JPS6221716A - Production of high-quality iron oxide powder for ferrite magnetic material - Google Patents

Production of high-quality iron oxide powder for ferrite magnetic material

Info

Publication number
JPS6221716A
JPS6221716A JP60156877A JP15687785A JPS6221716A JP S6221716 A JPS6221716 A JP S6221716A JP 60156877 A JP60156877 A JP 60156877A JP 15687785 A JP15687785 A JP 15687785A JP S6221716 A JPS6221716 A JP S6221716A
Authority
JP
Japan
Prior art keywords
iron oxide
solution
zinc
precipitate
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60156877A
Other languages
Japanese (ja)
Inventor
Hideo Akiyama
秋山 英男
Kinsaku Niizawa
新澤 金作
Tadayoshi Sato
忠良 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Akita Seiren KK
Original Assignee
Akita Seiren KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Seiren KK, Dowa Mining Co Ltd filed Critical Akita Seiren KK
Priority to JP60156877A priority Critical patent/JPS6221716A/en
Publication of JPS6221716A publication Critical patent/JPS6221716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled iron oxide powder economically, from the zinc- leaching residue produced as a by-product of wet zinc refining, by leaching the residue with an acid in reducing atmosphere, removing Si, Al, As, etc., from the leachate, precipitating iron from the liquid by oxidation, and purifying the precipitate. CONSTITUTION:The zinc-leaching residue produced as a by-product of wet zinc refining process is leached with an acid in a reducing atmosphere, and the leachate is neutralized with CaCO3 or slaked lime to 4-5 pH, and Si, Al, etc., are precipitated and removed together with gypsum. The leachate is added with copper ion and zinc powder to effect the precipitation and removal of arsenic in the form of copper arsenide. The leachate is adjusted to an iron concentration of <=35g/l and made to react with oxidizing gas in an autoclave at >=200 deg.C to effect the oxidization of ferrous ion. The precipitated iron compound composed mainly of iron oxide is separated, the soluble components are removed with water, end the iron oxide is dried, calcined and pulverized. After removing the soluble components again with water, the residue is dried to obtain the titled iron oxide powder.

Description

【発明の詳細な説明】 本発明は、湿式亜鉛精錬の副産物である亜鉛浸出残渣を
出発材料として使用し、これを還元性雰囲気で酸浸出し
、予備中和して得られた溶液からフェライト磁性材料用
に好適な高品位酸化鉄粉末を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses zinc leaching residue, which is a byproduct of wet zinc smelting, as a starting material, leaches it with acid in a reducing atmosphere, and pre-neutralizes the resulting solution to produce ferrite magnetic material. The present invention relates to a method for producing high-grade iron oxide powder suitable for materials.

従来より、湿式亜鉛精錬の副産物である亜鉛浸出残渣を
出発材料としてこれから鉄その他の有価金属を回収する
方法として、ゲーサイト法、ジャロサイト法およびヘマ
タイト法と呼ばれる処法が採用されている。これらの処
法は、その名称が示すように、亜鉛浸出残渣を酸浸出し
た溶液中に含まれる鉄と亜鉛を分離するさいに、ゲーサ
イト法ではゲーサイトを主成分とした鉄化合物を、ジャ
ロサイト法ではジャロサイトを主成分とした鉄化合物を
、そして、ヘマタイト法ではへマタイトを主成分とした
鉄化合物を、それぞれ該溶液から沈澱させて分離しよう
とするものである。
BACKGROUND ART Conventionally, processing methods called the goethite method, jarosite method, and hematite method have been employed as a method for recovering iron and other valuable metals from zinc leaching residue, which is a byproduct of wet zinc smelting, as a starting material. As the name suggests, these processing methods are used to separate iron and zinc contained in a solution obtained by acid leaching zinc leaching residue. The site method attempts to separate an iron compound mainly composed of jarosite, and the hematite method attempts to separate an iron compound mainly composed of hematite by precipitating them from the solution.

しかし、いずれの方法によっても、浸出液中の不純物濃
度が高いので、得られる鉄化合物も不純物品位が高(な
り、鉄化合物としての価値は低いものであった。そして
、得られた鉄化合、物からフェライト磁性材料用の酸化
鉄を得ようとしても。
However, with either method, the impurity concentration in the leachate is high, so the iron compound obtained also has a high impurity quality (and has low value as an iron compound. Even trying to obtain iron oxide for ferrite magnetic materials from.

その精製方法が難しく工業的に行われた例は殆どなかっ
た。
The purification method is difficult and there have been few examples of it being carried out industrially.

