JPS6221729B2 - - Google Patents

Info

Publication number
JPS6221729B2
JPS6221729B2 JP7363283A JP7363283A JPS6221729B2 JP S6221729 B2 JPS6221729 B2 JP S6221729B2 JP 7363283 A JP7363283 A JP 7363283A JP 7363283 A JP7363283 A JP 7363283A JP S6221729 B2 JPS6221729 B2 JP S6221729B2
Authority
JP
Japan
Prior art keywords
copper
arsenic
extract
added
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7363283A
Other languages
Japanese (ja)
Other versions
JPS59199531A (en
Inventor
Tadayoshi Tomita
Masato Sugimoto
Naoki Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7363283A priority Critical patent/JPS59199531A/en
Publication of JPS59199531A publication Critical patent/JPS59199531A/en
Publication of JPS6221729B2 publication Critical patent/JPS6221729B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、銅と砒素を含む製錬中間物よりクロ
ム―銅―砒素化合物系木材防腐剤の中間製品とし
ての複合銅―砒素化合物の製造法の改良法に関す
るものである。 従来、クロム―銅―砒素化合物系防腐剤(以後
C.C.A系薬剤と略す)は、三酸化クロム又は重ク
ロム酸カリウムと、硫酸銅あるいは酸化銅と、砒
酸またはピロ砒酸とを使用し、これら化合物の添
加割合は、例えば日本においては第1表に示した
日本工業規格(JISK―1554)で定められてお
り、これに従つて各木材防腐処理業者は自家調合
している。
The present invention relates to an improved method for producing a composite copper-arsenic compound as an intermediate product of a chromium-copper-arsenic compound wood preservative from a smelting intermediate containing copper and arsenic. Conventionally, chromium-copper-arsenic compound preservatives (hereinafter referred to as
CCA (abbreviated as CCA) uses chromium trioxide or potassium dichromate, copper sulfate or copper oxide, and arsenic acid or pyroarsenic acid. For example, in Japan, the addition ratio of these compounds is shown in Table 1. It is stipulated in the Japanese Industrial Standards (JISK-1554), and each wood preservative treatment company prepares its own mixture according to this standard.

