JPS6221859B2 - - Google Patents
Info
- Publication number
- JPS6221859B2 JPS6221859B2 JP58128038A JP12803883A JPS6221859B2 JP S6221859 B2 JPS6221859 B2 JP S6221859B2 JP 58128038 A JP58128038 A JP 58128038A JP 12803883 A JP12803883 A JP 12803883A JP S6221859 B2 JPS6221859 B2 JP S6221859B2
- Authority
- JP
- Japan
- Prior art keywords
- matrix
- alloy
- present
- cobalt
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011159 matrix material Substances 0.000 claims description 25
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 22
- 229910000601 superalloy Inorganic materials 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052702 rhenium Inorganic materials 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000006104 solid solution Substances 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 230000005496 eutectics Effects 0.000 claims description 6
- 239000012783 reinforcing fiber Substances 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims 2
- 239000000835 fiber Substances 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
- C22C49/08—Iron group metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B21/00—Unidirectional solidification of eutectic materials
- C30B21/02—Unidirectional solidification of eutectic materials by normal casting or gradient freezing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
本発明は、耐熱コバルト基超合金(スーパーア
ロイ)に関するものであり、特に整列状態で埋設
される炭化物繊維で補強された超合金マトリツク
スを含む耐熱コバルト基超合金に関するものであ
る。
航空機の動力源であるようなガスタービンエン
ジンに対する性能の要求は、その設計の進歩に伴
い絶えず増大している。従つて、例えば、苛酷な
高温環境条件下で作動乃至使用されるタービン構
成部品に対してのように、改善された材料に対す
る必要性が絶えず存在している。このような部品
において使用される材料は、エンジンの全体的な
性能に影響を与える点できわめて重要であり、そ
してこのような材料の開発があつてこそ設計者は
発生動力、作動温度、部品寿命或いはこれらの組
合せの増大を計ることができる。
ニツケル或いはコバルトを基としそしてガスタ
ービンエンジン業界において多年にわたり広範に
使用されてきた超合金の開発は今や、超合金自体
のみに基づくだけでなく、超合金の相の配向或い
は繊維のような補強材の含入に基づいて進歩がも
たらされる域にまで達している。これら後者のも
のは、合金の凝固中その場で形成することが出来
る。今まで使用されそして広く報告されているそ
のような凝固の一つの形態は、一般に一方向凝固
と呼ばれているものである。
共晶合金にそのような一方向凝固を施すのが、
マトリツクス中に補強材として整列された繊維を
含む金属質複合材を製造する為の実施可能な方法
の一つであることが認識されていた。このような
共晶複合体は、整列した共晶相の少なく共一つに
おいて高い強度を達成する可能性を与えそしてま
た相間に強い結着性を達成する可能性を与えた。
簡単に述べるなら、本発明は、固溶体マトリツ
クスとそこに埋設される整列状態の炭化物補強繊
維相を含む、一方向凝固された異方性金属質複合
体を有する耐熱コバルト基超合金を提供する。マ
トリツクスはCoを基とする超合金から成り、そ
してマトリツクスを強化する為少なくとも約2重
量%のReを含む。又、炭化物補強繊維相は、主
にTaCであることが好ましい。
Coを基とする本発明の合金の好ましい形態に
おいては、合金組成は、重量%で表わして、20%
までのCr、5〜20%のNi、8%までのW、7〜
20%のTa、0.5〜1.3%のC、2〜9%のRe及び
残部実質上のCoと不可避的に混入される不純物
から成る。この範囲内の好ましい形態の一例は実
質上、重量%で表わして、10〜16%Cr、7〜15
%Ni、1〜6%W、10〜15%Ta、0.5〜1%C、
2〜6%Re及び残部Co及び不可避的に混入され
る不純物から成る。
斯くして、一方向凝固を通して安定性と高温性
質について改善された組合せ特性を発現しうる本
発明の合金は、重量で表わして、少なくとも2%