同一出願人に係る特開昭56−164018号公報は。JP-A-56-164018, filed by the same applicant.

鉄化合物の不純物品位を下げるために浸出液を精製する
処法を開示し、これによってフェライトm性材料用の高
品位酸化鉄を得ようとするものである。この公報に提案
された方法は、浸出液を炭酸カルシウム等の中和剤でp
H4〜5程度にして液中のAj!、  Si等の不純物
を石膏と共に沈澱分離する第一工程と、沈澱物を分離し
た第一工程の液に硫化水素または銅の存在下で亜鉛末を
添加して砒素を硫化物または砒化銅の形で沈澱除去する
第二工程と、沈澱物を除去した第二工程の液を総圧力1
6〜20kg/c+*”G、 /FA度180〜200
 ℃の加圧高温下で酸化処理して鉄を酸化沈澱させる第
三工程と。
The present invention discloses a process for purifying a leachate in order to reduce the impurity level of iron compounds, thereby obtaining high-grade iron oxide for use in ferritic materials. The method proposed in this publication involves plating the leachate with a neutralizing agent such as calcium carbonate.
Aj in the liquid at about H4-5! , a first step in which impurities such as Si are separated by precipitation together with gypsum; and arsenic in the form of sulfide or copper arsenide by adding zinc powder in the presence of hydrogen sulfide or copper to the liquid of the first step from which the precipitate has been separated. The second step is to remove the precipitate, and the liquid from the second step after removing the precipitate is heated to a total pressure of 1
6~20kg/c+*”G, /FA degree 180~200
The third step is to oxidize the iron under pressure and high temperature at ℃ to oxidize and precipitate it.

第三工程で得られた酸化鉄沈澱を170〜200℃の温
水で加圧洗浄して酸化鉄中のZn、Na、に等の不純物
を溶出する第四工程と、第四工程で得られた酸化鉄を7
00〜1000℃で脱硫焙焼し、得られた焼鉱を微粉砕
する第五工程と、からなる。
A fourth step in which the iron oxide precipitate obtained in the third step is washed under pressure with hot water at 170 to 200°C to elute impurities such as Zn, Na, etc. in the iron oxide, and the iron oxide precipitate obtained in the fourth step is 7 iron oxides
It consists of a fifth step of desulfurizing roasting at 00 to 1000°C and pulverizing the obtained burned ore.

本発明はこの公報記載の方法の更に改善を目的としたも
のので、より詳しくは、この公報記載の方法では必要と
されたNaやに除去のための高温加圧洗浄工程(第四工
程)を省略しながら高品位酸化鉄粉末を得ることを目的
としたものである。
The present invention aims to further improve the method described in this publication, and more specifically, the method described in this publication does not require a high-temperature pressure washing step (fourth step) for removing Na deposits. The purpose is to obtain high-grade iron oxide powder while omitting the following.

本発明は、この目的を達成する更に改善された処方とし
て。
The present invention provides a further improved formulation that achieves this objective.

湿式亜鉛精錬の副産物である亜鉛浸出残渣を還元性雰囲
気で酸浸出し、得られた浸出液を予備中和し、更に炭酸
カルシウムまたは消石灰でpH4〜5まで中和して液中
のケイ素、アルミニウム等を石膏と共に沈澱させて液か
ら分離する第一工程。
Zinc leaching residue, which is a byproduct of wet zinc smelting, is leached with acid in a reducing atmosphere, and the resulting leachate is pre-neutralized, and further neutralized to pH 4-5 with calcium carbonate or slaked lime to remove silicon, aluminum, etc. in the solution. The first step is to precipitate it together with gypsum and separate it from the liquid.

沈澱を分離したあとの第一工程の溶液に、銅イオンと亜
鉛末を添加することによって、溶液中の砒素を砒化銅の
形態で沈澱させ、この沈澱を液から分離する第二工程。
The second step is to precipitate arsenic in the solution in the form of copper arsenide by adding copper ions and zinc powder to the solution from the first step after separating the precipitate, and to separate this precipitate from the liquid.

沈澱を分離したあとの第二工程の溶液を鉄濃度35g/
l以下にしてオートクレーブ中で200℃以上の温度で
酸化性ガスと反応させ、この反応により溶液中の第一鉄
イオンを酸化して酸化鉄(α−FezOz )を主成分
とする鉄化合物を沈澱させ、この沈澱を液から分離する
第三工程。
After separating the precipitate, the solution in the second step was mixed with an iron concentration of 35 g/
1 or less and react with an oxidizing gas at a temperature of 200°C or higher in an autoclave, and this reaction oxidizes ferrous ions in the solution and precipitates an iron compound whose main component is iron oxide (α-FezOz). The third step is to separate this precipitate from the liquid.

