JPS62217415A - Manufacture of thin film magnetic head - Google Patents

Manufacture of thin film magnetic head

Info

Publication number
JPS62217415A
JPS62217415A JP6157686A JP6157686A JPS62217415A JP S62217415 A JPS62217415 A JP S62217415A JP 6157686 A JP6157686 A JP 6157686A JP 6157686 A JP6157686 A JP 6157686A JP S62217415 A JPS62217415 A JP S62217415A
Authority
JP
Japan
Prior art keywords
film
thin film
coil pattern
forming
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6157686A
Other languages
Japanese (ja)
Inventor
Shigeru Shinkai
新海 茂
Masaaki Yabuta
薮田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP6157686A priority Critical patent/JPS62217415A/en
Publication of JPS62217415A publication Critical patent/JPS62217415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To simplify a film forming process, and to form a thick film by flattening the upper face of an insulating and protecting film by using a multi stage bias sputtering method. CONSTITUTION:On a substrate 10, the ferromagnetic thin film 11 of a sendust alloy, etc., which becomes the lower core is formed, on which the thin film 12 of Al2O3, etc., for forming a magnetic gap is accumulated, and on the film 12, a spiral conductor coil pattern 13 is formed. Subsequently, by a multistage bias sputtering method, the flattened insulating and protecting film 14 of SiO2, etc., is formed thinly. Next, on the film 14, the ferromagnetic material thin film which becomes the upper core is formed. According to this method, the film 14 whose surface is flat can be formed by a concise process, and also, a sufficiently thick film is obtained, and the upper core is also formed easily.

Description

【発明の詳細な説明】 産業−1−の利用分野 この発明は、DAT(デフタル会オーディオ・テープレ
コーダ)やコンピュータ等の磁気記録装置のR/W用磁
無磁気ヘッド造方法に関し、詳しくは、その導体パター
ンの絶縁保護被膜の平坦化技術に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of Industry-1- This invention relates to a method for manufacturing a magnetic non-magnetic head for R/W of magnetic recording devices such as DAT (Deftal Audio Tape Recorder) and computers. The present invention relates to a technique for flattening the insulation protective coating of the conductor pattern.

従来の技術 最近DATを初め、PCM(パルス・コード・モジュレ
ーション)記録を行わせる磁気記録装置は、アナログ信
号をディジタル化するための条間の情報量の処理を要し
、従来の磁気記録装置よりも一段と、高記録密度化が要
求されている。そしてDAT等では、磁気テープの線記
録密度は、限界に近づきつつあり、今後これを飛躍的に
改善することが期待できない。そこで、DAT等では、
従来のバルクヘッドに代わり、高トラツク密度化が容易
な薄膜ヘッドが賞月され始めている。しかしながら、磁
気ヘッドは、その導電コイル形成技術が、未だ確立して
おらす、次に述へるL部コアの磁束乱れを惹起する欠点
があった。すなわち、薄膜ヘッドは、一般に第3図に示
すように、L部コアとなる基板1」二に、磁気ギャップ
を形成するための非磁性体薄膜2を形成しておき、その
薄膜2」−に数回巻回する導電フィルパターン3と、薄
膜2以外で基板1と直接接合し、かつ絶縁層4を介して
導電コイルパターン3」−へ乗り」二げて超高する」二
部コアとなる強磁性体薄膜5とを設けている。この場合
に、絶縁層4の上面は、導電フィルパターン3の有無に
よって凸凹を生じる。すると、強磁性体薄膜5を形成す
る際に、段差境界6,6.・・・の段差部5”、5′、
・・・で磁束が乱れて、下部コアに磁束が漏れてしまい
、問題であった。
Background of the Invention Recently, magnetic recording devices that perform PCM (pulse code modulation) recording, including DAT, require processing of the amount of information between strips in order to digitize analog signals, and are more efficient than conventional magnetic recording devices. There is also a demand for even higher recording densities. In the case of DAT and the like, the linear recording density of magnetic tape is approaching its limit, and it cannot be expected that it will be dramatically improved in the future. Therefore, in DAT etc.
Thin-film heads, which can easily achieve high track density, are beginning to be used in place of conventional bulkheads. However, the magnetic head has the drawback that the conductive coil forming technology thereof has not yet been established, and that it causes magnetic flux disturbance in the L portion core, which will be described below. That is, as shown in FIG. 3, a thin film head generally has a non-magnetic thin film 2 formed on a substrate 1'2 which becomes the core of the L portion, and then forms a non-magnetic thin film 2' on the thin film 2' to form a magnetic gap. A conductive fill pattern 3 that is wound several times, and a conductive coil pattern 3 that is directly connected to the substrate 1 other than the thin film 2 and that rides on the conductive coil pattern 3 through the insulating layer 4 to become a super high two-part core. A ferromagnetic thin film 5 is provided. In this case, the upper surface of the insulating layer 4 is uneven depending on the presence or absence of the conductive fill pattern 3. Then, when forming the ferromagnetic thin film 5, the step boundaries 6, 6 . Step portions 5", 5',
The problem was that the magnetic flux was disturbed and leaked to the lower core.

