JPS6221871B2 - - Google Patents

Info

Publication number
JPS6221871B2
JPS6221871B2 JP7191685A JP7191685A JPS6221871B2 JP S6221871 B2 JPS6221871 B2 JP S6221871B2 JP 7191685 A JP7191685 A JP 7191685A JP 7191685 A JP7191685 A JP 7191685A JP S6221871 B2 JPS6221871 B2 JP S6221871B2
Authority
JP
Japan
Prior art keywords
molten salt
zirconium
wear
sodium
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7191685A
Other languages
Japanese (ja)
Other versions
JPS60248883A (en
Inventor
Chaaruzu Heigaasu Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDY Industries LLC
Original Assignee
Teledyne Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teledyne Industries Inc filed Critical Teledyne Industries Inc
Publication of JPS60248883A publication Critical patent/JPS60248883A/en
Publication of JPS6221871B2 publication Critical patent/JPS6221871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/70Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using melts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、改良された耐摩耗性を示す、ジルコ
ニウム合金造形品上の耐摩耗性酸化物被膜を形成
する新規な方法に関する。具体的には、本発明
は、腐食条件を含み、異常な条件下、摩耗をうけ
るベアリング、バルブなどの製品を製造するのに
用いられるジルコニウム合金造形品上の改良され
た濃いあい色の酸化物被膜を形成する新規な方法
に関する。 熱水による腐食に対するジルコニウムのすぐれ
た抵抗性は、長い間知られており、ジルコニウム
を沸とう水型および加圧水型原子力反応炉の燃料
−クラツド材料として採用するに至つた要因の一
つであつた。ジルコニウムは、また、多数の水性
および非水性媒体でのすぐれた耐腐食性を示し、
このために、化学プロセス工業における使用が増
大しつつある。この領域におけるジルコニウムの
さらに広い用途に対する制限は、通常使用される
ように約190BHN(200Kgmm-2)のその比較的低い
硬度の結果として、その比較的低い耐摩耗性およ
びその擦傷する傾向に原因がある。 先行技術において、その耐摩耗性を増大させる
目的で、ジルコニウム造形品上にジルコニウム酸
化物被膜を形成するために種々の試みがなされて
いる。これらの方法のうちの一つは、ワトソンの
米国特許第3615885号に開示されたものであり、
該米国特許にはジルカロイ2およびジルカロイ4
に厚い(0.23mm以下)酸化物層を形成する方法が
開示されている。しかしながら、この方法は、特
に約5mm以下の厚みの部品に対して、著しい寸法
上の変化をもたらし、形成される酸化物フイルム
は、格別高い耐摩耗性を示さない。 その耐摩耗性を増大させる目的でジルコニウム
合金造形品上に濃いあい色の酸化物被膜を形成す
る方法を開示しているもう一つの特許は、米国特
許第2987352号である。この特許および前記の特
許の両方共に空気酸化によりジルコニウム合金上
に二酸化ジルコニウム被膜を形成している。最初
に述べた特許は、後者の特許の濃いあい色の被膜
よりも厚いベージユ色の被膜を得るまで充分長い
間空気酸化を継続する。このベージユ色の被膜は
濃いあい色の被膜のような耐摩耗性を有せず、し
たがつて2種の作動面が緊密に近接するベアリン
グ、滑り取付部品、およびバルブなどの部品に適
用することはできない。該ベージユ色の被膜は濃
いあい色の酸化物被膜よりも速かに摩耗するの
で、正確な許容差は失われ、該部品は使用できな
いものとなる。 濃いあい色の酸化物被膜では、厚みがより薄
く、該被膜の硬度がかなり大きくなる。この種の
被膜は上記の用途に役に立つものである。濃いあ
い色の被膜は、ベージユ色の被膜よりも耐摩耗性
のすぐれた被膜であるけれども、比較的薄い被膜
である。したがつて、先行技術のベージユ色の種
類の被膜を得ることなしに、耐摩耗性の増大した
濃いあい色の被膜を得るのが望ましい。 本発明によれば、ジルコニウム合金上に耐摩耗
性酸化ジルコニウム被膜を形成する改良方法が提
供され、該方法は少量の炭酸ナトリウムを含有す
る溶融塩浴中で該合金を処理する点に特徴があ
る。 この方法を利用することにより、厚みおよび耐
摩耗性の増大した酸化ジルコニウム被膜を、ジル
コニウム合金上に得ることができ、特に耐摩耗
性、耐擦傷性および耐食性であり、濃いあい色の
酸化ジルコニウム被膜をジルコニウム合金造形品
上に得ることができる。 本発明の好ましい態様において、ジルコニウム
合金より得られた造形品は、これらの合金を、塩
化ナトリウムおよび塩化カリウムの溶融浴であつ
て、それに炭酸ナトリウムを加えてなる該溶融浴
中で処理するか、あるいはこれらの合金を、少量
の炭酸ナトリウムを含合する溶融シアン化ナトリ
ウム中で処理することにより酸化されて、空気酸
化によつて得られるものよりも耐摩耗性の向上し
た濃いあい色の酸化物被膜が該造形品上に得られ
る。 炭酸ナトリウムは溶融塩中に充分な量存在する
ときは、ジルコニウム合金表面を酸化して二酸化
ジルコニウムとすることができる。該炭酸ナトリ
ウムは、通常該溶融塩中に約0.1〜1重量%存在
するが、所望によりさらに多く存在してもよい。 前記合金を処理するために用いられる溶融塩と
して、塩化物、硝酸塩、シアン化物などを用いる
ことができる。本発明を説明する目的で、塩化ナ
トリウムと塩化カリウムとの組合せまたは溶融シ
アン化ナトリウム単独が用いられる。しかしなが
ら、上記したように、多数の他の塩も、本発明方
法において用いることができる。以下の具体的な
実施例において、塩化ナトリウムと塩化カリウム
との等モル混合物を用いた。というのはこの混合
物はこの比率において、その融点が混合物として
最低となり約600℃であるからである。この特定
の条件下、炭酸ナトリウムを5%以下添加した。
この添加によつても該塩の融点が低下する。しか
しながら、もし800℃の温度を使用するのであれ
ば、純粋な塩化ナトリウムを用いることが可能で
あり、溶融塩浴中に塩化カリウムを必要としな
い。 前記シアン化ナトリウムは溶融するまで加熱さ
れ、該加熱は炭酸ナトリウムの添加により調節さ
れる。しかしながら、該融点は少くとも約550℃
である。 酸化速度は、温度上昇に直接比例する。 処理された製品の耐食性は、耐摩耗性増大処理