【表】 しかしながら上記1号Aに従つてC.C.A系薬剤
を調合した場合には、必然的に水に可溶性のK+
イオンとSO2− イオンが不純物として混入するの
で好ましくない。 この点では、C.C.A系薬剤のなかでも上記不純
物が混入しない1号B薬剤の方が優れている。 しかし1号B薬剤を調合する場合には、銅化合
物として酸化第二銅を使用することになり、これ
を三酸化クロムと砒酸あるいはピロ砒酸に溶解し
なければならない。 ところが酸化第二銅は易溶性の物質ではないの
で、極めて濃厚な砒酸等の水溶液に必要量の三酸
化クロムと酸化第二銅を添加混錬して反応させ、
一旦高粘度の水溶液としなければならず。しかも
この溶解操作には発熱を伴なうので溶解操作は容
易ではない。 また上記不純物の少ない薬剤の原料は高価であ
る等問題点の多いものであつた。 本願出願人は上記した従来方法の如き問題点の
ないC.C.A系薬剤の中間製品として複合銅―砒素
化合物を製造する方法を別途出願した。(特開昭
56―14421号公報) この複合銅―砒素化合物の製造方法は、銅と砒
素を含有する硫化物、砒化物、酸化物等の製錬中
間物を原料とし、これに水溶性銅塩を添加してオ
ートクレーブ処理し、硫酸を添加して銅と砒素を
夫々抽出し該抽出液中の銅と砒素の濃度比
(Cu/As)が1.0以上の酸性水溶液を得たのち、
これを所定の温度まで冷却し、その温度を保持し
て固液分離し、所望の銅と砒素の濃度比(Cu/
As)の酸性水溶液を得、次いでこれにアルカリ
を添加してPH6〜7とし、該水溶液中の銅と砒素
の全量を沈殿物として分離するというものであ
る。 しかしながら上記の方法では、確実に所望の
Cu/As比の製品は得られるが前記硫化物と砒化
物及びまたは酸化物は夫々別途に処理され、得ら
れる各抽出液は、原料発生の特性上銅と砒素の含
有率に過不足があるので、銅と砒素の濃度比
(Cu/As)を所望値とするために、抽出液に別
途に銅を添加、所定温度まで冷却、その温度に保
持して固液分離する等工程が繁雑であり、且つ上
記冷却工程の際に析出する丹ぱん(CuSO4
5H2O)が蛇管に付着したり、抜口パイプの目詰
りを起こしたりする等の問題点があつた。 本発明の目的は、上記の問題点のない複合銅―
砒素化合物の製造方法を提供することにある。 この目的を達成するため本願発明者等は、前述
の複合銅―砒素化合物の製造方法に改善を加え、
銅、砒素を含む各種の製錬中間物を、夫々別途に
処理し、得られた各抽出液を単に適切な割合に混
合するだけで所望の銅、砒素の濃度比(Cu/
As)の水溶液を得、次いでこれにアルカリを加
えて銅、砒素の全量を沈殿物として分離するとい
う複合銅―砒素化合物の製造方法を見出し本発明
の方法に到達したものである。 以下本発明について詳細に説明する。 本発明の方法において使用する原料は、銅と砒
素を含む砒化物、酸化物の一方又は両方からなる
製錬中間物と、銅と砒素を含む硫化物からなる製
錬中間物の二種類であるが、その特色は次の通り
である。 上記砒化物、酸化物は、操業条件によつて変動
はあるが、通常銅の含有率が砒素の含有率に比し
て、かなり高い。この原料は水を加えてスラリー
とし、空気を吹き込みながら硫酸を添加すると
銅、砒素の両方が抽出される。 一方上記硫化物は、銅と砒素の両方を含有し、
これは操業条件によつて変動はするが通常銅の含
有率より砒素の含有率の方が高い。この原料も同
様に水を加えてスラリーとし、空気を吹き込みな
がらアルカリを添加し、PH5〜8に保持しながら
処理すると砒素のみが酸性砒酸塩として抽出され
る。この処理法は本出願人が先に出願した、特開
昭54―160590号公報の第一工程に従うものであ
る。 本願出願人等は、この異なる二種類の原料から
得られる抽出液の特性から両方の抽出液を適当な
割合に混合することにより所望の銅と砒素の濃度
比(Cu/As)のものを得ようとした。 しかしながら、この方法は最も簡単ではある
が、両方の抽出液を所定の割合に混合させた後ア
ルカリを添加して中和する際に、一部の銅が硫化
物を生成して、所謂黒沈反応を伴ない、この生成
殿物を複合銅―砒素化合物の沈殿物として分離し
て得られた製品は、これを使用してC.C.A系薬剤
を製造する際に溶解しないと云う好ましくないも
のであつた。 前記した二種類の抽出液を混合すると、どうし
て硫化銅が生成するのかは不明である。 本発明法の第二工程に相当する、硫化物からな
る製錬中間物のスラリーにアルカリを添加しなが
ら処理すると硫化物態の硫黄分のほとんどは単体
硫黄となるが、この硫黄分の一部が硫酸イオンに
まで酸化されずに不安定な硫黄化合物としてイオ
ン化しているものが含まれており、この水溶液と
銅を含有する硫酸塩の溶液と混合すると上記硫黄
イオンと銅イオンとが結合しCuSを生成するので
はないかと考えた。 本願発明者等は、改善された複合銅砒素化合物
の製造方法を研究するに当つて上記の仮説を立
て、それに従つて該硫化物の処理法について鋭意
検討を加えた。その結果、砒素または銅と砒素を
含む硫化物からなる製錬中間物に、水を加えてス
ラリーとし該スラリーに水を可溶のアルカリに加
えてPH値を5〜8、温度を50℃以上に保持しなが
ら空気を吹き込み、酸化還元電位(以下ORP値
と略す)がプラスになるまで常圧で抽出したの
ち、この抽出液に、第一工程の抽出液、硫酸、銅
を含む酸性水溶液のうちの一つ以上を添加し、2
時間以上保持してPH4以下の抽出液を得、この抽
出液を用いて、もう一つの抽出液である、銅と砒
素を含む砒化物、及び又は酸化物からなる製錬中
間物に硫酸を添加して処理し、得られた水溶液と
適当な割合に混合したところ、予期以上の成果を
得たものであり、この手法に従えば前述した主と
して硫化銅からなる黒色の沈殿の生成は全く見ら
れないということを実験的に見出し、単に第一工
程と第二工程の各抽出液を混合するだけで所望の
Cu/As比の水溶液とする方法を確立した。 本発明法において、第一工程では銅と砒素を含
む砒化物、酸化物中の銅量に対し、少なくとも当
量の硫酸と水を加えたスラリーを50℃以上好まし
くは60℃以上の温度で空気を吹き込みながら3時
間以上常圧で抽出処理を行なう。抽出の条件を上
記とするのは、含有する銅及び砒素を効率よく抽
出するためである。 第二工程では、前に述べた該硫化物の製錬中間
物に水を加えてスラリーとし、このスラリーに水
に可溶性のアルカリ、好ましくは水酸化アルカリ
の水溶液を添加しつゝPH値を5〜8、温度50℃以
上好ましくは80℃以上に保持して3時間以上常圧
で抽出し、ORP値がプラスになつたら、第一工
程の抽出液か、銅と砒素を含む砒化物、酸化物、
銅を含む酸性水溶液、硫酸のうち一つ以上を添加
して該抽出液のPHを4.0以下とし更に2時間以上
抽出を継続したのち抽出液を分離する。 第二工程においてPH値を5〜8に保持する理由
は、これ以下では砒素の抽出率が低下し、且つ原
料中の鉄、亜鉛等が同時に抽出され好ましくない
からであり、又これ以上のPH値では原料中の硫黄
分の酸化率が高くなり、その結果生成する硫酸が
増えるからである。 次に処理温度を50℃以上好ましくは80℃以上と
するのは、砒素の抽出を効率よく行なうためであ
る。 次に抽出操作の途中で、すなわちORP値がプ
ラスになつたら硫酸等の添加剤を加えPH4.0以下
として更に抽出操作を継続したのち不溶解物を分
離する理由については、これらの反応構造につい
ては明確ではないが、第二工程の抽出操作によつ
て一部不安定な硫黄のイオンが生成し、この硫黄
分が硫酸あるいは砒化物等から溶出した銅イオン
等と反応して安定した形態となるためではないか
と想像されるが、続く第三工程における黒色沈殿
の生成を皆無とするためである。 以上の第一及び第二の工程を経た各抽出液は、
次に銅と砒素の濃度比が所定値となるように混合
するが、これは最終工程でPHを6〜7とすること
によつて銅、砒素とも定量的に沈殿し、それを乾
燥することによつて所望の複合銅―砒素化合物が
得られるからである。 以上説明したように本発明の方法によれば、従
来非鉄金属性錬において、その回収処理が困難で
あつた銅と砒素を含む製錬中間物を原料とし、
C.C.A系薬剤の中間製品としての複合銅―砒素化
合物を極めて簡潔な操作で製造するものであり、
本発明法により得られる銅―砒素化合物は、 CunH(3n―2m)(AsO4o・XH2O(m=1〜
7、n=1〜6、x=1〜5) と水酸化物との混合物であり、この製品は下記の
ように優れた利点が得られる。 1 本製品を三酸化クロム水溶液に溶解した際不
溶解残渣が殆んど残らずJIS1号B相当品が得ら
れる。 2 希薄または濃厚な三酸化クロム水溶液に顕著
な発熱がなく容易に溶解する製品が得られる。 3 含有する銅と砒素の比率を自由に選択でき
る。 以下実施例について説明する 実施例 第一工程 砒素8.3重量%、銅42.7重量%、付着水分20.5重
量%を含有する、銅電解の脱銅電解の際に発生し
た砒化物(スライム)554gに水3.6と濃硫酸
371g(Cuに対し1.0当量)とを添加してスラリ
ーとし、これを容量5の抽出反応槽に入れ、加
温して温度70℃、空気吹込量を5.2/minに設
定して常圧で3時間処理し後不溶解残渣を吸引濾
過法により分離した。 その結果を第2表に示す。
[Table] However, when CCA drugs are prepared according to Item 1A above, water-soluble K +
This is not preferable because ions and SO 2-4 ions are mixed in as impurities. In this respect, among the CCA drugs, No. 1 B drug, which does not contain the above-mentioned impurities, is superior. However, when preparing No. 1B drug, cupric oxide is used as the copper compound, and this must be dissolved in chromium trioxide and arsenic or pyroarsenic acid. However, cupric oxide is not an easily soluble substance, so the required amount of chromium trioxide and cupric oxide are added to an extremely concentrated aqueous solution such as arsenic acid, kneaded, and reacted.
It must first be made into a highly viscous aqueous solution. Moreover, this dissolution operation is not easy because it generates heat. In addition, the raw materials for the above-mentioned drugs with few impurities have many problems, such as being expensive. The applicant of the present application has separately applied for a method for producing a composite copper-arsenic compound as an intermediate product for CCA-based drugs, which does not have the problems of the conventional methods described above. (Tokukai Akira