のRe、0.5〜1.3%のC及び7〜20%のTaを含む
Co基超合金から成る。
整列状態にある炭化物繊維を埋設したコバルト
基超合金複合体は改善された性質をもたらす大き
な可能性を持つているけれども、マトリツクスを
強化し同時にマトリツクスと繊維との間の有害な
相互作用を回避する為には、注意深い組成上の釣
合いがマトリツクスと繊維間に達成されねばなら
ない。このような合金系が進歩したジエツトエン
ジンのタービン区画において使用する為の物品に
作製されるなら、それは、安定性と良好な高温性
質、特に翼形金属の使用温度及び応力に制限を与
える因子の一つである応力破断(ラプチヤー)性
質を具備せねばならない。
本発明の重要な特徴は、整列状態にある炭化物
補強繊維相が形成されそして埋設される超合金マ
トリツクスが、少なくとも約2%のReを含むこ
とである。
前述したように、本発明の合金を形成するべく
一方向凝固される合金の組成は、マトリツクスを
強化する為にそして高溶積分率の炭化物繊維を生
成しうる能力を与える為に元素の注意深い均合い
を必要とする。本発明の合金中に含まれる重要な
マトリツクス強化元素の一つはReである。これ
は、後に示すように、応力破断性質を大巾に増大
する。元素Wと違つて、Reは炭化物形成元素で
はない。同様に、研究を通じて、Os、Ru、Hf、
Mo及びWのような元素−そのうちの幾つかは本
発明の合金中に含まれるが−はそれらがReと同
じ効果を持たない点でReと均等ではないことが
わかつた。約2重量%未満のReは応力破断強度
を認めうる程に改善しないことがわかつた。従つ
て、本発明は少なくとも、約2重量%の量におい
て元素Reを含む。Reが高価であること及び量が
あまり多くなると効果が減少することに基く実用
上の観点から、約9%より多くReを含めること
は実用的でない。
本発明における主たる炭化物繊維形成元素は
Taである。Co基形態においては約7%未満のTa
量は、TaCの形成において炭素と反応するには不
十分である。20%を越えると、Wの%水準との組
合せから、マトリツクス溶解度を越え、好ましく
ない相や炭化物形態をもたらす。
本発明の組成物においては、Taと組合さつて
マトリツクスを補強する炭化物繊維を生成するの
に元素Cが必要とされる。本発明の組成に含めら
れるCの量は、主にTaの量の関数であり、この
元素のモノカーバイドを形成するに充分のもので
ある。
Wは、随意成分であつて主に固溶体強化元素と
して働く。8%を越えると、Wは炭化物繊維の形
成を妨げる。Wの好ましい寄与作用は、Co基合
金においては約6%まで、好ましくは1〜6%の
範囲において生じる。
Crは随意成分であつて20%までは許容しうる
が、20%を越えても何ら有益な効果はもたらされ
ない。Crは、主に固溶体強化元素として働く
が、炭化物繊維形成元素としても働き、酸化及び
硫化に対する抵抗を助ける。
NiはCoの幾分かを代替するために少なくとも
5%使用されるが、固溶体マトリツクスと共晶炭
化物繊維相との間の有害な相互作用を回避しマト
リツクスの安定性を確保するため20%は越えては
ならない。
先に述べたように、本発明の合金を生成する為
には、上述した注意深い元素の均合いを具備する
合金を、強化固溶体マトリツクス中に共晶炭化物
繊維が一体的に生じそしてそこに結着されること
を可能ならしめるように、一方向凝固されねばな
らない。この一方向凝固は多くの方法のうちの一
つ又はそれ以上により斯界で広く知られている装
置を使用して実施することが出来る。
本発明の評価に当つて、多数の合金組成物が考
察された。表及び以下の説明において%は総て特
にことわりがなければ重量%である。
合金の試片は、アルミナるつぼにおいてアルゴ
ン雰囲気中で溶解されそして銅製棒状型内でチル
鋳造された。鋳造試片は、続いての試験の為に使
用される一方向性物品試片を提供するべく凝固前
面が平面状となるようにして凝固された。長手方
向の性質を調べる為の機械試験片素材は、成長方
向に平行にインゴツトから切出された。横断方向
の性質を調べる為に、試験片素材は成長方向に直
角に放電加工された。これら素材はその後試片つ
かみに組つけられそして組体全体が機械試験片の
形状に研削された。
本発明の必須の特徴の一つは、主に合金マトリ
ツクスを強化する為に元素Reを含んでいること
である。この強度の改善は、一方向凝固された試
片の応力破断性質において特に明らかである。
表中、“ksi”はpsi×103を表し、“PLM”はラ
ーソン−ミラー(Larson−Miller)パラメータと
して周知されそして広く用いられている金属学上
の応力破断関係を意味するもので、PLM=T(C
+Logt)×10-3(ここでC=20)として表示され
る。これについては、アメリカン ソサイテイ
オブ エンジニアズ トランザクシヨンズ
(American Society of Engineers
Transactions)1952年74巻765〜771頁に詳しく記
載されている。このパラメータの使用は、様々な
温度においてそして選択された応力水準において
応力破断寿命間の広く様々な比較を可能ならしめ
る。
本発明の評価に際して、Co基合金が評価され
た。次の表及びは、Co基においては20%ま
でのCr、5〜20%のNi、8%までのW、7〜20
%のTa、0.5〜1.3%のC及び2〜9%のReとい
う広い範囲内で評価された合金のうちの2つの組
成及び応力破断性質を示すものである。試片は一
方向凝固により調整された。