後でさえも、ジルコニウム合金が通常有する高水
準に維持されることもわかつた。 耐食性試験の結果として、場合によつては、こ
の耐食性は酸への暴露の結果として増大する場合
もあることも判明した。試験は、沸とう70%硝
酸、沸とう20%塩酸および沸とう60%硫酸を用い
て96時間行なわれ、その結果耐食性に不変であ
り、硝酸の場合僅かに向上した。 本発明方法および先行技術の方法の比較結果を
示す具体的な例および試験について以下説明す
る。 ジルカダイン702、ジルカロイ2およびジルカ
ロイ4合金について、酸化処理後、耐摩耗性試験
を行なつた。これらの合金の組成を下記第1表に
示す。
The present invention relates to a novel method for forming wear-resistant oxide coatings on zirconium alloy shaped articles that exhibit improved wear resistance. Specifically, the present invention provides an improved dark brown oxide on zirconium alloy shaped articles used to manufacture products such as bearings, valves, etc. that are subject to wear under abnormal conditions, including corrosive conditions. A novel method of forming a coating. Zirconium's excellent resistance to corrosion by hot water has long been known and was one of the factors that led to its adoption as a fuel-clad material in boiling water and pressurized water nuclear reactors. . Zirconium also exhibits excellent corrosion resistance in many aqueous and non-aqueous media,
For this reason, their use in the chemical process industry is increasing. Limitations to the wider use of zirconium in this area are due to its relatively low hardness as a result of its relatively low hardness of approximately 190 BHN (200 Kgmm -2 ) as commonly used and its tendency to scratch. be. In the prior art, various attempts have been made to form zirconium oxide coatings on zirconium shaped articles in order to increase their wear resistance. One of these methods is that disclosed in Watson U.S. Pat. No. 3,615,885,
The US patent includes Zircaloy 2 and Zircaloy 4.
A method of forming a thick (0.23 mm or less) oxide layer is disclosed. However, this method results in significant dimensional changes, especially for parts with a thickness of about 5 mm or less, and the oxide film formed does not exhibit particularly high wear resistance. Another patent that discloses a method of forming a dark blue oxide coating on a zirconium alloy shaped article to increase its wear resistance is US Pat. No. 2,987,352. Both this patent and the aforementioned patent form zirconium dioxide coatings on zirconium alloys by air oxidation. The first mentioned patent continues the air oxidation long enough to obtain a thicker beige coating than the deep mauve coating of the latter patent. This beige coating does not have the abrasion resistance of dark mauve coatings and is therefore suitable for applications such as bearings, sliding fittings, and valves where two working surfaces are in close proximity. I can't. Because the beige coating wears away more quickly than the dark mauve oxide coating, precise tolerances are lost and the part becomes unusable. A dark blue oxide coating is thinner and has a significantly greater hardness. Coatings of this type are useful for the above-mentioned applications. Although the dark blue coating has better abrasion resistance than the beige coating, it is a relatively thin coating. It would therefore be desirable to obtain a deep maroon coating with increased abrasion resistance without obtaining the beige type coatings of the prior art. In accordance with the present invention, an improved method of forming a wear-resistant zirconium