56-14421) This method for producing a composite copper-arsenic compound uses smelting intermediates such as sulfides, arsenides, and oxides containing copper and arsenic as raw materials, and adds a water-soluble copper salt to the raw materials. After autoclave treatment and adding sulfuric acid to extract copper and arsenic respectively to obtain an acidic aqueous solution in which the concentration ratio of copper to arsenic (Cu/As) in the extract was 1.0 or more,
This is cooled to a predetermined temperature, held at that temperature, and separated into solid and liquid to achieve the desired concentration ratio of copper and arsenic (Cu/
An acidic aqueous solution of As) is obtained, then an alkali is added to the solution to adjust the pH to 6 to 7, and the entire amount of copper and arsenic in the aqueous solution is separated as a precipitate. However, the above method ensures that the desired
A product with a Cu/As ratio can be obtained, but the sulfide, arsenide, and/or oxide are treated separately, and each extract obtained has an excess or deficiency in copper and arsenic content due to the characteristics of raw material generation. Therefore, in order to achieve the desired concentration ratio of copper and arsenic (Cu/As), the process is complicated, such as adding copper separately to the extract, cooling it to a specified temperature, and holding it at that temperature for solid-liquid separation. There is also danpan (CuSO 4 ,
There were problems such as 5H 2 O) adhering to the flexible pipe and clogging the outlet pipe. The object of the present invention is to solve the above-mentioned problems using composite copper.
An object of the present invention is to provide a method for producing an arsenic compound. In order to achieve this objective, the inventors of the present application improved the method for producing the above-mentioned composite copper-arsenic compound,
The desired copper and arsenic concentration ratio (Cu/Arsenic) can be achieved by separately processing various smelting intermediates containing copper and arsenic, and simply mixing the resulting extracts in appropriate proportions.
The method of the present invention was achieved by discovering a method for producing a composite copper-arsenic compound in which an aqueous solution of As) is obtained, then an alkali is added to the solution, and the entire amount of copper and arsenic is separated as a precipitate. The present invention will be explained in detail below. The raw materials used in the method of the present invention are of two types: smelting intermediates consisting of one or both of arsenides and oxides containing copper and arsenic, and smelting intermediates consisting of sulfides containing copper and arsenic. However, its characteristics are as follows. Although the arsenide and oxide mentioned above vary depending on operating conditions, the content of copper is usually considerably higher than the content of arsenic. This raw material is made into a slurry by adding water, and when sulfuric acid is added while blowing air, both copper and arsenic are extracted. On the other hand, the above sulfide contains both copper and arsenic,
Although this varies depending on operating conditions, the arsenic content is usually higher than the copper content. Similarly, water is added to this raw material to form a slurry, and when alkali is added while blowing air and treated while maintaining the pH at 5 to 8, only arsenic is extracted as acidic arsenate. This treatment method follows the first step of Japanese Patent Application Laid-open No. 160590/1983, which was previously filed by the applicant. The applicant et al. obtained the desired copper to arsenic concentration ratio (Cu/As) by mixing both extracts in an appropriate ratio based on the characteristics of the extracts obtained from these two different types of raw materials. I tried. However, although this method is the simplest, when both extracts are mixed in a predetermined ratio and then neutralized by adding alkali, some copper forms sulfides, resulting in so-called black precipitation. The product obtained by separating this product as a precipitate of a composite copper-arsenic compound, which involves a reaction, is an undesirable product that does not dissolve when used to manufacture CCA drugs. Ta. It is unclear why copper sulfide is produced when the two types of extracts described above are mixed. When the slurry of smelting intermediates made of sulfides is treated while adding alkali, which corresponds to the second step of the method of the present invention, most of the sulfur content in the sulfide substances becomes elemental sulfur, but some of this sulfur content contains ionized sulfur compounds that are not oxidized to sulfate ions but are unstable, and when this aqueous solution is mixed with a sulfate solution containing copper, the sulfur ions and copper ions combine. I thought that it might generate CuS. The inventors of the present application made the above hypothesis in researching an improved method for producing a composite copper arsenic compound, and conducted intensive studies on a method for treating the sulfide based on the hypothesis. As a result, water is added to a smelting intermediate consisting of arsenic or copper and sulfide containing arsenic to form a slurry, and water is added to a soluble alkali to adjust the pH value to 5-8 and the temperature to 50℃ or higher. After extracting at normal pressure until the oxidation-reduction potential (hereinafter abbreviated as ORP value) becomes positive by blowing air into the extract, the extract from the first step, sulfuric acid, and an acidic aqueous solution containing copper are added to the extract. Add one or more of the following:
Hold for a period of time to obtain an extract with a pH of 4 or less, and use this extract to add sulfuric acid to another extract, a smelting intermediate consisting of arsenide and/or oxide containing copper and arsenic. When this method was treated and mixed with the resulting aqueous solution in an appropriate ratio, results beyond expectations were obtained; if this method was followed, the formation of the black precipitate mainly consisting of copper sulfide as described above was not observed at all. We experimentally discovered that there is no
We established a method to prepare an aqueous solution with a Cu/As ratio. In the method of the present invention, in the first step, a slurry prepared by adding at least an equivalent amount of sulfuric acid and water to the amount of copper in the arsenide or oxide containing copper and arsenic is blown with air at a temperature of 50°C or higher, preferably 60°C or higher. The extraction process is carried out at normal pressure for 3 hours or more while blowing. The reason why the extraction conditions are set as above is to efficiently extract the copper and arsenic contained therein. In the second step, water is added to the smelting intermediate of the sulfide described above to form a slurry, and an aqueous solution of a water-soluble alkali, preferably an alkali hydroxide, is added to this slurry to reduce the pH value to 5. ~8. Hold the temperature at 50℃ or above, preferably 80℃ or above, and extract at normal pressure for 3 hours or more. When the ORP value becomes positive, extract from the first step, arsenide containing copper and arsenic, oxidation. thing,
At least one of an acidic aqueous solution containing copper and sulfuric acid is added to adjust the pH of the extract to 4.0 or less, and the extraction is continued for 2 hours or more, after which the extract is separated. The reason why the pH value is maintained at 5 to 8 in the second step is that if the pH value is lower than this, the extraction rate of arsenic will decrease, and iron, zinc, etc. in the raw materials will be extracted at the same time, which is undesirable. This is because the oxidation rate of the sulfur content in the raw material increases at this value, resulting in an increase in the amount of sulfuric acid produced. Next, the reason why the treatment temperature is set to 50° C. or higher, preferably 80° C. or higher is to efficiently extract arsenic. Next, in the middle of the extraction operation, that is, when the ORP value becomes positive, add additives such as sulfuric acid to lower the pH to below 4.0, continue the extraction operation, and then separate the insoluble materials. Although it is not clear, some unstable sulfur ions are generated during the extraction operation in the second step, and this sulfur content reacts with copper ions etc. eluted from sulfuric acid or arsenide, etc., resulting in a stable form. It is assumed that this is to prevent the formation of black precipitate in the subsequent third step. Each extract that has undergone the above first and second steps is
Next, copper and arsenic are mixed so that the concentration ratio becomes a predetermined value, but this is done by setting the pH to 6 to 7 in the final step, so that both copper and arsenic are precipitated quantitatively, and then dried. This is because a desired composite copper-arsenic compound can be obtained. As explained above, according to the method of the present invention, smelting intermediates containing copper and arsenic, which have been difficult to recover in conventional nonferrous metal refining, are used as raw materials.
This method produces a composite copper-arsenic compound as an intermediate product for CCA-based drugs using extremely simple operations.
The copper-arsenic compound obtained by the method of the present invention is Cu n H (3n-2m) (AsO 4 ) o・XH 2 O (m=1~
7, n=1-6, x=1-5) and hydroxide, and this product provides the following excellent advantages. 1 When this product is dissolved in an aqueous chromium trioxide solution, almost no undissolved residue remains and a product equivalent to JIS No. 1 B is obtained. 2. A product can be obtained that easily dissolves in dilute or concentrated chromium trioxide aqueous solutions without significant heat generation. 3. The ratio of copper and arsenic contained can be freely selected. Examples to be explained below First step: 554 g of arsenide (slime) generated during decopper electrolysis containing 8.3% by weight of arsenic, 42.7% by weight of copper, and 20.5% by weight of attached water and 3.6% of water and concentrated sulfuric acid
371g (1.0 equivalent to Cu) was added to form a slurry, and this was placed in an extraction reaction tank with a capacity of 5, heated to 70℃, and the air blow rate set to 5.2/min at normal pressure for 3 hours. After treatment for a period of time, the undissolved residue was separated by suction filtration. The results are shown in Table 2.