The present invention relates to high-temperature cobalt-base superalloys (superalloys), and more particularly to high-temperature cobalt-base superalloys comprising a superalloy matrix reinforced with aligned embedded carbide fibers. Performance demands on gas turbine engines, such as those used to power aircraft, are constantly increasing as their designs advance. Accordingly, there is a continuing need for improved materials, such as, for example, for turbine components that operate and are used under harsh, high temperature environmental conditions. The materials used in these components are extremely important in influencing the overall performance of the engine, and the development of such materials allows designers to improve power generation, operating temperatures, and component life. Alternatively, a combination of these can be increased. The development of superalloys, which have been based on nickel or cobalt and have been used extensively in the gas turbine engine industry for many years, is now based not only on the superalloy itself, but also on the orientation of the superalloy phases or reinforcement materials such as fibers. It has reached the point where progress is being made based on the inclusion of These latter can be formed in situ during solidification of the alloy. One form of such coagulation that has been used and widely reported is what is commonly referred to as unidirectional coagulation. Applying such unidirectional solidification to a eutectic alloy is
It has been recognized that this is one viable method for producing metallic composites containing fibers arranged as reinforcement in a matrix. Such eutectic composites offered the possibility of achieving high strength in at least one of the aligned eutectic phases and also the possibility of achieving strong cohesion between the phases. Briefly stated, the present invention provides a high temperature cobalt-based superalloy having a directionally solidified anisotropic metallic composite comprising a solid solution matrix and an aligned carbide reinforcing fibrous phase embedded therein. The matrix is comprised of a Co-based superalloy and includes at least about 2% by weight Re to strengthen the matrix. Further, it is preferable that the carbide reinforcing fiber phase is mainly TaC. In a preferred form of the alloy of the invention based on Co, the alloy composition, expressed in weight percent, is 20%
Cr up to 5~20% Ni, W up to 8%, 7~
It consists of 20% Ta, 0.5-1.3% C, 2-9% Re, and the remainder essentially Co and impurities that are inevitably mixed. An example of a preferred form within this range is substantially 10-16% Cr, 7-15% by weight.