oxide coating on a zirconium alloy is provided, the method being characterized in that the alloy is treated in a molten salt bath containing a small amount of sodium carbonate. . By utilizing this method, zirconium oxide coatings with increased thickness and wear resistance can be obtained on zirconium alloys, which are particularly wear-resistant, scratch-resistant and corrosion-resistant, and dark-brown zirconium oxide coatings. can be obtained on zirconium alloy shaped articles. In a preferred embodiment of the invention, shaped articles obtained from zirconium alloys are obtained by treating these alloys in a molten bath of sodium chloride and potassium chloride, to which sodium carbonate is added; Alternatively, these alloys may be oxidized by treatment in molten sodium cyanide containing a small amount of sodium carbonate to form a deep mauve oxide with improved wear resistance than that obtained by air oxidation. A coating is obtained on the shaped article. When sodium carbonate is present in a sufficient amount in the molten salt, it can oxidize the surface of the zirconium alloy to form zirconium dioxide. The sodium carbonate is usually present in the molten salt in an amount of about 0.1 to 1% by weight, but may be present in a larger amount if desired. The molten salts used to process the alloys may include chlorides, nitrates, cyanides, and the like. For purposes of illustrating the invention, a combination of sodium chloride and potassium chloride or molten sodium cyanide alone will be used. However, as mentioned above, many other salts can also be used in the method of the invention. In the specific examples below, an equimolar mixture of sodium chloride and potassium chloride was used. This is because, at this ratio, the mixture has the lowest melting point of the mixture, approximately 600°C. Under this particular condition, no more than 5% sodium carbonate was added.
This addition also lowers the melting point of the salt. However, if a temperature of 800°C is used, it is possible to use pure sodium chloride and no potassium chloride is required in the molten salt bath. The sodium cyanide is heated until it melts, and the heating is controlled by adding sodium carbonate. However, the melting point is at least about 550°C
It is. The rate of oxidation is directly proportional to the temperature increase. It has also been found that the corrosion resistance of the treated products remains at the high level normally associated with zirconium alloys, even after wear-increasing treatments. As a result of corrosion resistance tests, it has also been found that in some cases this corrosion resistance can also increase as a result of exposure to acids. Tests were carried out for 96 hours using boiling 70% nitric acid, boiling 20% hydrochloric acid and boiling 60% sulfuric acid, resulting in no change in corrosion resistance, with a slight improvement in the case of nitric acid. Specific examples and tests illustrating comparative results of the method of the present invention and prior art methods are described below. Wear resistance tests were conducted on Zircadine 702, Zircaloy 2 and Zircaloy 4 alloys after oxidation treatment. The compositions of these alloys are shown in Table 1 below.