【表】 第2表に示したように銅と当量の硫酸を添加し
て処理すると約99%の銅と約96%の砒素が抽出さ
れCu/As濃度比は5.3と銅分の多い抽出液が得ら
れた。 この抽出液は、そのまゝ本発明法の銅源として
使用することができる。 第二工程 砒素11.0重量%、銅4.4重量%、水分65.0重量%
残部硫黄他を含有する、銅製錬炉排ガスの洗滌工
程より発生した硫化物1143gを、容量6の抽出
反応槽に入れ、これに4の水を加えてスラリー
としたのち、加温して温度80℃、空気吹込量3.5
/minに設定し、次いで20重量%の水酸化ナト
リウム水溶液を添加して、該反応槽内のPHを6.8
に保持しながら5時間処理したところ、ORP値
がプラス100mvになつたので、第一工程で得られ
た抽出液400mlを添加してPHを3.5とし、以後空気
吹込みを停止し更に50℃以上で撹拌しながら3時
間処理したのち、吸引濾過して不溶解残渣を分離
した。 その結果を第3表に示す。
[Table] As shown in Table 2, when treated by adding sulfuric acid equivalent to copper, about 99% of copper and about 96% of arsenic are extracted, and the Cu/As concentration ratio is 5.3, which is an extract with a high copper content. was gotten. This extract can be used as is as a copper source in the method of the present invention. Second step Arsenic 11.0% by weight, Copper 4.4% by weight, Moisture 65.0% by weight
1143g of sulfide generated from the cleaning process of copper smelting furnace exhaust gas, containing the balance sulfur, was placed in an extraction reaction tank with a capacity of 6, and water from 4 was added to form a slurry, which was then heated to a temperature of 80 °C, air blowing amount 3.5
/min, and then add a 20% by weight aqueous sodium hydroxide solution to bring the pH inside the reaction tank to 6.8.
When the ORP value reached +100 mv, the pH was adjusted to 3.5 by adding 400 ml of the extract obtained in the first step, and after that, air blowing was stopped and the temperature was further increased to 50°C or higher. After treatment for 3 hours with stirring, the insoluble residue was separated by suction filtration. The results are shown in Table 3.