第三工程で得られた鉄化合物含有沈澱に水を加えてスラ
リー化して溶解成分を溶出させ、溶出液を分離したあと
乾燥および焙焼する第四工程、そして。
A fourth step of adding water to the iron compound-containing precipitate obtained in the third step to form a slurry to elute dissolved components, separating the eluate, and then drying and roasting.

第四工程で得られた酸化鉄を粉砕し、水を加えてスラリ
ー化して溶解成分を溶出させ2溶出液を分離したあと乾
燥する第五工程。
The fifth step is to crush the iron oxide obtained in the fourth step, add water to form a slurry, elute the dissolved components, separate the two eluates, and then dry.

からなるフェライト磁性材料用高品位酸化鉄粉末の製造
方法を提供するものである。
The present invention provides a method for producing high-grade iron oxide powder for ferrite magnetic materials.

本発明法における第一工程および第二工程は。The first and second steps in the method of the present invention are as follows.

前記の特開昭56−164018号公報記載の方法と実
質上変わりはない。しかし1本発明法における第三工程
では、鉄濃度を35g/l以下に且つオートクレーブで
の反応温度を200℃以上とする0本発明法では該公報
記載の方法の第四工程は無い。その変わりに、鉄化合物
含有沈澱を水洗してから焙焼し、この焙焼によって第三
工程で共沈したNa、にジャロサイトを水溶性のNa2
SO4,K 2s04に変え3焙焼物を粉砕し水洗する
ことによって酸化鉄中のNa、Kを更に低下させると同
時に、a化鉄中の水溶性のCa、Znを浸出し、8分に
ついても0.1%以下にするものである。
There is no substantial difference from the method described in the above-mentioned Japanese Patent Application Laid-Open No. 56-164018. However, in the third step of the method of the present invention, the iron concentration is set to 35 g/l or less and the reaction temperature in the autoclave is set to 200° C. or higher.The method of the present invention does not include the fourth step of the method described in the publication. Instead, the iron compound-containing precipitate is washed with water and then roasted, and by this roasting, jarosite is added to the Na co-precipitated in the third step.
By changing to SO4, K 2s04 and pulverizing the 3 roasted product and washing it with water, Na and K in the iron oxide are further lowered, and at the same time, water-soluble Ca and Zn in the a-ferric oxide are leached out, and the result is 0 for 8 minutes. .1% or less.

第1図に本発明の製造工程をフローを示した。FIG. 1 shows a flowchart of the manufacturing process of the present invention.

また参考のために、前記特開昭56−164018号公
報記載の製造工程のフローを第2図に示した。
For reference, the flow of the manufacturing process described in the above-mentioned Japanese Patent Application Laid-Open No. 56-164018 is shown in FIG.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

〔第一工程〕[First step]

亜鉛浸出残渣を還元性ガス雰囲気下(So、ガス下)で
浸出した浸出液には1通常は、亜鉛;65〜85g/l
、第一鉄;35〜40g/l、  フリー硫酸;20〜
30g/l、その他に多種の不純物が含有されてくる。
The leachate obtained by leaching the zinc leaching residue under a reducing gas atmosphere (So gas) usually contains 65 to 85 g/l of zinc.
, ferrous iron; 35-40 g/l, free sulfuric acid; 20-40 g/l
30g/l, and various other impurities are also contained.

予備中和は液中のフリー硫酸を除去することを主目的と
するものであり、温度65〜75℃で炭カルを用いてp
H1〜2になるまで中和し1石膏を得る。この予備中和
を行った液に対して3本発明の第一工程では炭酸カルシ
ウムまたは消石灰を用いて中和し、液中に含まれている
Al、Siを石膏と共に沈澱させる。反応温度は60〜
80℃。
The main purpose of pre-neutralization is to remove free sulfuric acid from the liquid.
Neutralize until H1-2 to obtain 1 gypsum. In the first step of the present invention, this pre-neutralized liquid is neutralized using calcium carbonate or slaked lime, and Al and Si contained in the liquid are precipitated together with gypsum. The reaction temperature is 60~
80℃.

pH4〜5.好ましくは4.5〜5にし1反応時間を約
2時間としたあと沈降分離することによって1液中のA
Iは90%以上1 Siは50%以上が除去され、ソノ
液中のAl濃度i;!、30mg/j!以下、5il1
度は20 mg/ρ以下となる。液中の鉄および亜鉛の
残留率は95%以上となる。
pH 4-5. Preferably, the A content in one solution is set to 4.5 to 5, and one reaction time is set to about 2 hours, followed by sedimentation separation.
I is 90% or more 1 Si is removed by 50% or more, Al concentration i in the sono solution;! , 30mg/j! Below, 5il1
The degree is 20 mg/ρ or less. The residual rate of iron and zinc in the liquid is 95% or more.