【表】 前記合金は直径約0.74cm(0.29インチ)のロツ
ド状で得られ、705℃で2時間焼なましされた。
該ロツドを芯なし研削して、直径0.640+0.000−
0.01cm(0.249+0.000−0.001インチ)とし、20マ
イクロインチRMS仕上を行なつた。該ロツドを
5cm(2.0インチ)の長さに切断し、各ピースの
直径を、各端部から0.32cm(0.125インチ)の長
さにわたつて0.32cm(0.125インチ)に削つてス
タブ(突出部)を得、該スタブを用いて耐摩耗試
験フレームに前記ロツドを保持した。このように
して、前記ロツドは、20マイクロインチ仕上げを
した円筒状表面を有し、その長さは4.35cm(1.75
インチ)でその直径は0.63〜0.64cm(0.248〜
0.249インチ)であつた。 前記ロツドを、トリクロロエタンで脱脂し、乾
燥した。該ロツドを、70%硝酸37容量%、49%弗
化水素酸3容量%、および残り水からなる酸混合
物中で、撹拌しながら、38゜〜46℃で1〜2分間
浸漬し、次いで流れる水道水で5分間洗浄し、次
いで蒸留水で洗浄し、次いでエチルアルコールで
洗浄し、次いで空気乾燥し、以降綿製手袋のみを
用いてこれらのロツドを取り扱つた。 これらのロツドを、直径7.5cm(3インチ)お
よび加熱長さ61cm(24インチ)の水平管状加熱炉
中600℃〜800℃の温度で空気酸化した。該管内に
空気を、2標準c.c./secの流量で通した。酸化時
間は10分ないし50時間の範囲であつた。ロツドを
溶融塩中600℃〜800℃の温度で酸化した。前記塩
化メルトは、ポツト炉により加熱されたインコネ
ル600缶中に入れた。すべての処理において、試
料温度は±10℃に調節された。 耐摩耗性は、“W.Tsai、J.A.C.Humphrey、I.
Cornet and A.V.Levy、Wear、68(1981)289”
の設計を改造したスラリー・ポツト試験機を用い
て測定した。この場合、2個の円筒状試験片が、
その中心をスピンドルが通過するフレームの反対
側にそれぞれ取り付けられる。両試験片の軸は、
スピンドル軸に対して平行であつて、スピンドル
軸から等距離にある。その全体を、じやま板のつ
いた容器に入れた研磨剤のスラリー中に浸す。ス
ピンドルの回転により、前記スラリーに対する試
料の運動が生じ、試料の重量減により磨耗剤によ
る磨耗を測定する。この作業で、試料はスピンド
ル軸より半径52.4mm(2.063インチ)の所に取り
付けられ、回転速度は毎秒29.17±0.17回転
(1750±10rpm)であつた。前記研磨剤は、
ASTM G65−80に記載されているように、
Box577、Ottawa、I11.61350、U.S.A.における
Ottawa Silica Co.製で粒径0.300mm〜0.212mm(50
−70メツシユ)AFS50−70テストサンド(試験
砂)であつた。該研磨剤を水と混合して30重量%
(13.9容量%)のスラリーとした。試験片の各セ
ツトごとに約2.9の新しいスラリーを用いた。
前記フレームにより生じる乱流により恐らく起る
試料の端部近くの過剰に磨耗から生ずる誤差を避
けるために、前記端部を、長さ6.35mm(0.25イン
チ)、手術用管材料から切断した薄いゴムスリー
ブにより、前記フレームから保護した。したがつ
て暴露されている試験片の長さは32.0mm(1.25イ
ンチ)であつた。 試験片を、合計時間にして120秒ないし9000秒
の範囲で磨耗にさらした。一定時間間隔で、試験
片をスラリー・ポツトから取り出して水洗し、乾
燥し、±0.1mgの精度で秤量した。容量減は、重量
減を密度で除して算出した。7880、6510および
5741Kgm-3の密度を、それぞれ鋼、ジルコニウム
合金およびZrO2に対して用いた。酸化された試
験片について、除去された(removed)容積は、
磨耗の程度とは独立に、ZrO2として計算され
た。 耐擦傷性は、シユマツチヤー法を用いて推定し
た。ここで、平らな表面に対して既知の荷重をか
けながら、正円形円筒の端部を360゜回転させ
る。次いで接触した表面について擦傷の有無を調
べた。 耐食性は、Fe+3の100ppmまたは500ppmを添
加した沸とう70%および60%H2SO4、沸とう70%
HNO3、および沸とう20%HClに96時間暴露後の
試験片の重量減を測定して調べた。 実施例 1 ジルカダイン702のロツドを、塩化ナトリウム
と塩化カリウムとの等モル混合物からなるメルト
であつて、該メルトに5重量%の無水炭酸ナトリ
ウムを加えた該メルト中で処理した。処理は、
800℃で3時間および6時間行ない、重量増は表
の通りである。
Table: The alloy was obtained in the form of rods approximately 0.74 cm (0.29 inch) in diameter and annealed at 705°C for 2 hours.
Grind the rod without a center to a diameter of 0.640+0.000-
0.01 cm (0.249 + 0.000 - 0.001 inch) and a 20 micro inch RMS finish. Cut the rod into 5 cm (2.0 inch) lengths and shave the diameter of each piece to 0.32 cm (0.125 inch) over a length of 0.32 cm (0.125 inch) from each end to create a stub. ) and the stub was used to hold the rod in an abrasion test frame. The rod thus has a cylindrical surface with a 20 microinch finish and a length of 4.35 cm (1.75 cm).
inch) and its diameter is 0.63~0.64cm (0.248~
0.249 inch). The rod was degreased with trichloroethane and dried. The rod is immersed in an acid mixture consisting of 37% by volume of 70% nitric acid, 3% by volume of 49% hydrofluoric acid, and the balance water at 38° to 46°C with stirring for 1 to 2 minutes, then drained. The rods were washed for 5 minutes with tap water, then with distilled water, then with ethyl alcohol, then air dried, and only cotton gloves were used thereafter to handle the rods. These rods were air oxidized in a horizontal tubular