発明が解決しようとする問題点 このように、段差部5 Z51.・・・で磁束が不都合
にも乱れるのは、絶縁層4によるコイル上面及びエツジ
の段差の解消が著しく困難なことが原因とされている。
Problems to be Solved by the Invention As described above, the step portion 5 Z51. The reason why the magnetic flux is undesirably disturbed in .

しかもこの薄膜ヘッドは、PCM記録を行わせるために
、第3図に示したヘッドを数十個、マルチヘッドに構成
するので、発熱を考慮する必要があり、1個分のヘッド
の通電電流を極力少なくシ、その代わりに、導電コイル
の巻数を増す傾向にある。したがって、薄膜へノドは、
導電コイルにおける絶縁層4の段差解消が極めて重要で
ある。現状では、上述の薄膜へノドの段差解消対策とし
て、次に述べる手法がある。まずその1は、電子通信学
会技術研究報告MR&(] −35に紹介されているも
ので、導電コイルパターン3を形成した時点で、基板1
をスピンナに載置し、ポリイミド樹脂を導電コイルパタ
ーンの絶縁箇所に塗布し、スピンコードを行って平坦化
した有機物膜を形成するものである。しかし、この場合
には、使用温度に限界があり、その後に行う保護ガラス
板の接着や強磁性体薄膜5のアニーリング時に、溶媒が
飛び保護膜として不良となる恐れがある。つぎにその2
は、電子通信学会技術研究報告MR8θ−24に示され
ているように、導体コイルパターン3を形成後、導体コ
イルパターン3−1−にのみフォトレジストを付着させ
て、フォトレジストのエッヂの熱的ダレを少なくする5
102膜を蒸着により、パターン間隙及びフォトレジス
ト−Hに付着させ、さらにフォトレジストとともにパタ
ーン」二の5102膜を除去する、いわゆるリフトオフ
法を用いるものである。この場合には、リフトオフ法と
いう複雑な]1程を経なければならず、製作工数、原価
上不利である。そしてその3は、シャープ技報昭和58
年6月・第2G号にて紹介されているように、プラズマ
・CVD法にて、導体コイルパターン3上に予めS10
薄膜を形成しておき、そのSIO膜る。ところで、この
場合には、強磁性体薄膜5を形成する時のスパッタリン
グ付着応力により歪を生じ、Sl02Mにクラックを生
じるこたがあり、絶縁保護が損なわれる欠点がある。
Moreover, in order to perform PCM recording, this thin-film head is configured into a multi-head configuration consisting of several dozen heads shown in Figure 3, so it is necessary to take heat generation into consideration, and the current flowing through one head is reduced. Instead, there is a tendency to increase the number of turns of the conductive coil. Therefore, the throat to the thin film is
Eliminating the level difference in the insulating layer 4 in the conductive coil is extremely important. At present, the following methods are available as a countermeasure for eliminating the above-mentioned step difference in the throat of the thin film. First, the first method is introduced in the Institute of Electronics and Communication Engineers technical research report MR&(]-35. At the time when the conductive coil pattern 3 is formed, the substrate 1
is placed on a spinner, polyimide resin is applied to the insulating parts of the conductive coil pattern, and a flattened organic film is formed by spin coding. However, in this case, there is a limit to the operating temperature, and during subsequent adhesion of the protective glass plate or annealing of the ferromagnetic thin film 5, there is a risk that the solvent will fly off and the protective film will be defective. Next, part 2
As shown in IEICE technical research report MR8θ-24, after forming the conductor coil pattern 3, a photoresist is attached only to the conductor coil pattern 3-1-, and the edges of the photoresist are thermally Reduce sag 5
A so-called lift-off method is used in which a 102 film is deposited on the pattern gap and the photoresist-H by vapor deposition, and the 5102 film on the second pattern is removed together with the photoresist. In this case, a complicated step called a lift-off method must be performed, which is disadvantageous in terms of manufacturing man-hours and cost. And number 3 is Sharp Technical Report 1982
As introduced in the June issue 2G, S10 is pre-coated on the conductor coil pattern 3 using plasma CVD method.
A thin film is formed in advance, and the SIO film is formed. By the way, in this case, there is a drawback that the sputtering adhesion stress at the time of forming the ferromagnetic thin film 5 causes distortion, which may cause cracks in Sl02M, and the insulation protection is impaired.

