
The parallel leaf spring 5 and the fourth parallel leaf spring 8 are in a parallel state, and the second parallel leaf spring 6 and the third parallel leaf spring 7 are also in a parallel state. On the other hand, the first parallel plate spring 5 and the second parallel plate spring 6 are installed at right angles. Therefore, the third parallel leaf spring 7 and the fourth parallel leaf spring 8 also form a right angle.

また第1のばね支持台3にはY軸方向リニアアクチュエ
ータ9の可動体10が、また第2のばね支持台4にはX
軸方向リニアアクチュエータ11の可動体12が接続さ
れている。
Furthermore, the movable body 10 of the Y-axis linear actuator 9 is mounted on the first spring support 3, and the movable body 10 of the Y-axis direction linear actuator 9 is mounted on the first spring support 3, and the
A movable body 12 of an axial linear actuator 11 is connected.

各リニアアクチュエータ9.11の筐体は、固定台1よ
り伸びる腕(図示せず)に支持されている。各リニアア
クチュエータ9.11はDCモータタイプでもステップ
モータタイプでもよく、要は第1.第2のばね支持台3
,4を移動せしめる力を発生するものであればよい。
The housing of each linear actuator 9.11 is supported by an arm (not shown) extending from the fixed base 1. Each linear actuator 9.11 may be a DC motor type or a step motor type. Second spring support 3
, 4 may be used as long as it generates a force that moves them.

次にこの実施例の動作を説明するが、まずその原理を第
2図で説明する。
Next, the operation of this embodiment will be explained, but first the principle will be explained with reference to FIG.

下板13と上板14は2枚の板ばね15.16により平
行に支持されている。また各板ばねも互いに平行となる
ように構成されている。さて、下板13を固定し上板1
4にX方向の力を作用させる2枚の板ばねは点線で示す
ように変形する。この時の変形は、上板14と下板13
は平行を保った状態であり、しかもX方向のみでY方向
には変形しない。板ばねのY方向の剛性が高いからであ
る。またZ方向にはわずかな移動があるが、X方向の移
動に比べ無視できる値となる。このように構成される平
行板ばね構造体において、X方向の力に体し、X方向の
みの変位が実現できるのがこの発明の原理である。
The lower plate 13 and the upper plate 14 are supported in parallel by two leaf springs 15,16. Further, each leaf spring is also configured to be parallel to each other. Now, fix the lower plate 13 and
The two leaf springs that apply a force in the X direction to 4 are deformed as shown by dotted lines. The deformation at this time is the upper plate 14 and the lower plate 13.
remain parallel, and are deformed only in the X direction and not in the Y direction. This is because the leaf spring has high rigidity in the Y direction. Also, although there is a slight movement in the Z direction, the value is negligible compared to the movement in the X direction. The principle of the present invention is that the parallel plate spring structure constructed in this manner can resist a force in the X direction and can realize displacement only in the X direction.

さて、第1図においてX軸方向リニアアクチュエータ1
1の可動体12が第2のばね支持台4をX軸方向に変位
させると第2のばね支持台4は、平行状態を保ったまま
X軸方向に変位するが、第4の板ばね8はX方向には剛
性が高いので移動台2も同時に同じ量だけX軸方向に変
位する。移動台2の動きにともない、第2の平行板ばね
6は撓み、第1のばね支持台3にX軸方向に力を及ぼす
が、第1の平行板ばね5のX軸方向の剛性が高いため、
第1のばね支持台3のX軸方向の移動はない。同様にY
軸方向リニアアクチュエータの可動体1oが第1のばね
支持台3を押せば、その動きは移動台2のY軸方向の動
きとなり、第2のばね支持台4には影響を与えない、す
なわち2個の7クチユエータ9.11により互いに独立
に1個の移動台2をx、Yの2軸方向に移動できるわけ
である。
Now, in Fig. 1, the X-axis direction linear actuator 1
When the first movable body 12 displaces the second spring support 4 in the X-axis direction, the second spring support 4 is displaced in the X-axis direction while maintaining a parallel state, but the fourth leaf spring 8 Since the rigidity is high in the X direction, the moving table 2 is also displaced in the X axis direction by the same amount at the same time. As the moving table 2 moves, the second parallel leaf spring 6 is bent and exerts a force on the first spring support base 3 in the X-axis direction, but the first parallel leaf spring 5 has high rigidity in the X-axis direction. For,
There is no movement of the first spring support base 3 in the X-axis direction. Similarly Y
When the movable body 1o of the axial linear actuator pushes the first spring support 3, the movement becomes a movement of the movable base 2 in the Y-axis direction, and does not affect the second spring support 4. One movable table 2 can be moved in the x and y axis directions independently of each other by the seven actuators 9.11.