furnace with a diameter of 7.5 cm (3 inches) and a heating length of 61 cm (24 inches) at temperatures of 600°C to 800°C. Air was passed through the tube at a flow rate of 2 standard cc/sec. Oxidation times ranged from 10 minutes to 50 hours. The rods were oxidized in molten salt at temperatures between 600°C and 800°C. The chloride melt was placed in an Inconel 600 can heated in a pot furnace. In all treatments, sample temperature was adjusted to ±10°C. Wear resistance was determined by “W. Tsai, JACH Humphrey, I.
Cornet and AVLevy, Wear, 68 (1981) 289”
The measurements were carried out using a slurry pot tester with a modified design. In this case, two cylindrical specimens are
Each is mounted on opposite sides of the frame through which the spindle passes. The axes of both specimens are
parallel to and equidistant from the spindle axis. The entire piece is immersed in an abrasive slurry in a container with a cutting board. Rotation of the spindle causes movement of the sample relative to the slurry, and wear due to the abrasive agent is measured by weight loss of the sample. In this operation, the sample was mounted at a radius of 52.4 mm (2.063 inches) from the spindle axis, and the rotational speed was 29.17 ± 0.17 revolutions per second (1750 ± 10 rpm). The abrasive is
As stated in ASTM G65−80,
Box 577, Ottawa, I11.61350, USA
Made by Ottawa Silica Co. Particle size 0.300mm to 0.212mm (50
-70 mesh) AFS50-70 test sand (test sand). Mix the abrasive with water to make 30% by weight
(13.9% by volume) slurry. Approximately 2.9 volumes of fresh slurry were used for each set of specimens.
To avoid errors resulting from excessive wear near the ends of the specimen, possibly caused by turbulence caused by the frame, the ends were cut from thin rubber 6.35 mm (0.25 in.) long from surgical tubing. Protected from the frame by a sleeve. Therefore, the length of the exposed specimen was 32.0 mm (1.25 inches). The specimens were subjected to abrasion for a total time ranging from 120 seconds to 9000 seconds. At regular time intervals, specimens were removed from the slurry pot, washed with water, dried, and weighed to an accuracy of ±0.1 mg. Volume loss was calculated by dividing weight loss by density. 7880, 6510 and
A density of 5741 Kg m -3 was used for steel, zirconium alloy and ZrO 2 respectively. For oxidized specimens, the removed volume is:
Calculated as ZrO2 , independent of the degree of wear. Scratch resistance was estimated using the Schumatschier method. Now, the end of the perfect circular cylinder is rotated 360° while applying a known load to the flat surface. The contact surface was then examined for scratches. Corrosion resistance is 70% boiling and 60% H 2 SO 4 with addition of 100ppm or 500ppm of Fe +3 , 70% boiling
The weight loss of the specimens after exposure to HNO 3 and boiling 20% HCl for 96 hours was measured and investigated. Example 1 A rod of Zircadine 702 was treated in a melt consisting of an equimolar mixture of sodium chloride and potassium chloride to which 5% by weight of anhydrous sodium carbonate was added. The processing is
The test was carried out at 800°C for 3 hours and 6 hours, and the weight gain is shown in the table.

