JPS62218596A - Cobalt-gadolinium alloy plating bath - Google Patents
Cobalt-gadolinium alloy plating bathInfo
- Publication number
- JPS62218596A JPS62218596A JP6034886A JP6034886A JPS62218596A JP S62218596 A JPS62218596 A JP S62218596A JP 6034886 A JP6034886 A JP 6034886A JP 6034886 A JP6034886 A JP 6034886A JP S62218596 A JPS62218596 A JP S62218596A
- Authority
- JP
- Japan
- Prior art keywords
- bath
- salt
- salts
- plating bath
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 title claims abstract description 33
- 229910000748 Gd alloy Inorganic materials 0.000 title claims abstract description 11
- VAUNMJNZQZLHJE-UHFFFAOYSA-N cobalt gadolinium Chemical compound [Co].[Gd] VAUNMJNZQZLHJE-UHFFFAOYSA-N 0.000 title claims description 5
- 150000001412 amines Chemical class 0.000 claims abstract description 12
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 150000000921 Gadolinium Chemical class 0.000 claims description 8
- 150000001868 cobalt Chemical class 0.000 claims description 8
- 239000003125 aqueous solvent Substances 0.000 claims description 2
- 125000003916 ethylene diamine group Chemical group 0.000 claims 1
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 6
- 238000004070 electrodeposition Methods 0.000 abstract description 6
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 abstract description 5
- 230000005294 ferromagnetic effect Effects 0.000 abstract description 3
- 230000003381 solubilizing effect Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 8
- 230000005291 magnetic effect Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000015654 memory Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- -1 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- XNZJTLSFOOXUAS-UHFFFAOYSA-N cobalt hydrochloride Chemical compound Cl.[Co] XNZJTLSFOOXUAS-UHFFFAOYSA-N 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005308 ferrimagnetism Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- MEANOSLIBWSCIT-UHFFFAOYSA-K gadolinium trichloride Chemical compound Cl[Gd](Cl)Cl MEANOSLIBWSCIT-UHFFFAOYSA-K 0.000 description 1
- QLAFITOLRQQGTE-UHFFFAOYSA-H gadolinium(3+);trisulfate Chemical compound [Gd+3].[Gd+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O QLAFITOLRQQGTE-UHFFFAOYSA-H 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
彦」ししΩオm1年厨一
本発明は電析法によってコバルト−ガドリニウム(Go
−Gd)合金めっき膜を得ることができるコバルト−ガ
ドリニウム合金めっき浴に関する。[Detailed Description of the Invention] Hiko Shishishi Om1 year old Chuichi The present invention produces cobalt-gadolinium (Go) by electrodeposition method.
The present invention relates to a cobalt-gadolinium alloy plating bath capable of obtaining a -Gd) alloy plating film.
来の び ■が しようとする11悪コバルト−
ガドリニウム(Go−Gd)非晶質合金薄膜はフェリ磁
性を持ち、垂直磁気異方性を有するため、光磁気ディス
クメモリーとしての使用が注目されている。このメモリ
一方式は従来の磁気メモリーよりも高密度記録が可能で
あり、このため次世代のメモリ一方式として期待されて
いるものである。11 evil cobalt that the next growth ■ tries to do
Since gadolinium (Go-Gd) amorphous alloy thin films have ferrimagnetism and perpendicular magnetic anisotropy, their use as magneto-optical disk memories has attracted attention. This one-sided memory type is capable of higher density recording than conventional magnetic memory, and is therefore expected to be the next generation one-sided memory type.
従来、このG o −G d非晶質合金薄膜は、スパッ
タリング法もしくは真空蒸留法の乾式法によって作成さ
れていたが、これらの乾式法は真空条件が必要であり、
また比較的小型の部品しか適用し難く、生産性の点で問
題がある上、コストが高い等の難点がある。Conventionally, this G o -G d amorphous alloy thin film has been created by a dry method such as a sputtering method or a vacuum distillation method, but these dry methods require vacuum conditions.
Further, it is difficult to apply only relatively small parts, which poses problems in terms of productivity and high cost.
このため、真空系を用いないので生産性が良く、大面積
化が可能であり、しかも生産コストが低い等の利点を有
する電析法によりG o −G d非晶質合金薄膜を得
る方法が望まれる。For this reason, there is a method of obtaining a G o -G d amorphous alloy thin film using an electrodeposition method, which has the advantages of high productivity, large area production, and low production cost because it does not use a vacuum system. desired.