〔第二工程〕[Second process]

第二工程では第一工程で得られた溶液から脱砒する。こ
の脱砒処理は同一出願人に係る特開昭5474272号
公報記載の方法に従う。反応温度50〜70t、  p
H4〜5に調整しながら、銅イオンとして硫酸銅を0.
3〜0.5g/ 1になるように添加したあと、亜鉛末
を1.0〜2.0g/f添加し、Wl拌しながら2〜3
時間反応させ、生成した沈澱を濾過分離することによっ
て、液中の砒素は95%以上除去でき、液中の砒素濃度
はleg71以下となる。そのさい、亜鉛よりイオン化
傾向の低い金属は同時に除去される。なお、場合によっ
ては、さらに硫化水素による脱砒も併用してもよい。
In the second step, the solution obtained in the first step is dearsenized. This arsenization treatment follows the method described in Japanese Patent Laid-Open No. 5474272 filed by the same applicant. Reaction temperature 50-70t, p
While adjusting to H4-5, add 0.0% copper sulfate as copper ion.
After adding 3 to 0.5 g/1, add 1.0 to 2.0 g/f of zinc powder, and add 2 to 3 g/f while stirring Wl.
By reacting for a period of time and separating the generated precipitate by filtration, more than 95% of the arsenic in the liquid can be removed, and the arsenic concentration in the liquid becomes leg71 or less. At the same time, metals with a lower ionization tendency than zinc are removed at the same time. Note that, depending on the case, dearsenization using hydrogen sulfide may also be used in combination.

〔第三工程〕[Third step]

第三工程は第二工程で得られた液をオートクレーブに給
液し酸素ガスで液中の第一鉄を酸化し酸化鉄を得る工程
である。特開昭56−164018号公報の方法では、
液中に含まれているNa、Kがこの工程で鉄と共に沈澱
し、  NaFe1(SOa)i(OH)*やKFes
(SOa)z(OH)aのジャロサイトを生成し、これ
が酸化鉄中に入って品位を下げていた。本発明者らはこ
の問題を解決するために種々試験検討を行った結果、液
中の鉄濃度を35g/ 1以下、好ましくは30g/ 
1以下にしたうえで、オートクレーブ中で200℃以上
の温度で酸化性ガスと反応させるならば、Na、にの共
沈を防ぐことができることを見出した。成る試験例では
、鉄濃度32g/ 12の溶液をオートクレーブに給液
し、攪拌しながら蒸気で温度を210℃に保ち酸素分圧
3 kg/cm”として第一鉄を酸化したところ、得ら
れた酸化鉄α−Fe103は、  NazO,K 、0
品位はいずれも200ppm以下であった。また、 S
ingおよび砒素も1oopPIl以下であり。
The third step is a step in which the liquid obtained in the second step is supplied to an autoclave, and ferrous iron in the liquid is oxidized with oxygen gas to obtain iron oxide. In the method of JP-A-56-164018,
Na and K contained in the liquid precipitate together with iron in this process, forming NaFe1(SOa)i(OH)* and KFes.
(SOa)z(OH)a jarosite was produced, which entered the iron oxide and lowered its quality. The present inventors conducted various tests and studies to solve this problem, and found that the iron concentration in the liquid should be 35 g/1 or less, preferably 30 g/1.
It has been found that coprecipitation of Na can be prevented by reducing the Na content to 1 or less and reacting it with an oxidizing gas at a temperature of 200° C. or higher in an autoclave. In a test example, a solution with an iron concentration of 32 g/12 was fed into an autoclave, and the temperature was maintained at 210°C with steam while stirring, and the ferrous iron was oxidized at an oxygen partial pressure of 3 kg/cm. Iron oxide α-Fe103 is NazO,K,0
The quality was 200 ppm or less in all cases. Also, S
ing and arsenic are also less than 1 oopPIl.

A 1 gos は元液中のAl濃度によって異なるが
A 1 gos varies depending on the Al concentration in the original solution.

200ppm以下であった。It was 200 ppm or less.