%Ni, 1~6%W, 10~15%Ta, 0.5~1%C,
It consists of 2 to 6% Re, the balance Co, and unavoidably mixed impurities. Thus, the alloys of the present invention, which are capable of developing an improved combination of stability and high temperature properties through unidirectional solidification, have at least 2% by weight
Contains Re, 0.5-1.3% C and 7-20% Ta
Made of Co-based superalloy. Although cobalt-based superalloy composites embedded with aligned carbide fibers have great potential to provide improved properties, it is important to strengthen the matrix and at the same time avoid harmful interactions between the matrix and the fibers. For this purpose, a careful compositional balance must be achieved between the matrix and the fibers. If such an alloy system is to be fabricated into articles for use in the turbine section of advanced jet engines, it will require stability and good high temperature properties, especially factors that limit the service temperature and stress of the airfoil metal. It must have one of the stress rupture properties. An important feature of the present invention is that the superalloy matrix in which the aligned carbide reinforcing fiber phase is formed and embedded contains at least about 2% Re. As previously mentioned, the composition of the alloy that is directionally solidified to form the alloy of the present invention requires careful homogenization of the elements to strengthen the matrix and provide the ability to produce high solubility fraction carbide fibers. requires a match. One of the important matrix strengthening elements included in the alloy of the present invention is Re. This greatly increases the stress rupture properties, as will be shown below. Unlike element W, Re is not a carbide-forming element. Similarly, through research, Os, Ru, Hf,
It has been found that elements such as Mo and W, some of which are included in the alloys of the present invention, are not equivalent to Re in that they do not have the same effect as Re. It has been found that less than about 2% Re does not appreciably improve stress rupture strength. Thus, the present invention includes at least the element Re in an amount of about 2% by weight. From a practical point of view, it is impractical to include more than about 9% Re, based on the high cost of Re and the diminishing effectiveness in too large a quantity. The main carbide fiber forming element in the present invention is
It is Ta. Less than about 7% Ta in Co-based form
The amount is insufficient to react with carbon in the formation of TaC. Above 20%, in combination with the % W level, matrix solubility is exceeded, leading to undesirable phase and carbide morphology. In the composition of the present invention, element C is required to combine with Ta to produce carbide fibers that reinforce the matrix. The amount of C included in the compositions of the present invention is primarily a function of the amount of Ta and is sufficient to form a monocarbide of this element. W is an optional component and mainly functions as a solid solution strengthening element. Above 8%, W prevents the formation of carbide fibers. The favorable contribution of W occurs in Co-based alloys up to about 6%, preferably in the range 1-6%. Cr is an optional component and can be tolerated up to 20%, but no beneficial effects will be produced if it exceeds 20%. Cr acts primarily as a solid solution strengthening element, but also as a carbide fiber forming element, helping to resist oxidation and sulfidation. Ni is used at least 5% to replace some of the Co, while 20% is used to avoid deleterious interactions between the solid solution matrix and the eutectic carbide fiber phase and to ensure matrix stability. Must not be exceeded. As previously mentioned, to produce the alloys of the present invention, an alloy with the careful elemental balance described above is combined with eutectic carbide fibers formed integrally in and bonded to a reinforced solid solution matrix. It must be unidirectionally solidified to allow it to be solidified. This unidirectional solidification can be performed in one or more of a number of ways using equipment well known in the art. A number of alloy compositions were considered in evaluating the present invention. In the tables and the following description, all percentages are by weight unless otherwise specified. Alloy coupons were melted in an alumina crucible under an argon atmosphere and chill cast in copper bar molds. The cast specimens were solidified with a planar solidification front to provide unidirectional article specimens used for subsequent testing. Mechanical specimen materials for examining longitudinal properties were cut from the ingot parallel to the growth direction. To investigate the properties in the transverse direction, the specimen material was electrical discharge machined perpendicular to the growth direction. These materials were then assembled into specimen holders and the entire assembly was ground into the shape of a mechanical specimen. One of the essential features of the present invention is the inclusion of the element Re, primarily to strengthen the alloy matrix. This strength improvement is particularly evident in the stress rupture properties of the directionally solidified coupons. In the table, "ksi" represents psi×10 3 , and "P LM " means the stress rupture relationship in metallurgy, which is well known and widely used as the Larson-Miller parameter. P LM =T(C
+Logt)×10 −3 (here C=20). For more information on this, please refer to the American Society
American Society of Engineers Transactions
Transactions) 1952, Vol. 74, pp. 765-771. Use of this parameter allows a wide variety of comparisons between stress rupture lives at different temperatures and at selected stress levels. In evaluating the present invention, Co-based alloys were evaluated. The following table shows that in the Co group up to 20% Cr, 5 to 20% Ni, up to 8% W, 7 to 20
The composition and stress rupture properties of two of the alloys evaluated within a wide range of % Ta, 0.5-1.3% C and 2-9% Re are shown. The coupons were prepared by unidirectional solidification.