問題点を解 するための手段 び作
本発明者らは、上記要望に応えるべく、湿式法である電
析法によってGo−Gd非晶質合金薄膜を得ることにつ
き種々検討を行なった。その結果、ガドリニウムはアル
カリ金Jρtと同様に電気化学的にかなり卑な金属であ
るため、水溶液系からは電析が困難であったが、コバル
ト塩とガドリニウム塩とを可溶化する非水溶媒、例えば
ホルムアミドを用いた場合、コバルトとガドリニウムを
合金として非晶質状態で電析し得ることを知見した。し
かし、単にコバルト塩、ガドリニウム塩を非水溶媒に溶
解しただけの浴では、めっき浴温度を高温下、好適には
100℃程度にする必要がある。このため、本発明者ら
はめっき浴温度を低下しても支障なく良好なG o −
G d合金めっき膜を得ることができるCo−Gd合金
めっき浴につき更に検討を行なった結果、コバルト塩と
、ガドリニウム塩と、これらの塩を可溶化する非水溶媒
とからなる浴に対し、エチレンジアミン等のアミン類を
添加することが有効であり、このようなアミン類を添加
したG o −G d合金めっき浴を使用する場合には
、浴の安定性が増大し、50℃程度の低温でも非晶質で
強磁性を有し、しかもGd量の増大した良好なCo−G
d合金めっき膜が得られることを知見し、本発明をなす
に至った。Means for Solving the Problems and Production In order to meet the above-mentioned needs, the present inventors conducted various studies on obtaining a Go-Gd amorphous alloy thin film by a wet electrodeposition method. As a result, like alkali gold Jρt, gadolinium is an electrochemically quite base metal, so it was difficult to deposit it from an aqueous solution. For example, it has been found that when formamide is used, cobalt and gadolinium can be electrodeposited in an amorphous state as an alloy. However, in a bath in which a cobalt salt or a gadolinium salt is merely dissolved in a nonaqueous solvent, the plating bath temperature needs to be kept at a high temperature, preferably about 100°C. For this reason, the present inventors have found that even if the plating bath temperature is lowered, good G o -
As a result of further studies on Co-Gd alloy plating baths that can obtain Gd alloy plating films, we found that ethylenediamine It is effective to add amines such as amines, and when using a G o -G d alloy plating bath to which such amines are added, the stability of the bath increases, and even at low temperatures of about 50 ° C. Good Co-G that is amorphous and ferromagnetic and has an increased amount of Gd
It was discovered that a d-alloy plating film could be obtained, and the present invention was completed.
従って、本発明は、コバルト塩と、ガドリニウム塩と、
これらの塩を可溶化する非水溶媒と、アミン類とを含有
するGo−Gd合金めっき浴を提供するものである。Therefore, the present invention provides a cobalt salt, a gadolinium salt,
The present invention provides a Go-Gd alloy plating bath containing a nonaqueous solvent that solubilizes these salts and amines.
以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.
本発明のGo−Gd合金めっき浴は、」1記したように
コバルト塩と、ガドリニウム塩と、これらを可溶化する
非水溶媒とを含有するものである。The Go-Gd alloy plating bath of the present invention contains a cobalt salt, a gadolinium salt, and a nonaqueous solvent that solubilizes them, as described in 1.
ここで、コバルト塩としては特に制限されないが、例え
ば塩酸コバルト、硫酸コバルトなどが用いられ、ガドリ
ニウム塩も制限されないが、塩化ガドリニウム、硫酸ガ
ドリニウム等が使用される。これらコバルト塩と、ガド
リニウム塩の濃度はそれぞれ0.001〜2モル/Q、
特に0.005〜0.5モル/Qとすることが好ましく
、またコバルト塩とガドリニウム塩との比率はモル比と
して1:1〜1:20、特に1:2〜1:15とするこ
とが好ましい。Here, the cobalt salt is not particularly limited, but for example, cobalt hydrochloride, cobalt sulfate, etc. are used, and the gadolinium salt is also not limited, but gadolinium chloride, gadolinium sulfate, etc. are used. The concentrations of these cobalt salts and gadolinium salts are 0.001 to 2 mol/Q, respectively.
In particular, it is preferably 0.005 to 0.5 mol/Q, and the molar ratio of cobalt salt to gadolinium salt is preferably 1:1 to 1:20, particularly 1:2 to 1:15. preferable.