【表】 10分、30分および60分磨耗後の容量減量を、後
述の比較例1〜5に記載の通り処理されたロツ
ド、および未処理ジルカダイン702、1018鋼およ
び熱処理してロツクウエル−C60硬度としたAISI
01ツール鋼のロツドについての値と共に表に示
す。 比較例 1 ジルカダイン702のロツドを、800℃で3時間、
6時間および10時間、および600℃で50時間空気
中で加熱した。重量増は表に示す通りである。
[Table] Volume loss after 10 minutes, 30 minutes and 60 minutes of wear for rods treated as described in Comparative Examples 1 to 5 below, untreated Zircadine 702, 1018 steel and heat-treated Rockwell-C60 hardness rods. AISI
The values are shown in the table along with the values for the 01 tool steel rods. Comparative Example 1 A rod of Zircadine 702 was heated at 800℃ for 3 hours.
Heated in air for 6 and 10 hours and at 600° C. for 50 hours. The weight increase is as shown in the table.

【表】 比較例 2 ジルカロイ2のロツドを700℃で10時間および
800℃で2時間空気中で熱処理した。重量増は表
に示す通りである。
[Table] Comparative Example 2 Zircaloy 2 rods were heated at 700℃ for 10 hours and
Heat treatment was performed at 800°C for 2 hours in air. The weight increase is as shown in the table.