【表】 第3表より明らかなように、この工程では銅は
殆んど抽出されず砒素分のみが抽出されるので、
この抽出液はそのまゝ本発明法の砒素源として使
用することができる。 尚特に表示しなかつたが、第一、第二工程共そ
の他のsb、Bi等の不純物の抽出は、夫々0.01〜
0.03g/程度の微量であつた。 又、夫々の工程における不溶解残渣は他の製錬
中間物と共に別途処理することができる。 第三工程 第2表に示した第一工程の抽出液3.46と第3
表に示した第二工程の抽出液5.02を混合し、
As17.5g/、Cu24.5g/、Cu/Asは1.40の
水溶液を調整した。 次に上記の水溶液5.0を中和槽に移し、これ
を加温して50℃としたのちプロペラ式の撹拌機で
撹拌しながら20重量%の水酸化ナトリウム水溶液
を添加してPH6.5になるように中和し、生成した
沈殿物は吸引濾過法により濾過洗滌して分離し
た。 その結果を第4表に示す。
[Table] As is clear from Table 3, almost no copper is extracted in this process, and only arsenic is extracted.
This extract can be used as it is as an arsenic source in the method of the present invention. Although not specifically indicated, the extraction of other impurities such as sb and Bi in the first and second steps is 0.01~0.01~
It was a trace amount of about 0.03g/. In addition, undissolved residues from each step can be treated separately together with other smelting intermediates. Third step Extract 3.46 of the first step shown in Table 2 and the third
Mix the extract 5.02 of the second step shown in the table,
An aqueous solution of 17.5 g/As, 24.5 g/Cu, and 1.40 Cu/As was prepared. Next, transfer the above aqueous solution 5.0 to a neutralization tank, heat it to 50℃, and add 20% by weight aqueous sodium hydroxide solution while stirring with a propeller type stirrer to reach a pH of 6.5. The resulting precipitate was filtered and washed using a suction filtration method and separated. The results are shown in Table 4.