第3図はこの発明の第2の実施例を示す図であり、アク
チュエータとしてピエゾ素子を用いる場合である。板ば
ねの構成は第1の実施例と同じであるのでここでは省略
するが、ピエゾ素子17は固定台1より伸びた腕木19
とばね支持台3の間に、およびピエゾ素子18は同様に
固定台1より伸びた腕木20とばね支持台4の間に設置
されている。ピエゾ素子17.18の伸縮が、移動台2
の2軸方向の動きになることは、第1の実施例の場合と
同じである。ピエゾ素子17.18も前述のリニアアク
チュエータの1種であるが、DCモータタイプに比べ、
移動距離は大きくないが、非常に微細な位置決めが可能
となる。
FIG. 3 is a diagram showing a second embodiment of the present invention, in which a piezo element is used as the actuator. The configuration of the leaf spring is the same as in the first embodiment, so it will not be described here, but the piezo element 17 is connected to the arm 19 extending from the fixed base 1.
Similarly, the piezo element 18 is installed between the arm 20 extending from the fixed base 1 and the spring support base 4. The expansion and contraction of the piezo elements 17 and 18 causes the moving table 2
This is the same as in the case of the first embodiment. Piezo elements 17 and 18 are also a type of linear actuator mentioned above, but compared to the DC motor type,
Although the moving distance is not large, very fine positioning is possible.

第4図はこの発明の第3の実施例である。第2の実施例
においてピエゾ素子17.18は構造体の外側に配置さ
れているが、ここでは内部に配置されている。各平行板
ばね5,6,7.8の配置は第1の実施例の場合と同じ
であるので省略する。この実施例においては支柱21が
固定台1のほぼ中央に配置されており、その上に、ピエ
ゾ素子22.23が固定されている。ピエゾ素子22の
一端は支柱21に、他端は第1のばね支持台3.13(
第4図では省略されている)に固定されている。またピ
エゾ素子23の一端は支柱21に、他端は第2のばね支
持台4に固定されている。第2のばね支持台4は言うま
でもなくその中央部は取り去られており、支柱21およ
びピエゾ素子23が入れられるようになっている。ばね
支持台3も同様である。ピエゾ素子22.23の伸縮は
実施例1および実施例2の場合と同様に、移動台2を2
軸方向の動きとなることは明らかである。
FIG. 4 shows a third embodiment of the invention. Whereas in the second embodiment the piezo elements 17,18 are arranged outside the structure, here they are arranged inside. The arrangement of the parallel plate springs 5, 6, 7.8 is the same as in the first embodiment, and will therefore be omitted. In this embodiment, a column 21 is arranged approximately in the center of the fixed base 1, and piezo elements 22, 23 are fixed thereon. One end of the piezo element 22 is attached to the column 21, and the other end is attached to the first spring support 3.13 (
(omitted in FIG. 4). Further, one end of the piezo element 23 is fixed to the support column 21, and the other end is fixed to the second spring support base 4. Needless to say, the center portion of the second spring support base 4 has been removed so that the support column 21 and the piezo element 23 can be inserted therein. The same applies to the spring support base 3. The piezo elements 22 and 23 are expanded and contracted by moving the moving table 2 to 2 in the same way as in Embodiments 1 and 2.
It is clear that the movement will be in the axial direction.

なお、第1.第2ばね支持台3,4は必要に応じて板で
あったりその中央部分に穴をあけたりすればよく、また
必ずしも板でなく、各村や板材を4角に折り曲げたもの
でもよい。要は各平行板ばね5〜8を固定できる形状で
あればよい。
In addition, 1. The second spring supports 3 and 4 may be made of plates or have a hole in the center thereof as required, and are not necessarily made of plates, but may be made by bending each piece or plate material into four corners. In short, any shape is sufficient as long as it can fix each of the parallel leaf springs 5 to 8.

なお、上記の各実施例では、移動台2をアクチュエータ
10.11により微小距離移動させるようにしたが、ア
クチュエータ10.11に代え差動トランスのような偏
位検出器を設ければ、移動台2の移動量をx、Yの2つ
の方向に分解して検出することもでき、2次元形状測定
器の検出器として用いることができる。
In each of the above embodiments, the moving table 2 is moved by a small distance by the actuator 10.11, but if a deviation detector such as a differential transformer is provided in place of the actuator 10.11, the moving table 2 can be moved by a small distance. It is also possible to detect the amount of movement of 2 by separating it into two directions, x and Y, and it can be used as a detector for a two-dimensional shape measuring device.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、固定台と移動台との間
に第1.第2のばね支持台を設置し、これらの間を第1
〜第4の平行板ばねで、移動台がX、Y方向に第1また
は第2のばね支持台のみが独立して移動できるように接
続したので、2つのアクチュエータの駆動により互いに
独立に2軸方向に移動台を移動することができ、摩擦抵
抗が作用しないため位置決め精度がよく小形化が可能で
ある。さらに、移動部分の軽量化が可能なため高速移動
が可能である等の利点がある。
As explained above, in the present invention, the first base plate is provided between the fixed base and the movable base. A second spring support is installed, and a second spring support is installed between them.
- The moving table is connected to the fourth parallel plate spring so that only the first or second spring support can move independently in the X and Y directions, so the two actuators can drive the two axes independently of each other. Since the movable table can be moved in the same direction and no frictional resistance is applied, the positioning accuracy is high and downsizing is possible. Furthermore, it has the advantage of being able to move at high speed because the weight of the moving parts can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す一部を破断して示し
た斜視図、第2図はこの発明の動作原理を示す斜視図、
第3図はこの発明の第2の実施例を示す斜視図、第4図
は同じく第3の実施例を示す斜視図、第5図は従来の微
動台を示す分解斜視図、第6図は先に提案した移動機構
の斜視図である。 図中、1は固定台、2は移動台、3.4は第1、第2の
ばね支持台、5,6,7.8は第1〜第4の平行板ばね
、9はY軸方向リニアアクチュエータ、10は可動体、
11はX軸方向リニアア第1図 第2図 第3図 第4図
FIG. 1 is a partially cutaway perspective view showing an embodiment of the invention, FIG. 2 is a perspective view showing the operating principle of the invention,
FIG. 3 is a perspective view showing a second embodiment of the present invention, FIG. 4 is a perspective view similarly showing a third embodiment, FIG. 5 is an exploded perspective view showing a conventional fine movement table, and FIG. FIG. 3 is a perspective view of the previously proposed moving mechanism. In the figure, 1 is a fixed base, 2 is a movable base, 3.4 is the first and second spring support base, 5, 6, 7.8 are the first to fourth parallel leaf springs, and 9 is the Y-axis direction A linear actuator, 10 is a movable body,
11 is the linear axis in the X-axis direction.Figure 1Figure 2Figure 3Figure 4