また、コバルト塩とガドリニウム塩とを可溶化する非水
溶媒としては、これも必ずしも制限されないが、ホルム
アミド等が好適に用いられる。Further, the non-aqueous solvent for solubilizing the cobalt salt and gadolinium salt is not necessarily limited, but formamide or the like is preferably used.
本発明のめっき浴は、上述した浴に更にアミン類を加え
るものであり、これにより浴を安定化し得、低温めっき
が可能となると共に、析出膜中のGd量を増大させるこ
とができる。ここで、アミン類としてはエチレンジアミ
ン、アルカノールアミン等が好適に使用でき、またその
濃度は0.01〜1モルIQ、特に0.02〜0.2モ
ル/Qとすることが好ましい。The plating bath of the present invention further adds amines to the above-mentioned bath, thereby stabilizing the bath, making low-temperature plating possible, and increasing the amount of Gd in the deposited film. Here, ethylenediamine, alkanolamine, etc. can be suitably used as the amines, and the concentration thereof is preferably 0.01 to 1 mol IQ, particularly 0.02 to 0.2 mol/Q.
このめっき浴をめっきする場合の条件は、析出膜中のG
d量が1重量%以」二の濃度となるような条件を採用す
ることが好ましく、めっき温度としては20〜沸点とす
ることができるが1本発明浴はアミン類の添加により高
温でなくても良好なめっき膜が得られるので、通常は4
0〜80℃、特に40〜60℃の温度条件を採用するこ
とができる。なお、陰極電流密度は20m*A/aJ〜
500wa A / aJ程度とすることが好ましい。The conditions for plating with this plating bath are as follows:
It is preferable to adopt conditions such that the amount of d is 1 wt. Since a good plating film can be obtained with 4
Temperature conditions of 0-80°C, especially 40-60°C can be employed. In addition, the cathode current density is 20m*A/aJ ~
It is preferable to set it to about 500 wa A/aJ.
本発明めっき浴から得られるG o −G d合金め4
一
つき膜はGd量が1重量%以上で非晶質であり、このG
o −G d非晶質合金膜の熱的安定性は高く、40
0℃程度の熱処理では結晶化せず、500℃程度の熱処
理で結晶化する。また、このCo−Gd合金めっき膜は
強磁性体であり、膜中のGd量の増加とともに膜面に垂
直方向の透磁率が増加するものである。G o -G d alloy obtained from the plating bath of the present invention 4
The single film is amorphous with a Gd content of 1% by weight or more;
o -G d The thermal stability of the amorphous alloy film is high, and 40
It does not crystallize with heat treatment at about 0°C, but crystallizes with heat treatment at about 500°C. Further, this Co--Gd alloy plating film is a ferromagnetic material, and the magnetic permeability in the direction perpendicular to the film surface increases as the amount of Gd in the film increases.
及咽の効果
本発明のめっき浴によれば、浴の安定性が高く、非晶質
で強磁性を有し、結晶化温度の高いCo−Gd合金めっ
き膜を電析法により10μmをも越えて安定に、しかも
比較的低温で析出させることができ、まためっき膜中の
Gd量を容易に高めることができる。According to the plating bath of the present invention, the bath stability is high, and a Co-Gd alloy plating film that is amorphous, ferromagnetic, and has a high crystallization temperature can be formed by electrodeposition with a thickness exceeding 10 μm. It can be stably deposited at a relatively low temperature, and the amount of Gd in the plating film can be easily increased.
次に実施例と比較例を示し、本発明を具体的に説明する
。Next, examples and comparative examples will be shown to specifically explain the present invention.
下記組成のCo −G d合金めっき浴(電解液)を作
成し、浴温30〜80℃、陰極電流密度10〜80mA
/cdの範囲の条件でめっきを行なった。A Co-Gd alloy plating bath (electrolytic solution) with the following composition was created, and the bath temperature was 30 to 80°C and the cathode current density was 10 to 80 mA.
Plating was performed under conditions in the range of /cd.
重−原基
ホルムアミド 500mfl
C,oCQ、 0.01モル/QGd(1
20,09II
エチレンジアミン 0.1゜
比較のため、上記電解液よりエチレンジアミンを除いた
浴を作成し、同様にめっきを行なった。Heavy-primordial formamide 500 mfl C,oCQ, 0.01 mol/QGd (1
20,09II Ethylenediamine 0.1° For comparison, a bath was prepared in which ethylenediamine was removed from the above electrolytic solution, and plating was performed in the same manner.