【表】 次に第4表の沈殿物500gを秤り取り、これを
12.7g/の三酸化クロム水溶液29.0に添加し
て溶解したところ、不溶解残渣は認められず
Cr6.56g/、Cu2.85g/、As2.03g/の
水溶液が得られた。 この溶解操作では殆んど発熱の現象は見られな
かつた。 第三工程で得られた水溶液は、そのまゝでC.
C.A系1号Bの木材防腐剤の2%水溶液と同様の
組成のものであり、このまゝ木材の防腐剤とする
ことができる。 実施例 2 第一工程 実施例1に使用した砒化物(スライム)を554
g秤り取り、以下実施例1と同様にして処理した
ところAs11.0g/、Cu58.5g/を含有する
抽出液4.0を得た。 この抽出液はCu/As濃度比5.3と銅分が多く、
これはそのまゝ本発明法の銅源として使用するこ
とができる。 第二工程 実施例1の第二工程に使用した硫化物1143gを
容量6の抽出反応槽に入れ、これに4の水を
加えてスラリーとしたのち加温して温度80℃、空
気吹込量3.5/minに設定し、次いで20重量%
の水酸化ナトリウム水溶液を添加して該反応槽の
PHを6.0に保持しながら5時間処理したところ
ORP値がプラス80mvになつたので濃硫酸を47ml
添加してPH3.5とし以後空気吹込みを停止して処
理温度はそのまゝで撹拌しながら3時間処理した
のち、吸引濾過して不溶解残渣を分離した。その
結果を第5表に示す。
[Table] Next, weigh 500g of the sediment from Table 4, and
When added to and dissolved in 12.7g/29.0g of chromium trioxide aqueous solution, no undissolved residue was observed.
An aqueous solution containing 6.56 g/Cr, 2.85 g/Cu, and 2.03 g/As was obtained. In this dissolution operation, almost no heat generation phenomenon was observed. The aqueous solution obtained in the third step can be used as is.
It has the same composition as a 2% aqueous solution of CA-based No. 1 B wood preservative, and can be used as a wood preservative. Example 2 First step The arsenide (slime) used in Example 1 was
The sample was weighed and treated in the same manner as in Example 1 to obtain 4.0 g of an extract containing 11.0 g of As and 58.5 g of Cu. This extract has a high copper content with a Cu/As concentration ratio of 5.3.
This can be used as is as a copper source in the method of the present invention. Second step: 1143 g of the sulfide used in the second step of Example 1 was placed in an extraction reaction tank with a capacity of 6, and the water from step 4 was added to make a slurry, which was then heated to a temperature of 80°C and an air flow rate of 3.5. /min, then 20 wt%
of the reaction tank by adding an aqueous sodium hydroxide solution of
Processed for 5 hours while maintaining pH at 6.0
Since the ORP value has become plus 80 mv, add 47 ml of concentrated sulfuric acid.
The mixture was added to adjust the pH to 3.5, after which air blowing was stopped and treatment was continued for 3 hours with stirring at the same treatment temperature, followed by suction filtration to separate undissolved residues. The results are shown in Table 5.