問題点を解決するための手段 この発明は、上記諸事情を検討の上で、提唱されたもの
で、下部コアとなる基板上に導体コイルパターンを設け
、絶縁保護被膜を薄膜形成した時点で、絶縁保護被膜の
凹凸状のl−而に、多段バイアススパッタリングを行っ
て、J−而の凸部をスパッタエツチング除去させて平坦
化する方法である。つまりこの発明は、単にバイアスス
パッタリングを施しただけでは、凸部側でマイクロクラ
ックが生じたり、導体コイルパターン肩部が崩れる欠点
を解消し、しかも十分に厚い絶縁保護膜が得られる長所
を助長するものである。
Means for Solving the Problems This invention was proposed after considering the above-mentioned circumstances.When a conductor coil pattern is provided on a substrate serving as a lower core and a thin insulating protective coating is formed, In this method, multi-stage bias sputtering is performed on the uneven portions of the insulating protective film, and the convex portions on the J portion are removed by sputter etching and flattened. In other words, this invention eliminates the disadvantages of micro-cracks occurring on the convex side and collapse of the conductor coil pattern shoulders when simply performing bias sputtering, and also promotes the advantage of obtaining a sufficiently thick insulating protective film. It is something.

作用 この発明によれば、従来技術として紹介したその1〜3
の手法と比較すると明らかな通り、有機物膜を使用せず
に済み、高温でも十分薄膜形成が容易であり、薄膜成膜
工程も簡潔となり、その上十分な厚い成膜が可能となる
。しかもこの発明では、後述する実施例から判るように
、絶縁保護膜上面のスパッタエツチング除去が、多段バ
イアス電圧で制御できるので、絶縁保護膜の多段バイア
ススパッタリング直前の膜厚を不必要に厚くする必要が
なくなる。
Effects According to this invention, Parts 1 to 3 introduced as prior art
As is clear from the comparison with the above method, it does not require the use of an organic film, it is easy to form a sufficiently thin film even at high temperatures, the thin film forming process is simple, and it is possible to form a sufficiently thick film. Moreover, in this invention, as will be seen from the examples described later, the sputter etching removal of the upper surface of the insulating protective film can be controlled by multi-stage bias voltage, so there is no need to unnecessarily increase the film thickness of the insulating protective film immediately before multi-stage bias sputtering. disappears.

−〇− 実施例 第1図は、この発明の一実施例を実施の結果得られた中
間加]二物である誘導型薄膜ヘッドの断面図であり、基
板10」二に下部コアとなるセンダスト合金薄膜11を
数μm成膜し、その」二に磁気ギャップスペーサ兼コイ
ルー下部コア絶縁層兼用のAQ203薄膜I2を数千A
〜11tm程度堆積し、さらにコイルとなるスパイラル
状のCuの導体パターン13を1〜数μm形成したもの
に、次に述へる2段バイアススパッタリング法によっ、
平坦化した510□の絶縁保護被膜14を薄膜形成した
ものである。
-〇- Embodiment Fig. 1 is a sectional view of an inductive thin film head, which is an intermediate material, obtained by carrying out an embodiment of the present invention. An alloy thin film 11 was deposited to a thickness of several μm, and then an AQ203 thin film I2, which also served as a magnetic gap spacer and coil-lower core insulating layer, was deposited at several thousand amps.
About 11 tm of Cu was deposited, and a spiral Cu conductor pattern 13 of 1 to several μm, which would become a coil, was formed using the two-stage bias sputtering method described below.
A flattened insulating protective coating 14 of 510 □ is formed as a thin film.

さて、5102の絶縁保護被膜14を形成するには、ま
ず第2図に示すように、従来通りRFマグネトロンスパ
ッタリング装置を用いて、RF電力500W。
Now, in order to form the insulating protective coating 14 of 5102, first, as shown in FIG. 2, an RF magnetron sputtering device is used as before, and an RF power of 500 W is used.