【表】【table】
【表】
本発明が関係する型式のCo基合金は、γ′強化
されないので、それらはマトリツクス内の固溶強
化にのみ依るものである。本発明において、高い
強度性質は、Reの存在を通しての改善されたマ
トリツクス強さと主にTaCである整列状態の炭化
物繊維による補強強化との組合せから達成され
る。Co基合金の組成、特に10〜16%Cr、7〜15
%Ni、1〜6%W、10〜15%Ta、0.7〜1%C及
び2〜6%Reという好ましい組成は、マトリツ
クスと整列状態の繊維との間の有害な相互作用を
回避するようそして例えば同素変態を避ける為と
云つたマトリツクスの安定性を保証するように選
択されている。
Co基合金の更に好ましい組成は、14〜16%
Cr、9〜10%Ni、2〜4%W、11〜12%Ta、0.7
〜0.8%C、2〜6%Re及び残部Coより成る。
以上、本発明を特定の具体例や形態と関連して
説明した。しかし、超合金マトリツクス中への
Reの含入及びマトリツクスの整列炭化物繊維を
通しての強化を含む本発明が、その範囲内で様々
な改変を施しうるものであることが当業者には理
解されるであろう。Table: Co-based alloys of the type to which this invention relates are not gamma prime strengthened, so they rely solely on solid solution strengthening within the matrix. In the present invention, high strength properties are achieved from a combination of improved matrix strength through the presence of Re and reinforcing reinforcement by aligned carbide fibers, primarily TaC. Composition of Co-based alloy, especially 10-16% Cr, 7-15
The preferred composition of %Ni, 1-6%W, 10-15%Ta, 0.7-1%C and 2-6%Re is so as to avoid deleterious interactions between the matrix and the aligned fibers. They are chosen to ensure matrix stability, for example to avoid allotropic transformations. A more preferable composition of the Co-based alloy is 14 to 16%
Cr, 9-10% Ni, 2-4% W, 11-12% Ta, 0.7
It consists of ~0.8% C, 2-6% Re and the balance Co. The invention has been described in connection with specific embodiments and forms. However, in the superalloy matrix
It will be appreciated by those skilled in the art that the present invention, including the inclusion of Re and reinforcement through aligned carbide fibers of the matrix, is susceptible to various modifications within its scope.
Claims (1)
Ta、0.5〜1.3%C、2〜9%Reおよび残部コバ
ルトを含み、固溶体マトリツクスの中に、Ta、
Wおよびそれらの合金および混合物からなる群よ
り選ばれた成分の共晶炭化物の整列した補強繊維
相が埋め込められた、一方向に凝固された異方性
金属質複合体を形成している、ことを特徴とする
耐熱コバルト基超合金。 2 重量で表わして、20%以下Cr、5〜20%
Ni、8%以下W、7〜20%Ta、0.5〜1.3%C、2
〜9%Reおよび残部コバルトを含み、固溶体マ
トリツクスの中に、Ta、Wおよびそれらの合金
および混合物からなる群より選ばれた成分の共晶
炭化物の整列した補強繊維相が埋め込められた、
一方向に凝固された異方性金属質複合体を形成し
ている、ことを特徴とする耐熱コバルト基超合
金。[Claims] 1. 5-20% Ni, 7-20% by weight
Ta, 0.5-1.3% C, 2-9% Re and balance cobalt, in a solid solution matrix, Ta,
Forming a unidirectionally solidified anisotropic metallic composite embedded with an aligned reinforcing fiber phase of eutectic carbides of components selected from the group consisting of W and alloys and mixtures thereof; A heat-resistant cobalt-based superalloy characterized by: 2 Expressed by weight, 20% or less Cr, 5 to 20%
Ni, 8% or less W, 7-20% Ta, 0.5-1.3% C, 2
Embedded in a solid solution matrix, an aligned reinforcing fiber phase of eutectic carbides of components selected from the group consisting of Ta, W, and alloys and mixtures thereof, containing ~9% Re and balance cobalt;
A heat-resistant cobalt-based superalloy characterized by forming an anisotropic metallic composite solidified in one direction.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US366047A US3904402A (en) | 1973-06-01 | 1973-06-01 | Composite eutectic alloy and article |
US366047 | 1989-06-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5953647A JPS5953647A (en) | 1984-03-28 |
JPS6221859B2 true JPS6221859B2 (en) | 1987-05-14 |
Family
ID=23441454
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49061019A Expired JPS5852015B2 (en) | 1973-06-01 | 1974-05-31 | Heat-resistant nickel-based superalloy |
JP58128038A Granted JPS5953647A (en) | 1973-06-01 | 1983-07-15 | Heat resistant cobalt base superalloy |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49061019A Expired JPS5852015B2 (en) | 1973-06-01 | 1974-05-31 | Heat-resistant nickel-based superalloy |