Claims (1)

【特許請求の範囲】[Claims] 平行状態に設置された移動台と固定台の間に第1、第2
のばね支持台をともに前記固定台に平行に設置し、前記
第1のばね支持台と固定台を第1の平行板ばねで接続す
るとともに、前記第1のばね支持台と移動台を前記第1
の平行板ばねと直角をなす状態に第2の平行板ばねで接
続し、さらに前記第2のばね支持台と固定台を前記第1
の平行ばねと直角をなす状態に第3の平行板ばねで接続
するとともに前記第2のばね支持台と移動台を第2の平
行板ばねと直角をなす状態に第4の平行板ばねで接続し
たことを特徴とする微動機構。
The first and second
Both spring support stands are installed parallel to the fixed stand, the first spring support stand and the fixed stand are connected by a first parallel leaf spring, and the first spring support stand and the movable stand are connected to the first spring support stand and the movable stand. 1
A second parallel leaf spring is connected to the parallel leaf spring at right angles to the second parallel leaf spring, and the second spring support base and the fixing base are connected to the first parallel leaf spring.
A third parallel leaf spring connects the second spring support base and the movable base at a right angle to the second parallel leaf spring, and a fourth parallel leaf spring connects the second spring support base and the moving base at a right angle to the second parallel leaf spring. A fine movement mechanism characterized by the following.
JP6069786A 1986-03-20 1986-03-20 Fine adjustment mechanism Pending JPS62219010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6069786A JPS62219010A (en) 1986-03-20 1986-03-20 Fine adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6069786A JPS62219010A (en) 1986-03-20 1986-03-20 Fine adjustment mechanism

Publications (1)

Publication Number Publication Date
JPS62219010A true JPS62219010A (en) 1987-09-26

Family

ID=13149744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6069786A Pending JPS62219010A (en) 1986-03-20 1986-03-20 Fine adjustment mechanism

Country Status (1)

Country Link
JP (1) JPS62219010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355610A (en) * 1986-08-26 1988-03-10 Omron Tateisi Electronics Co Driving method positioning of traveling object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355610A (en) * 1986-08-26 1988-03-10 Omron Tateisi Electronics Co Driving method positioning of traveling object

Similar Documents

Publication Publication Date Title
US5760564A (en) Dual guide beam stage mechanism with yaw control
US6246052B1 (en) Flexure assembly for a scanner
US4575942A (en) Ultra-precision two-dimensional moving apparatus
KR100586885B1 (en) Micro position-control system
WO2017017713A1 (en) Multi-degree-of-freedom adjustment mechanism
US4805543A (en) Micropositioning device
EP0123693A1 (en) Planar biaxial micropositioning stage
US6498892B1 (en) Positioning device especially for assembling optical components
US7504794B2 (en) Planar motor
JP6521101B2 (en) Connecting rod with limited displacement flexible mechanism
JPS62219010A (en) Fine adjustment mechanism
JPH10186198A (en) Parallel and straight fine adjustment device and fine moving device of lens barrel using the same
JPH0646246B2 (en) Fine movement mechanism
JPH0386434A (en) Precision stage device
JPH0232602B2 (en)
EP3329148A1 (en) Linear motion mechanism formed integrally
US7249535B2 (en) Two-dimensional displacement apparatus
JPS61164759A (en) Minutely moving mechanism
JPH04348834A (en) Micromovement x-y table
JP2023543751A (en) multi-axis positioner
KR100507840B1 (en) Dual servo xy stage using leaf spring guide
JPH0426717B2 (en)
JPS63158494A (en) Stage transfer mechanism
JPS63200324A (en) Lens supporting device
JPS63145511A (en) Fine adjustable stage