バイアス電圧−100V1真空排圧7 X IO’Pa
、 Ar(不活性)ガス圧0 、1Paの条件で4〜5
時間スパッタリングを行って、導体パターン13が在る
ために生じている段差を数μmとしてお(。ここで従来
通りの単なるバイアススパッタリングによっても、絶縁
保護膜14の段差hlを、導体パターン13の段差りよ
りも小さくすることは可能だが、完璧な平坦度を稼ぐに
は至らない。尚、バイアススパッタリングの原理は公知
であるが、説明すれば次の通りである。すなわち、ます
RF電力が加えられ、Arガスがイオン化して一担スバ
ッタリング装置内の5102ターゲツL(4”φ)へ入
射して、物理的にエツチングされて導体パターンI3及
び緩203薄膜12を含む一帯に堆積する。しかしその
−帯へArイオンも入射し、凸部15がやや大まかであ
るが再度エツチングされるので、段差ht<段差りに設
定できるのである。
Bias voltage - 100V1 Vacuum exhaust pressure 7 X IO'Pa
, 4 to 5 under conditions of Ar (inert) gas pressure of 0 and 1 Pa.
By performing time sputtering, the step difference caused by the presence of the conductor pattern 13 is reduced to several micrometers (here, even by conventional bias sputtering, the step difference hl of the insulating protective film 14 can be reduced to a few μm). Although it is possible to make the sputtering smaller than that, it is not possible to obtain perfect flatness.The principle of bias sputtering is well known, but it can be explained as follows. , the Ar gas is ionized and incident on the 5102 target L (4"φ) in the sputtering device, where it is physically etched and deposited over an area including the conductor pattern I3 and the loose 203 thin film 12. However, Ar ions are also incident on the - band, and the convex portion 15 is etched again, albeit somewhat roughly, so that the height difference ht can be set to less than the height difference.

つぎに、RF電力500W、バイアス電圧−350■、
真空排圧7 X IO’Pa、 Arガス圧0.1Pa
の条件で3〜4時間2段目のスパッタリングを行うこと
によって、第1図に示した中間加工物の誘導型薄膜ヘッ
ドを得る。この場合絶縁保護膜14の段差h2は、ト分
の数μmとすることができ、最初の(1段目の)バイア
ススパッタリングと比較すると、平坦度精度を約十倍に
向」ニさせることに成功した。
Next, RF power 500W, bias voltage -350■,
Vacuum exhaust pressure 7 X IO'Pa, Ar gas pressure 0.1Pa
By carrying out the second stage sputtering for 3 to 4 hours under these conditions, the inductive thin film head of the intermediate workpiece shown in FIG. 1 is obtained. In this case, the step height h2 of the insulating protective film 14 can be made several micrometers smaller than that of the first (first stage) bias sputtering, which improves the flatness accuracy by about ten times. Successful.

尚、上記実施例では、不活性ガスをイオン化する高周波
をRF波としたが、この発明はこれに限定されず、必要
ならばマイクロ彼等としてもよくまたバイアス電圧設定
は、必ずしも2段とは限らず、3段或いはそれ以」二で
あってもかまわない。
In the above embodiment, the high frequency to ionize the inert gas was an RF wave, but the present invention is not limited to this, and if necessary, it may be used as a micro wave, and the bias voltage setting is not necessarily two-stage. However, it may be 3 or more steps.

発明の効果 この発明によれば、導体コイルパターン上の絶縁保護被
膜を、有機物膜や塗布形成膜あるいはリフトオフ法を使
用しないで済むことは勿論、絶縁保護膜の膜厚を所望通
りに設定制御できるので、その後に形成する」一部コア
形成も容易となり、量産性向上と信頼性向−Lが同時に
実現できる効果がある。
Effects of the Invention According to the present invention, it is not necessary to use an organic film, a coated film, or a lift-off method to form an insulating protective film on a conductor coil pattern, and the thickness of the insulating protective film can be set and controlled as desired. Therefore, it becomes easier to form a part of the core that is formed later, and there is an effect that improved mass productivity and improved reliability can be achieved at the same time.