〔第四工程〕[Fourth step]

第四工程は、第三工程で得られた酸化鉄を水洗し、乾燥
して焙焼する工程である。第三工程で濾過脱水して得ら
れた酸化鉄は、付着水分が20%程度あり、液中のZn
、  フリー硫酸、その他の各種金属イオン等が付着し
ている。また、高温で反応を行った関係上、液中の石膏
の溶解度が低下し3酸化鉄と共沈している。水洗はこれ
らの成分を水に溶出させて除去することを目的として行
う。これは、酸化鉄にその湿重量の例えば10倍重量の
水を添加してスラリー状とし、 30〜60分間攪拌し
The fourth step is a step in which the iron oxide obtained in the third step is washed with water, dried, and roasted. The iron oxide obtained by filtration and dehydration in the third step has about 20% attached moisture, and Zn in the liquid
, free sulfuric acid, and various other metal ions are attached. Furthermore, because the reaction was carried out at high temperatures, the solubility of gypsum in the liquid decreased and co-precipitated with iron trioxide. The purpose of washing with water is to remove these components by dissolving them in water. This is done by adding, for example, 10 times its wet weight of water to iron oxide to form a slurry, and stirring the slurry for 30 to 60 minutes.

濾過脱水する。これによってZn、 フリー硫酸。Filter and dehydrate. This results in Zn and free sulfuric acid.

石膏などが液中に移る。濾過されたケーキは水分約20
%であり、乾燥後の分析値は例えばFezO391〜9
5%、   Zn  O,3〜0.5  %、  Ca
0 100〜500ppm。
Plaster, etc. will move into the liquid. The filtered cake has a water content of approximately 20%
%, and the analysis value after drying is, for example, FezO391-9
5%, ZnO, 3~0.5%, Ca
0 100-500ppm.

81〜3%程度である。焙焼はこの酸化鉄を空気中で行
う、焙焼の目的の一つは酸化鉄中のSを脱硫すると同時
に若干含まれているジャロサイトを分解し、可溶性のN
azSO□、 K 、soオに変換することにある。こ
の反応は。
It is about 81-3%. Roasting is carried out in the air. One of the purposes of roasting is to desulfurize the S in the iron oxide, and at the same time decompose the jarosite that is slightly contained, and convert it into soluble N.
The purpose is to convert to azSO□, K, soo. This reaction is.

2 M Fes (SOa) ! (OH) h →3
FezO,+ M2SO4+3SJ + 68zO(M
=NaまたはK) で示され8本発明者らの熱分析実験の結果、このような
ジャロサイトは650〜750℃の温度で分解すること
が明らかになった。焙焼の第二の目的はオートクレーブ
で成長した酸化鉄は粒子が不均一で種々の形状をしてい
るので、これを焙焼して一層粒子の成長を行わせること
にある。これによって次工程(第五工程)の粉砕で均一
な微細粒子を得ることができる。このようなことから、
焙焼温度は700〜900℃、好ましくは750〜85
0℃の範囲で行うのがよく、これ以下では脱硫8分解が
不十分となり、またこれ以上では粒子が成長しすぎて均
一な微細粒子に粉砕するのが困難となる。−例において
は、マンフル炉を用いてS品位1.22%のものを80
0℃で3時間空気中で焙焼した結果では。
2 M Fes (SOa)! (OH) h →3
FezO, + M2SO4+3SJ + 68zO(M
=Na or K) 8 As a result of thermal analysis experiments conducted by the present inventors, it was revealed that such jarosite decomposes at a temperature of 650 to 750°C. The second purpose of roasting is to roast the iron oxide particles grown in the autoclave, which are non-uniform and have various shapes, so that the particles can grow further. This makes it possible to obtain uniform fine particles in the next step (fifth step) of pulverization. From such a thing,
Roasting temperature is 700-900℃, preferably 750-85℃
It is preferable to carry out the process at a temperature in the range of 0°C; below this temperature, desulfurization and decomposition will be insufficient, and above this range, the particles will grow too much and it will be difficult to grind them into uniform fine particles. - In the example, using a manful furnace, 80% of S content is
The result was roasted in air at 0°C for 3 hours.

そのS品位は0.25%にまで低下した。Its S grade decreased to 0.25%.