Country Status (7)
Country | Link |
---|---|
US (1) | US3904402A (en) |
JP (2) | JPS5852015B2 (en) |
BE (1) | BE815845A (en) |
CA (1) | CA1013176A (en) |
DE (1) | DE2425994C2 (en) |
FR (1) | FR2231767B1 (en) |
GB (1) | GB1475711A (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4162918A (en) * | 1977-11-02 | 1979-07-31 | General Electric Company | Rare earth metal doped directionally solidified eutectic alloy and superalloy materials |
US4119458A (en) * | 1977-11-14 | 1978-10-10 | General Electric Company | Method of forming a superalloy |
JPS5814016B2 (en) * | 1978-03-31 | 1983-03-17 | 株式会社日立製作所 | Substrate metal plate material for directly heated oxide cathode |
FR2441665A1 (en) * | 1978-11-14 | 1980-06-13 | Onera (Off Nat Aerospatiale) | POLYPHASE METAL SYSTEMS OF TYPE G, G ', NBC WITH IMPROVED STRUCTURAL STABILITY |
US4292076A (en) * | 1979-04-27 | 1981-09-29 | General Electric Company | Transverse ductile fiber reinforced eutectic nickel-base superalloys |
US4388124A (en) * | 1979-04-27 | 1983-06-14 | General Electric Company | Cyclic oxidation-hot corrosion resistant nickel-base superalloys |
US4284430A (en) * | 1979-04-27 | 1981-08-18 | General Electric Company | Cyclic oxidation resistant transverse ductile fiber reinforced eutectic nickel-base superalloys |
US4222794A (en) * | 1979-07-02 | 1980-09-16 | United Technologies Corporation | Single crystal nickel superalloy |
US4364160A (en) * | 1980-11-03 | 1982-12-21 | General Electric Company | Method of fabricating a hollow article |
US4522664A (en) * | 1983-04-04 | 1985-06-11 | General Electric Company | Phase stable carbide reinforced nickel-base superalloy eutectics having improved high temperature stress-rupture strength and improved resistance to surface carbide formation |
US5035958A (en) * | 1983-12-27 | 1991-07-30 | General Electric Company | Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superaloys |
US5043138A (en) * | 1983-12-27 | 1991-08-27 | General Electric Company | Yttrium and yttrium-silicon bearing nickel-base superalloys especially useful as compatible coatings for advanced superalloys |
US6074602A (en) * | 1985-10-15 | 2000-06-13 | General Electric Company | Property-balanced nickel-base superalloys for producing single crystal articles |
JP2512802Y2 (en) * | 1986-12-27 | 1996-10-02 | キヤノン株式会社 | Motor |
US5455120A (en) * | 1992-03-05 | 1995-10-03 | General Electric Company | Nickel-base superalloy and article with high temperature strength and improved stability |
US5270123A (en) * | 1992-03-05 | 1993-12-14 | General Electric Company | Nickel-base superalloy and article with high temperature strength and improved stability |
US6143141A (en) * | 1997-09-12 | 2000-11-07 | Southwest Research Institute | Method of forming a diffusion barrier for overlay coatings |
US6306544B1 (en) * | 1999-02-25 | 2001-10-23 | Wilson Greatbatch Ltd. | Cobalt-based alloys as positive electrode current collectors in nonaqueous electrochemical cells |
US6632299B1 (en) | 2000-09-15 | 2003-10-14 | Cannon-Muskegon Corporation | Nickel-base superalloy for high temperature, high strain application |
US20050135962A1 (en) * | 2003-12-22 | 2005-06-23 | Henry Michael F. | Directionally solidified eutectic superalloys for elevated temperature applications |
IT1394975B1 (en) * | 2009-07-29 | 2012-08-07 | Nuovo Pignone Spa | NICKEL-BASED SUPERLEGA, MECHANICAL COMPONENT MADE WITH SUCH A SUPERLEGA, TURBOMACCHINA INCLUDING SUCH COMPONENT AND RELATIVE METHODS |