【図面の簡単な説明】 第1図は、この発明の一実施例の結果得られた中間加工
物である誘導型薄膜磁気ヘッドの断面図、第2図は、そ
の一実施例実施直前のJ、程における薄膜磁気ヘッドの
断面図、第3図は、従来の薄膜磁気ヘッドの断面図であ
る。 10・・・基板、 11・・・強磁性体膜(下部コア)、 12・・・非磁性体薄膜、 13・・・導体コイルパターン、 14・・・絶縁保護被膜。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of an inductive thin film magnetic head, which is an intermediate product obtained as a result of an embodiment of the present invention, and FIG. FIG. 3 is a sectional view of a conventional thin film magnetic head. DESCRIPTION OF SYMBOLS 10...Substrate, 11...Ferromagnetic film (lower core), 12...Nonmagnetic thin film, 13...Conductor coil pattern, 14...Insulating protective film.

Claims (1)

【特許請求の範囲】 下部コアとなる強磁性体基板上に、磁気ギャップ形成用
の非磁性体薄膜を形成し、上記非磁性体薄膜上に導体コ
イルパターンを設け、さらに上記導体コイルパターン上
に絶縁保護被膜を薄膜形成させ、さらに非磁性体薄膜以
外で基板と直接接合し、かつ絶縁保護被膜を介して導体
コイルパターン上へ乗り上げて鎖交する上部コアとなる
強磁性体薄膜を形成する方法において、 上記絶縁保護被膜を形成後、多段バイアススパッタリン
グ法にて、絶縁保護被膜上面を平坦化させることを特徴
とする薄膜磁気ヘッドの製造方法。
[Claims] A non-magnetic thin film for forming a magnetic gap is formed on a ferromagnetic substrate serving as a lower core, a conductive coil pattern is provided on the non-magnetic thin film, and a conductive coil pattern is further provided on the conductive coil pattern. A method of forming a thin insulating protective coating, and further forming a ferromagnetic thin film that is directly bonded to the substrate with something other than a non-magnetic thin film, and which becomes an upper core that rides on and interlinks with the conductor coil pattern via the insulating protective coating. A method for manufacturing a thin film magnetic head, comprising: after forming the insulation protective film, the upper surface of the insulation protective film is flattened by a multi-stage bias sputtering method.
JP6157686A 1986-03-18 1986-03-18 Manufacture of thin film magnetic head Pending JPS62217415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6157686A JPS62217415A (en) 1986-03-18 1986-03-18 Manufacture of thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6157686A JPS62217415A (en) 1986-03-18 1986-03-18 Manufacture of thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS62217415A true JPS62217415A (en) 1987-09-24

Family

ID=13175086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6157686A Pending JPS62217415A (en) 1986-03-18 1986-03-18 Manufacture of thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS62217415A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245269A (en) * 1975-08-21 1977-04-09 Ibm Method of sticking insulating layer
JPS58224422A (en) * 1982-06-23 1983-12-26 Hitachi Ltd Manufacture of thin film magnetic head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245269A (en) * 1975-08-21 1977-04-09 Ibm Method of sticking insulating layer
JPS58224422A (en) * 1982-06-23 1983-12-26 Hitachi Ltd Manufacture of thin film magnetic head

Similar Documents

Publication Publication Date Title
US4953051A (en) Composite magnetic head
JPS60119613A (en) Thin film magnetic head and its manufacture
JPS62217415A (en) Manufacture of thin film magnetic head
US6775098B2 (en) Magnetic recording head with dielectric layer separating magnetic pole tips extensions from the zero throat coil insulator
JPS61178710A (en) Thin film magnetic head and manufacture thereof
JPH02130710A (en) Magnetic disk device
JPH07210821A (en) Thin-film magnetic head and its production
JPS60177418A (en) Thin film head for vertical magnetic recording and reproduction and its production
JPH087222A (en) Thin film magnetic head and its production
JPH07331429A (en) Formation of thin film
JPS5885916A (en) Thin film magnetic head and its production
JPS62170011A (en) Manufacture of thin film magnetic head
JP3336681B2 (en) Thin film magnetoresistive head and method of manufacturing the same
JP3216252B2 (en) Method for manufacturing thin-film magnetic head
JPH0351770Y2 (en)
JPS6124007A (en) Thin film magnetic head
JPH097118A (en) Thin-film magnetic head
JPS60151814A (en) Thin film magnetic head
JPH04339306A (en) Thin film magnetic head and manufacture of it
JPS62107418A (en) Thin film magnetic head
JPS5857614A (en) Production of thin film magnetic head
JPS63102010A (en) Manufacture of thin film magnetic head
JPH02210608A (en) Production of magnetic head
JPS63121110A (en) Manufacture of thin film magnetic head
JPH06103524A (en) Magnetic head and its production