〔第五工程〕[Fifth step]

第五工程は、焙焼品を粉砕し、水洗似乾燥して解砕する
工程である。この粉砕において、焙焼によって成長した
酸化鉄粒子をフェライト磁性材料用として必要な粒径に
まで微粉砕し、また焙焼によって生成したNazSO□
、に、SO,を次の水洗時に溶出し易くする。例えば焼
結晶凝集体をアトマイザ−で解砕し2振動ボールミルで
30〜60分粉砕すると5粒径を1,2 μm以下とす
ることができる。水洗は例えば酸化鉄乾重量の10倍重
量の水でスラリー状とし、30〜60分間攪拌して濾過
する。これにより、粉砕した酸化鉄に同伴していたNa
、K。
The fifth step is to crush the roasted product, wash it with water, dry it, and crush it. In this pulverization, the iron oxide particles grown by roasting are finely pulverized to the particle size required for ferrite magnetic materials, and the NazSO□ produced by roasting is
, to make it easier for SO to be eluted during the next water wash. For example, by crushing the fired crystal aggregate with an atomizer and pulverizing it with a two-vibration ball mill for 30 to 60 minutes, the grain size can be reduced to 1.2 μm or less. For washing with water, for example, the slurry is formed with water in an amount 10 times the dry weight of iron oxide, stirred for 30 to 60 minutes, and filtered. As a result, the Na accompanying the crushed iron oxide
, K.

石膏、Znなどが溶出する。これを乾燥して得た酸化鉄
粉の品位は5例えばFe;69%以上(これはFe*0
3; 98.6%以上)、  Z n ; 0.2〜0
.4%。
Gypsum, Zn, etc. are eluted. The grade of the iron oxide powder obtained by drying this is 5. For example, Fe; 69% or more (this is Fe*0
3; 98.6% or more), Zn; 0.2-0
.. 4%.

NagO,に!O+ Cab、 As、Singなどは
いずれもlooppm以下、 八2□Os  ; 20
0ppm以下+S;0.1 %以下となり、非常に不純
物品位の低い酸化鉄粉となる。
NagO, to! O+ Cab, As, Sing, etc. are all below loopppm, 82□Os; 20
0 ppm or less + S: 0.1% or less, resulting in iron oxide powder with extremely low impurity quality.

また粒径は1.2μ顛以下となるが、必要に応じてさら
にアトマイザ−1振動ボールミル等で解砕。
The particle size is 1.2 μm or less, but if necessary, it is further crushed using an atomizer-1 vibrating ball mill, etc.

粉砕することにより更に微粒子とすることができる。It can be made into finer particles by pulverization.

以下に実施例により9本発明法をより具体的に説明しよ
う。
The method of the present invention will now be explained in more detail with reference to Examples.

■、第第二工程中和よる不純物除去) 亜鉛浸出残渣を還元性雰囲気で酸性溶液で浸出して得た
溶液を炭酸カルシウムで予備中和し1石膏を分離して表
1に示す組成の溶液を得た。この溶液のpHは2.0で
あった。この予備中和溶液を5βビーカーに採り1反応
塩度70℃に保持しながら攪拌し、炭酸カルシウムを用
いてpH4,0,4,5または5.0に中和した。反応
を2時間行った後。
(2) Removal of impurities by neutralization in the second step) The solution obtained by leaching the zinc leaching residue with an acidic solution in a reducing atmosphere is pre-neutralized with calcium carbonate, and 1 gypsum is separated to create a solution with the composition shown in Table 1. I got it. The pH of this solution was 2.0. This pre-neutralized solution was placed in a 5β beaker and stirred while maintaining the salinity for one reaction at 70° C., and neutralized to pH 4, 0, 4, 5 or 5.0 using calcium carbonate. After running the reaction for 2 hours.

この固液分離し、濾液中の各成分値を分析した。This solid-liquid separation was performed, and the values of each component in the filtrate were analyzed.

その結果を表2に示した。The results are shown in Table 2.

表2の結果より明らかなように、 pH4,0ではアル
ミニウムやケイ素の除去率は十分とは言えないが、 p
H4,5およびpH5,0では、アルミニウムは90%
以上、ケイ素は60%以上の除去率を得、効率よく除去
できた。
As is clear from the results in Table 2, the removal rate of aluminum and silicon is not sufficient at pH 4.0, but p
At H4,5 and pH5,0, aluminum is 90%
As described above, silicon was efficiently removed with a removal rate of 60% or more.

表1 (予備中和液の分析値) 表2(中和濾液の分析値) ■、第二工程(中和濾液からの脱砒) 第一工程で得られた中和復液であって表3の組成を有す
る液を51ビーカーに採り1反応温度を60℃に保持し
ながら攪拌し、硫酸でp H4,5にしながら硫酸銅を
銅イオンとして0.3g/lになるように添加したあと
、亜鉛末を1.5gl&になるように添加した。反応を
2時間行ったあと、この液を濾過分離し、濾液中の各成
分を分析した。その結果を表4に示した0表4に示され
るように、砒素は1mg/jl以下にまで高い除去率で
除去できた。
Table 1 (Analysis values of pre-neutralized liquid) Table 2 (Analysis values of neutralized filtrate) A solution having the composition 3 was placed in a beaker 51, stirred while maintaining the reaction temperature at 60°C, and the pH was adjusted to 4.5 with sulfuric acid, and copper sulfate was added to the solution at a concentration of 0.3 g/l as copper ions. , zinc powder was added to give a total amount of 1.5gl. After the reaction was carried out for 2 hours, this liquid was separated by filtration, and each component in the filtrate was analyzed. The results are shown in Table 4. As shown in Table 4, arsenic was removed at a high removal rate of 1 mg/jl or less.