ここで、めっきに用いた電解セルは内径120ffl1
11、深さ110mmののパイレックス容器でできてお
り、溶液中及びセル内に乾燥窒素ガスを送り込めるよう
にしてあり、完全密閉形である。アノードは25m!I
IX 20mmの白金板を用い、素地としてのカソード
は10mmX 10mmの1.T、Oガラスをアセトン
で脱脂した後に用いた。電解セルは電解に先立ち約20
分間乾燥窒素ガス置換を行ない、定電流密度で電解した
。Here, the electrolytic cell used for plating had an inner diameter of 120ffl1
11. It is made of a Pyrex container with a depth of 110 mm, allowing dry nitrogen gas to be sent into the solution and into the cell, and is completely sealed. The anode is 25m! I
IX A 20mm platinum plate is used, and the cathode as a base is 10mm x 10mm 1. T,O glass was used after being degreased with acetone. The electrolytic cell has approximately 20
After replacing with dry nitrogen gas for a minute, electrolysis was carried out at constant current density.
得られた析出膜について、X線回折法により結晶構造を
調べ、蛍光X線分析法によりcoとGdの定量を行なっ
た。非晶質膜の結晶化温度は、高真空赤外線熱処理炉を
用いて加熱し、X線回折法により決定した。The crystal structure of the resulting precipitated film was examined by X-ray diffraction, and Co and Gd were quantified by X-ray fluorescence analysis. The crystallization temperature of the amorphous film was determined by X-ray diffraction method using a high vacuum infrared heat treatment furnace.
第1図に本発明浴(A)と比較浴(B)における電流密
度と析出膜中のGd濃度との関係を示す。FIG. 1 shows the relationship between the current density and the Gd concentration in the deposited film in the bath of the present invention (A) and the comparative bath (B).
ここで、本発明浴(A)は浴温50℃、比較浴(B)は
浴温90℃でめっきを行なった場合の結果である。第1
図より、本発明浴によって低温で操作でき、かつGdを
より多く析出させ得ることとが認められた。Here, the results are obtained when plating was performed at a bath temperature of 50° C. for the bath of the present invention (A) and at a bath temperature of 90° C. for the comparative bath (B). 1st
From the figure, it was confirmed that the bath of the present invention can be operated at a low temperature and that more Gd can be precipitated.
また、第2図に本発明浴(A)にお(プる浴温と析出膜
中のGd濃度との関係を示す。この結果から浴温か低い
ほどGd濃度が高くなることが認められ、GdはGoに
誘起共析されて電析されることが知見された。In addition, Figure 2 shows the relationship between the bath temperature of the present invention bath (A) and the Gd concentration in the deposited film. From this result, it is recognized that the lower the bath temperature, the higher the Gd concentration. It was found that Go was induced to eutectoid and electrodeposited.
次に、上記実験において、液組成、浴温を一定にした場
合の電流密度の変化に伴う析出膜の結晶構造を調べた結
果、20mA/cn?以下の電流密度においては微細結
晶粒の集合体としての構造をとり、20mA/cJ以上
では非晶質構造をとっており、また電流密度、浴温を一
定にした場合の液組成の変化に伴う析出膜の結晶構造を
調べた結果、電解質の濃度比が1:1の場合、析出膜は
結晶質構造をとるが、その他の場合は全て非晶質構造を
とっており、これらの結果からGdを1重量%以上含む
合金析出膜は非晶質状態となることが認められた。従っ
て、電析法によりG o −G d非晶質合金膜を得る
ためには、Gdが1重量%以」二のco−Gd合金膜を
形成するようなめっき条件を採用することが好適である
ことが知見された。Next, in the above experiment, the crystal structure of the deposited film was investigated as the current density changed when the liquid composition and bath temperature were kept constant. At current densities below, it takes on a structure as an aggregate of fine crystal grains, and at over 20 mA/cJ, it takes on an amorphous structure, and when the current density and bath temperature are kept constant, it takes on an amorphous structure. As a result of examining the crystal structure of the deposited film, it was found that when the electrolyte concentration ratio is 1:1, the deposited film has a crystalline structure, but in all other cases, it has an amorphous structure.From these results, Gd It was observed that the alloy deposited film containing 1% by weight or more of A was in an amorphous state. Therefore, in order to obtain a Go-Gd amorphous alloy film by the electrodeposition method, it is preferable to adopt plating conditions that form a co-Gd alloy film containing 1% by weight or more of Gd. Something was discovered.