【表】 比較例 3 ジルカロイ4のロツドを、800℃で2時間空気
中で熱処理した。重量増は104.2mgで、比重量増
は10.27mg/cm2であつた。 比較例 4 ジルカダイン702のロツドを、700℃および800
℃で、3時間および6時間、空気に暴したシアン
化ナトリウム中で酸化した。重量増は表に示す
通りである。
[Table] Comparative Example 3 A rod of Zircaloy 4 was heat treated in air at 800°C for 2 hours. The weight increase was 104.2 mg, and the specific weight increase was 10.27 mg/cm 2 . Comparative Example 4 Zircadine 702 rods were heated at 700°C and 800°C.
Oxidized in sodium cyanide exposed to air for 3 and 6 hours at .degree. The weight increase is as shown in the table.

【表】 比較例 5 ジルカダイン702のロツドを、700℃および800
℃で、3時間および6時間、酸素を含まないアル
ゴン雰囲気下、溶融シアン化ナトリウム中で処理
した。重量増は表に示す通りである。
[Table] Comparative Example 5 Zircadine 702 rods were heated at 700℃ and 800℃.
C. for 3 and 6 hours in molten sodium cyanide under an oxygen-free argon atmosphere. The weight increase is as shown in the table.

【表】【table】

【表】 表からわかるように、溶融塩処理によつて得
られる酸化物被膜は、容量減量が少なく、試験の
結果該被膜は、空気酸化によつて得られる被膜で
あつて、その方法によつて得られる濃いあい色の
酸化物被膜とベージユ色の酸化物被膜との両方を
包含する被膜よりも寿命が長いことがわかる。 本開示を要約すれば、本発明はジルコニウム合
金上における耐摩耗性酸化物被膜形成の新規な方
法を提供するものである。本発明の範囲内におい
て種々の変更が可能である。
[Table] As can be seen from the table, the oxide film obtained by molten salt treatment has less volume loss, and the test results show that the film obtained by air oxidation is It can be seen that the lifetime is longer than that of a coating containing both a dark blue oxide coating and a beige oxide coating. In summary of the present disclosure, the present invention provides a novel method of forming wear-resistant oxide coatings on zirconium alloys. Various modifications are possible within the scope of the invention.

Claims (1)

【特許請求の範囲】 1 ジルコニウム合金上に耐摩耗性酸化ジルコニ
ウム被膜を形成する方法であつて、該合金を、少
量の炭酸ナトリウムを含有する溶融塩浴中で処理
することを特徴とする前記方法。 2 該溶融塩浴が、溶融シアン化ナトリウム、溶
融塩化ナトリウムまたは塩化ナトリウムと塩化カ
リウムとの混合物からなることを特徴とする特許
請求の範囲第1項記載の方法。 3 該溶融塩が、等モル量の塩化カリウムと塩化
ナトリウムとの混合物である特許請求の範囲第2
項記載の方法。 4 該炭酸ナトリウムが、該溶融塩中でジルコニ
ウム合金を酸化するに充分な量存在することを特
徴とする特許請求の範囲第1項ないし第3項のい
ずれかに記載の方法。 5 該溶融塩浴が550℃と800℃との間の温度に加
熱されることを特徴とする特許請求の範囲第1項
ないし第4項のいずれかに記載の方法。 6 該炭酸ナトリウムが、該溶融塩中0.1〜5重
量%存在することを特徴とする特許請求の範囲第
4項記載の方法。
[Scope of Claims] 1. A method for forming a wear-resistant zirconium oxide coating on a zirconium alloy, characterized in that the alloy is treated in a molten salt bath containing a small amount of sodium carbonate. . 2. The method of claim 1, wherein the molten salt bath comprises molten sodium cyanide, molten sodium chloride or a mixture of sodium chloride and potassium chloride. 3. Claim 2, wherein the molten salt is a mixture of equimolar amounts of potassium chloride and sodium chloride.
The method described in section. 4. A method according to any one of claims 1 to 3, characterized in that the sodium carbonate is present in the molten salt in an amount sufficient to oxidize the zirconium alloy. 5. A method according to any one of claims 1 to 4, characterized in that the molten salt bath is heated to a temperature between 550°C and 800°C. 6. A method according to claim 4, characterized in that the sodium carbonate is present in the molten salt in an amount of 0.1 to 5% by weight.
JP7191685A 1984-04-06 1985-04-06 Formation of improved antiabrasive coating on zirconium product Granted JPS60248883A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59658384A 1984-04-06 1984-04-06
US596583 1984-04-06