表3(中和復液の分析値) 表4(脱砒復液の分析値) ■、第三工程(酸化鉄の生成) 脱砒復液に水を添加して鉄濃度を約30g/ 1にした
表5にその組成を示す溶液(p H= 4.5)を、内
容積が51のオートクレーブに3.51入れて攪拌しな
がら昇温した。反応温度をそれぞれ160℃、180t
、200℃、220℃、240℃に保ち、酸素分圧3 
kg/cm”になるように酸素ガスを吹き込み、4時間
反応させた。そして、排気弁を開いて冷却コイルを通し
て生成物を排出し、濾過して酸化鉄を得た。各反応温度
における生成物の分析値を表6に示した。
Table 3 (Analytical values of neutralized condensate) Table 4 (Analytical values of dearsenized condensate) ■ Third step (Generation of iron oxide) Add water to the dearsenized condensate to increase the iron concentration to approximately 30 g/1 A solution (pH = 4.5) whose composition is shown in Table 5 was placed in an autoclave having an internal volume of 3.5 liters, and the temperature was raised while stirring. The reaction temperature was 160℃ and 180t, respectively.
, maintained at 200℃, 220℃, 240℃, oxygen partial pressure 3
Oxygen gas was blown into the reaction mixture at a concentration of 1.5 kg/cm, and the reaction was allowed to proceed for 4 hours.Then, the exhaust valve was opened to discharge the product through the cooling coil, and the product was filtered to obtain iron oxide.Products at each reaction temperature The analytical values are shown in Table 6.

表6の結果から明らかなように3反応温度が高くなると
、特に200℃以上となると、#1化鉄中のNa、0お
よび、に!0が急激に低下し、 200ppm以下とな
る。また、SiJおよびAsも100pp−以下、そし
てA j! !O,も200pp−以下の酸化鉄が得ら
れた。
As is clear from the results in Table 6, when the 3 reaction temperature becomes high, especially above 200°C, Na, 0, and... 0 rapidly decreases to 200 ppm or less. Moreover, SiJ and As are also less than 100 pp-, and A j! ! Iron oxide containing 200 pp- or less of O was obtained.

表5(酸化鉄生成元液の分析値) 表6(生成酸化鉄の分析値) ■、第四工程(酸化鉄の水洗、乾燥および焙焼)前記の
第三工程において2反応温度210℃、酸素分圧3 k
g/cm”、反応時間3時間で生成した表7にその組成
を示す酸化鉄を、その湿重量の10倍重量の水でスラリ
ー状にし、60分間攪拌したあと。
Table 5 (Analytical values of iron oxide producing source liquid) Table 6 (Analytical values of produced iron oxide) ■Fourth step (Washing, drying and roasting of iron oxide) In the third step, the reaction temperature was 210°C, Oxygen partial pressure 3k
g/cm", the iron oxide whose composition is shown in Table 7 produced in a reaction time of 3 hours was made into a slurry with 10 times its wet weight of water and stirred for 60 minutes.

濾過分離し、そして乾燥した。この水洗乾燥後の分析値
を表8に示した0表8に見られるように。
It was filtered off and dried. As seen in Table 8, the analytical values after washing with water and drying are shown in Table 8.

Zn、フリー硫酸、Mn、Mg、Caが除去されている
0次にこの酸化鉄を磁性ルツボに500g入れ、マツフ
ル炉を用いて、焙焼温度700〜900℃の温度で3時
間焙焼した。得られた酸化鉄の分析値を表9に示した0
表9に見られるようにS品位が低下している。
500g of this zero-order iron oxide from which Zn, free sulfuric acid, Mn, Mg, and Ca had been removed was placed in a magnetic crucible, and roasted for 3 hours at a roasting temperature of 700 to 900°C using a Matsufuru furnace. The analytical values of the obtained iron oxide are shown in Table 9.
As seen in Table 9, the S quality has decreased.