また、得られたCo−Gd非晶質合金膜の結晶化温度に
ついて調べた結果、400℃程度の熱処理でも結晶化せ
ず、500℃程度で結晶化が認められたことから、電析
法によるGo−Gd非晶質合金膜は熱的に安定であるこ
とが知見された。In addition, as a result of investigating the crystallization temperature of the obtained Co-Gd amorphous alloy film, it was found that it did not crystallize even after heat treatment at about 400°C, but crystallization was observed at about 500°C. It was found that the Go-Gd amorphous alloy film is thermally stable.
なお、通常の条件で得られた析出膜はいずれも平滑であ
りクラックのないものであった。Note that all the deposited films obtained under normal conditions were smooth and free of cracks.
ここで、第3図に析出膜中のGd濃度と飽和磁化(Ms
)、保磁力との関係を示し、第4図に析出膜中のGd濃
度と透磁率との関係を示す。なお、第4図中Mは垂直方
向の透磁率、Nは平行方向の透磁率を示し、第4図から
析出膜中のGd濃度が約20%重量以上になると、垂直
磁気異方性を有するようになることがわかる。Here, FIG. 3 shows the Gd concentration in the deposited film and the saturation magnetization (Ms
), the relationship between the coercivity and the coercive force is shown, and FIG. 4 shows the relationship between the Gd concentration in the deposited film and the magnetic permeability. In addition, in Fig. 4, M indicates magnetic permeability in the perpendicular direction, and N indicates magnetic permeability in the parallel direction.From Fig. 4, when the Gd concentration in the deposited film exceeds about 20% by weight, it has perpendicular magnetic anisotropy. You can see that it will become like this.
第1図は本発明浴と比較浴における電流密度と析出膜中
のGd濃度との関係を示すグラフ、第2図は本発明浴に
おける浴温と析出膜中のGd濃度との関係を示すグラフ
、第3図は析出膜中のGd濃度と飽和磁化、保磁力との
関係を示すグラフ、第4図は析出膜中のGd濃度と透磁
率との関係を示すグラフである。Figure 1 is a graph showing the relationship between current density and Gd concentration in the deposited film in the bath of the present invention and the comparative bath, and Figure 2 is a graph showing the relationship between bath temperature and Gd concentration in the deposited film in the bath of the present invention. , FIG. 3 is a graph showing the relationship between the Gd concentration in the deposited film, saturation magnetization, and coercive force, and FIG. 4 is a graph showing the relationship between the Gd concentration in the deposited film and magnetic permeability.
Claims (1)
溶化する非水溶媒と、アミン類とを含有することを特徴
とするコバルト−ガドリニウム合金めっき浴。 2、非水溶媒がホルムアミドである特許請求の範囲第1
項記載のめっき浴。 3、アミン類がエチレンジアミンである特許請求の範囲
第1項又は第2項記載のめっき浴。[Scope of Claims] 1. A cobalt-gadolinium alloy plating bath characterized by containing a cobalt salt, a gadolinium salt, a nonaqueous solvent that solubilizes these salts, and amines. 2. Claim 1 in which the non-aqueous solvent is formamide
Plating bath described in section. 3. The plating bath according to claim 1 or 2, wherein the amine is ethylenediamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6034886A JPS62218596A (en) | 1986-03-18 | 1986-03-18 | Cobalt-gadolinium alloy plating bath |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6034886A JPS62218596A (en) | 1986-03-18 | 1986-03-18 | Cobalt-gadolinium alloy plating bath |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62218596A true JPS62218596A (en) | 1987-09-25 |
Family
ID=13139566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6034886A Pending JPS62218596A (en) | 1986-03-18 | 1986-03-18 | Cobalt-gadolinium alloy plating bath |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62218596A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4435862B1 (en) * | 2009-02-06 | 2010-03-24 | 謙治 出分 | Silver-containing alloy plating bath and electrolytic plating method using the same |
WO2010089840A1 (en) * | 2009-02-06 | 2010-08-12 | Dewaki Kenji | Product having gadolinium-containing metal layer |
WO2011013252A1 (en) * | 2009-07-31 | 2011-02-03 | 株式会社Mテック・ジャパン | Tin-containing alloy plating bath, electroplating method using same, and base having electroplated material deposited thereon |
CN106544602A (en) * | 2016-11-08 | 2017-03-29 | 重庆师范大学 | Become gadolinium cobalt-based magnetic refrigeration composite material of platform and preparation method thereof with magnetic entropy |