【表】 第5表は、前記第3表と同様に、銅は殆んど抽
出されず砒素分のみが抽出された。 この抽出液はそのまゝ本発明法の砒素源として
使用することができる。 第三工程 第一工程の抽出液3.0と第5表に示した第二
工程の抽出液4.7を混合したところAs17.59g/
、Cu22.79g/、Cu/As濃度比は1.3の水溶
液が得られた。 この水溶液は、実施例1と同様にアルカリの添
加によつてCu/As1.30の複合銅砒素化合物の沈
殿を得たが、沈殿生成に際して黒色沈殿の生成は
認められなかつた。
[Table] In Table 5, as in Table 3 above, almost no copper was extracted, and only arsenic was extracted. This extract can be used as it is as an arsenic source in the method of the present invention. Third step: When 3.0 of the extract from the first step and 4.7 of the extract from the second step shown in Table 5 were mixed, As17.59g/
, Cu22.79g/, and an aqueous solution with a Cu/As concentration ratio of 1.3 was obtained. This aqueous solution was used to precipitate a Cu/As composite copper arsenic compound of 1.30 by adding an alkali as in Example 1, but no black precipitate was observed during the precipitate formation.

Claims (1)

【特許請求の範囲】 1 銅と砒素を含む砒化物、酸化物の一方または
両方からなる製錬中間物を水でスラリーとし、該
スラリーに該製錬中間物中の銅量に対し、少なく
とも当量の硫酸を添加し銅と砒素を常圧で抽出
し、抽出液中の銅と砒素の濃度比(Cu/As)が
1.0以上の抽出液を得る第一工程と、砒素又は銅
と砒素を含む硫化物からなる製錬中間物を水でス
ラリーとし、該スラリーにアルカリを添加してPH
5〜8に保持しながら、酸化還元電位がプラスに
なるまで常圧で抽出したのち、該抽出液に第一工
程の抽出液、銅を含む酸性水溶液、及び硫酸のう
ち一つ以上を添加して該処理液のPHを4.0以下と
し、更に抽出処理を継続して抽出液を得る第二工
程と、第一工程及び第二工程で得られた各抽出液
を、銅と砒素の濃度比(Cu/As)が所望の値と
なるように混合したのち、該混合液にアルカリを
加えてPH6〜7とし銅と砒素を沈殿物として分離
する第三工程とを有することを特徴とする複合銅
―砒素化合物の製造方法。 2 第一工程において抽出を50℃以上の温度で空
気を吹き込みながら3時間以上行なう特許請求の
範囲1項記載の複合銅―砒素化合物の製造方法。 3 第二工程において前半の抽出を50℃以上の温
度で空気を吹き込みながら3時間以上行ない、後
半の抽出を50℃以上の温度で撹拌しながら2時間
以上行なう特許請求の範囲1項記載の複合銅―砒
素化合物の製造方法。
[Scope of Claims] 1 A smelting intermediate consisting of one or both of arsenide and oxide containing copper and arsenic is made into a slurry with water, and the slurry contains at least an equivalent amount of copper with respect to the amount of copper in the smelting intermediate. sulfuric acid was added to extract copper and arsenic at normal pressure, and the concentration ratio of copper and arsenic (Cu/As) in the extract was determined.
The first step is to obtain an extract with a pH of 1.0 or higher, and the smelting intermediate consisting of arsenic or copper and sulfide containing arsenic is made into a slurry with water, and an alkali is added to the slurry to adjust the pH.
After extracting at normal pressure while maintaining the temperature between 5 and 8 until the redox potential becomes positive, one or more of the extract from the first step, an acidic aqueous solution containing copper, and sulfuric acid is added to the extract. In the second step, the pH of the treated solution is set to 4.0 or less, and the extraction process is continued to obtain an extract, and each extract obtained in the first step and the second step is adjusted to Cu/As) is mixed to a desired value, and then an alkali is added to the mixed solution to adjust the pH to 6 to 7, and a third step is to separate copper and arsenic as precipitates. -Production method for arsenic compounds. 2. The method for producing a composite copper-arsenic compound according to claim 1, wherein in the first step, extraction is carried out at a temperature of 50° C. or higher for 3 hours or more while blowing air. 3. The composite according to claim 1, wherein in the second step, the first half of the extraction is carried out at a temperature of 50°C or higher while blowing air for 3 hours or more, and the latter half of the extraction is carried out at a temperature of 50°C or higher and for 2 hours or more while stirring. A method for producing a copper-arsenic compound.
JP7363283A 1983-04-25 1983-04-25 Production of composite copper-arsenic compound Granted JPS59199531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7363283A JPS59199531A (en) 1983-04-25 1983-04-25 Production of composite copper-arsenic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7363283A JPS59199531A (en) 1983-04-25 1983-04-25 Production of composite copper-arsenic compound

Publications (2)

Publication Number Publication Date
JPS59199531A JPS59199531A (en) 1984-11-12
JPS6221729B2 true JPS6221729B2 (en) 1987-05-14

Family

ID=13523875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7363283A Granted JPS59199531A (en) 1983-04-25 1983-04-25 Production of composite copper-arsenic compound

Country Status (1)

Country Link
JP (1) JPS59199531A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188296B2 (en) * 2007-07-13 2013-04-24 Dowaメタルマイン株式会社 Method for treating copper arsenic compound

Also Published As

Publication number Publication date
JPS59199531A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
CN101743202B (en) Method of treating copper-arsenic compound
JP5645457B2 (en) Method for producing crystalline iron arsenate raw material liquid from smoke ash
US4002544A (en) Hydrometallurgical process for the recovery of valuable components from the anode slime produced in the electrolytical refining of copper
US3826648A (en) Method of purifying zinc sulphate solutions
CA2480315C (en) Method for the recovery of gold
JP7016463B2 (en) How to collect tellurium
JPH0517832A (en) Method for recovering lithium from waste lithium battery
JPH085671B2 (en) Copper arsenate manufacturing method
JPH11277075A (en) Method for removing/fixing arsenic existing in iron sulfate solution
WO1996000801A1 (en) Precious metal extraction process
JP5200588B2 (en) Method for producing high purity silver
CN104762471A (en) Method for tellurium residue enhanced leaching
US5939042A (en) Tellurium extraction from copper electrorefining slimes
US5002748A (en) Method for the preparation of copper arsenate
JPS6221729B2 (en)
JP3294181B2 (en) Method for producing calcium arsenate
JPS5825050B2 (en) Method for producing composite copper-arsenic compound
WO2004050927A1 (en) Method for separating platinum group element
JPS6059975B2 (en) Method for concentrating silver from copper electrolytic slime
US2576445A (en) Recovery of vanadium values from an alkali metal vanadate solution
JP2004238735A (en) Treatment method for separating gold from solution containing platinum group element, and production method
RU2079561C1 (en) Method of oxidized polymetallic materials processing
US1167701A (en) Process of recovering zinc from its ores.
US6861037B1 (en) Method of removal of impurities from gold concentrate containing sulfides
US415738A (en) Hermann a