Publications (2)

Publication Number Publication Date
JPS60248883A JPS60248883A (en) 1985-12-09
JPS6221871B2 true JPS6221871B2 (en) 1987-05-14

Family

ID=24387882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7191685A Granted JPS60248883A (en) 1984-04-06 1985-04-06 Formation of improved antiabrasive coating on zirconium product

Country Status (2)

Country Link
JP (1) JPS60248883A (en)
DE (1) DE3512355A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64279A (en) * 1987-06-23 1989-01-05 Nippon Stainless Steel Co Ltd Method for coloring titanium and titanium alloy material
US5265137A (en) * 1990-11-26 1993-11-23 Siemens Power Corporation Wear resistant nuclear fuel assembly components

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822606A (en) * 1955-10-09 1958-02-11 Yoshida Koji Titanium oxide rectifier and method for manufacturing same
US2987352A (en) * 1958-02-10 1961-06-06 Ca Atomic Energy Ltd Zirconium bearings and process of producing same
DE1133612B (en) * 1958-02-10 1962-07-19 Atomic Energy Of Canada Ltd Process for the production of slidingly loaded bearing parts
US3615885A (en) * 1966-09-19 1971-10-26 Robert Douglas Watson Forming uniform thick oxide layer of material

Also Published As

Publication number Publication date
JPS60248883A (en) 1985-12-09
DE3512355C2 (en) 1989-08-03
DE3512355A1 (en) 1985-10-24

Similar Documents

Publication Publication Date Title
US4671824A (en) Processes for producing improved wear resistant coatings on zirconium shapes
KR930001230B1 (en) Method for surface treatment and treating material therefor
JPS6221871B2 (en)
EP0158177A2 (en) Method of inhibiting corrosion of zirconium or its alloy
CN112304732A (en) Display method and application of original austenite grain boundary of low-density steel
US7208055B2 (en) Thermal Treatment Method
Carroll et al. The influence of temperature, applied potential, buffer and inhibitor addition on the passivation behaviour of a commercial grade 316L steel in aqueous halide solutions
JP6005963B2 (en) Method for producing a cast product having an alumina barrier layer
JP5372983B2 (en) How to prevent metal corrosion
CN112665953A (en) Metallographic structure corrosive agent and corrosion method for Ti60 titanium alloy oxide layer
Lin et al. Characterization of SPCC Steel Stress Behaviour in Brine Water Environment
US3905837A (en) Method of treating titanium-containing structures
US3649373A (en) Passivating agent for protecting the surfaces of silver-bearing materials
US3803776A (en) Method for treating surfaces of zirconium alloy tubes
JPS62222084A (en) Steel parts
Kochka et al. The Salt Corrosion of Titanium Alloys at Elevated Temperatures
EP0935014B1 (en) Method for the anticorrosive treatment of waste plastics treating equipment
CN110806376A (en) Corrosion evaluation method for nickel-based alloy strip for electric heating pipe of water heater
JP6584900B2 (en) Stainless steel pipe excellent in corrosion resistance and manufacturing method thereof
Adamy et al. Inhibition of pitting in ferrous materials by carbonate as a function of temperature and alkalinity
US4009086A (en) Method for a surface treatment of an iron, ferrous alloy or cemented carbide article
JP2005154882A (en) Titanium less liable to be discolored in atmospheric environment
US3930575A (en) Method for a surface treatment of an iron, ferrous alloy or cemented carbide article
Hosseini et al. Electrochemical and dissolution behavior of the Ti-alloy VT-9 in H 2 SO 4 solution in the presence of the organic inhibitor (2-phenyl-4-[(E)-1-(4-solphanylanilino) methylyden]-1, 3-oxazole-5 (4H)-one
Phelps et al. Corrosion of austenitic stainless steels in sulfuric acid