-
1986
- 1986-03-18 JP JP6034886A patent/JPS62218596A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4435862B1 (en) * | 2009-02-06 | 2010-03-24 | 謙治 出分 | Silver-containing alloy plating bath and electrolytic plating method using the same |
WO2010089882A1 (en) * | 2009-02-06 | 2010-08-12 | Dewaki Kenji | Silver-containing alloy plating bath and electrolytic plating method using the same |
WO2010089840A1 (en) * | 2009-02-06 | 2010-08-12 | Dewaki Kenji | Product having gadolinium-containing metal layer |
CN102308030A (en) * | 2009-02-06 | 2012-01-04 | 出分谦治 | Silver-containing alloy plating bath and electrolytic plating method using the same |
JPWO2010089840A1 (en) * | 2009-02-06 | 2012-08-09 | 謙治 出分 | Products with gadolinium-containing metal layers |
KR101286661B1 (en) * | 2009-02-06 | 2013-07-16 | 데와키 유카리 | Silver-containing alloy plating bath and method for electrolytic plating using same |
US9574281B2 (en) | 2009-02-06 | 2017-02-21 | M-Tech Japan Co., Ltd. | Silver-containing alloy plating bath and method for electrolytic plating using same |
WO2011013252A1 (en) * | 2009-07-31 | 2011-02-03 | 株式会社Mテック・ジャパン | Tin-containing alloy plating bath, electroplating method using same, and base having electroplated material deposited thereon |
US9080247B2 (en) | 2009-07-31 | 2015-07-14 | Shinji Dewaki | Tin-containing alloy plating bath, electroplating method using same, and substrate with the electroplating deposited thereon |
CN106544602A (en) * | 2016-11-08 | 2017-03-29 | 重庆师范大学 | Become gadolinium cobalt-based magnetic refrigeration composite material of platform and preparation method thereof with magnetic entropy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gomez et al. | Thick cobalt coatings obtained by electrodeposition | |
Paunovic et al. | The effect of some additives on electroless copper deposition | |
JPS59111929A (en) | Preparation of ferrite film | |
US4756816A (en) | Electrodeposition of high moment cobalt iron | |
Abd El Rehim et al. | Electrodeposition of cobalt from gluconate electrolyte | |
JPS62218596A (en) | Cobalt-gadolinium alloy plating bath | |
Gelchinski et al. | Pulse Plating of Chromium‐Cobalt Alloys Containing a Phase with the A‐15 Structure | |
Li et al. | Fabrication and magnetic properties of amorphous Co0. 71Pt0. 29 nanowire arrays | |
JPS62218595A (en) | Cobalt-gadolinium alloy plating bath | |
Gomez et al. | Electrodeposition of SmCo nanostructures in deep eutectic solvent | |
US3239437A (en) | Methods of depositing magnetic alloy films | |
Lin et al. | Effect of bath temperature on microstructure of sulfamate nickel electrodeposits | |
US3489660A (en) | Electroplating bath and method | |
JPH0766034A (en) | Soft magnetic material film and manufacture thereof | |
Osaka et al. | Effects of impurities on resistivity of electrodeposited high-B/sub s/CoNiFe-based soft magnetic thin films | |
Fischer et al. | Morphology of the growth of isolated crystals in cathodic metal deposits | |
Kaur et al. | Hydrogen co-deposition induced phase and microstructure evolution of cobalt nanowires electrodeposited in acidic baths | |
JPH02104688A (en) | Electrolytically depositing method for fe-ni alloy to produce fe-ni alloy foil | |
Hashimoto | Relation Between the Twin Structure and the Chemical Activity in Electrodeposited Nickel | |
JPH02213489A (en) | Production of fine metallic cobalt particle excellent in magnetic characteristic | |
Tabaković et al. | Roughness development in electrodeposited soft magnetic CoNiFe films in the presence of organic additives | |
Ignatova et al. | Structure and corrosion resistance of Ni–P, Со–Р and Ni–Co–P alloy coatings | |
Klement et al. | Effect of annealing on microstructural development and grain orientation in electrodeposited Ni | |
Abıshova et al. | ELECTRODEPOSITION OF COBALT FROM ALKALINE GLYCINE ELECTROLYTE | |
JPH01211213A (en) | Magnetic recording medium |