WO2013132508A1 (en) | 2012-03-09 | 2013-09-12 | Indian Institute Of Science | Nickel- aluminium- zirconium alloys |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3276865A (en) * | 1964-06-15 | 1966-10-04 | John C Freche | High temperature cobalt-base alloy |
US3366478A (en) * | 1965-07-21 | 1968-01-30 | Martin Marietta Corp | Cobalt-base sheet alloy |
US3526499A (en) * | 1967-08-22 | 1970-09-01 | Trw Inc | Nickel base alloy having improved stress rupture properties |
US3528808A (en) * | 1967-10-11 | 1970-09-15 | United Aircraft Corp | Monocarbide reinforced eutectic alloys and articles |
-
1973
- 1973-06-01 US US366047A patent/US3904402A/en not_active Expired - Lifetime
-
1974
- 1974-04-04 CA CA196,785A patent/CA1013176A/en not_active Expired
- 1974-05-10 GB GB2086474A patent/GB1475711A/en not_active Expired
- 1974-05-29 FR FR7418584A patent/FR2231767B1/fr not_active Expired
- 1974-05-30 DE DE2425994A patent/DE2425994C2/en not_active Expired
- 1974-05-31 JP JP49061019A patent/JPS5852015B2/en not_active Expired
- 1974-05-31 BE BE145016A patent/BE815845A/en not_active IP Right Cessation
-
1983
- 1983-07-15 JP JP58128038A patent/JPS5953647A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5852015B2 (en) | 1983-11-19 |
JPS5032017A (en) | 1975-03-28 |
JPS5953647A (en) | 1984-03-28 |
FR2231767A1 (en) | 1974-12-27 |
US3904402A (en) | 1975-09-09 |
FR2231767B1 (en) | 1977-03-11 |
BE815845A (en) | 1974-09-16 |
GB1475711A (en) | 1977-06-01 |
DE2425994A1 (en) | 1975-01-02 |
DE2425994C2 (en) | 1985-12-05 |
CA1013176A (en) | 1977-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6221859B2 (en) | ||
JP6514441B2 (en) | Cast nickel base superalloy containing iron | |
JP4024303B2 (en) | Nickel-based superalloy | |
US20040011439A1 (en) | Directionally solidified casting with improved transverse stress rupture strength | |
JP5773596B2 (en) | Nickel-base superalloys and articles | |
JP5595917B2 (en) | Nickel-based superalloy composition and superalloy article substantially free of rhenium | |
US7824606B2 (en) | Nickel-based alloys and articles made therefrom | |
JP2004332061A (en) | HIGHLY OXIDATION RESISTANT Ni BASED SUPERALLOY, AND GAS TURBINE COMPONENT | |
JPH0323613B2 (en) | ||
CN102803528B (en) | Nickel-base single-crystal superalloy and turbine wing using same | |
JPH0240726B2 (en) | ||
JP2011074493A (en) | Nickel-based superalloy and article | |
CN101680059A (en) | Ni-based single crystal superalloy and turbine vane using the same | |
TWI248975B (en) | Nickel-base superalloy for high temperature, high strain application | |
CN108396200A (en) | A kind of cobalt base superalloy and preparation method thereof and the application in heavy duty gas turbine | |
JP2008520829A (en) | Nickel-based superalloy | |
US3564940A (en) | Anisotropic polyphase structure of monovariant eutectic composition | |
CN102471833A (en) | Ni-based monocrystalline superalloy and turbine blade | |
US20100135847A1 (en) | Nickel-containing alloys, method of manufacture thereof and articles derived therefrom | |
JP2011074491A (en) | Nickel-based superalloy and article | |
CA1053482A (en) | Nickel-base superalloy cast article | |
US4284430A (en) | Cyclic oxidation resistant transverse ductile fiber reinforced eutectic nickel-base superalloys | |
US3793012A (en) | Nickel-base tantalum carbide eutectic alloys | |
CA1080512A (en) | Directionally solidified cobalt-base eutectic alloys | |
US4111723A (en) | Directionally solidified eutectic superalloy articles |