表7(生成酸化鉄の分析値) 表8 (水洗乾燥後の酸化鉄の分析値)表9(焙焼酸化
鉄の分析値) ■、第五工程(焙焼酸化鉄の粉砕および水洗)前記第四
工程において800℃で3時間焙焼して得た表IOにそ
の組成を示す酸化鉄を、ステンレス鋼製のポット(容積
31)に入れ、スチールボール(12,7請−φ)を1
0kg投入し、振動ミルで15分。
Table 7 (Analysis values of produced iron oxide) Table 8 (Analysis values of iron oxide after washing with water and drying) Table 9 (Analysis values of roasted iron oxide) ■ Fifth step (Crushing of roasted iron oxide and washing with water) In the fourth step, the iron oxide whose composition is shown in Table IO obtained by roasting at 800°C for 3 hours was placed in a stainless steel pot (volume 31), and a steel ball (12.7 cm - φ) was placed in a stainless steel pot (volume 31).
Add 0 kg and use a vibration mill for 15 minutes.

30分、45分および60分間それぞれ粉砕した。この
酸化鉄に対して10倍重量の水を加えてスラリー状とし
、60分間攪拌した後、濾過し、そして乾燥した。得ら
れた酸化鉄の分析値を表11に示した。表11の結果か
ら明らかなように、  Z n、 NazO,KzO。
Milling was carried out for 30 minutes, 45 minutes and 60 minutes, respectively. Water was added in an amount 10 times the weight of the iron oxide to form a slurry, stirred for 60 minutes, filtered, and dried. The analytical values of the obtained iron oxide are shown in Table 11. As is clear from the results in Table 11, Z n, NazO, KzO.

CaOおよびSが更に低下し、高品位の酸化鉄を得るこ
とができた。
CaO and S were further reduced, and high-grade iron oxide could be obtained.

゛表11 (焙焼酸化鉄の粉砕水洗後の分析値)゛Table 11 (Analysis values of roasted iron oxide after crushing and washing with water)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の工程例を示すフロー図、第
2図は従来の製造方法の工程例を示すフロー図である。
FIG. 1 is a flowchart showing a process example of the manufacturing method of the present invention, and FIG. 2 is a flowchart showing a process example of a conventional manufacturing method.

Claims (2)

【特許請求の範囲】[Claims] (1)、湿式亜鉛精錬の副産物である亜鉛浸出残渣を還
元性雰囲気で酸浸出し、得られた浸出液を予備中和し、
更に炭酸カルシウムまたは消石灰でpH4〜5まで中和
して液中のケイ素、アルミニウム等を石膏と共に沈澱さ
せて液から分離する第一工程、 沈澱を分離したあとの第一工程の溶液に、銅イオンと亜
鉛末を添加することによって、溶液中の砒素を砒化銅の
形態で沈澱させ、この沈澱を液から分離する第二工程、 沈澱を分離したあとの第二工程の溶液を鉄濃度35g/
l以下にしてオートクレーブ中で200℃以上の温度で
酸化性ガスと反応させ、この反応により溶液中の第一鉄
イオンを酸化して酸化鉄(α−Fe_2O_3)を主成
分とする鉄化合物を沈澱させ、この沈澱を液から分離す
る第三工程、 第三工程で得られた鉄化合物含有沈澱に水を加えてスラ
リー化して溶解成分を溶出させ、溶出液を分離したあと
乾燥および焙焼する第四工程、そして、 第四工程で得られた酸化鉄を粉砕し、水を加えてスラリ
ー化して溶解成分を溶出させ、溶出液を分離したあと乾
燥する第五工程、 からなるフェライト磁性材料用高品位酸化鉄粉末の製造
方法。
(1) The zinc leaching residue, which is a byproduct of wet zinc smelting, is acid leached in a reducing atmosphere, and the obtained leachate is pre-neutralized,
The first step is to further neutralize the solution to pH 4-5 with calcium carbonate or slaked lime to precipitate silicon, aluminum, etc. in the solution along with gypsum and separate it from the solution. After separating the precipitate, copper ions are added to the solution in the first step. In the second step, the arsenic in the solution is precipitated in the form of copper arsenide by adding copper arsenide and zinc powder, and this precipitate is separated from the liquid.
1 or less and react with an oxidizing gas at a temperature of 200°C or higher in an autoclave, and this reaction oxidizes ferrous ions in the solution and precipitates an iron compound whose main component is iron oxide (α-Fe_2O_3). The third step is to separate the precipitate from the liquid, and the third step is to add water to the iron compound-containing precipitate obtained in the third step to form a slurry to elute the dissolved components, and after separating the eluate, dry and roast it. 4 steps, and a 5th step of pulverizing the iron oxide obtained in the fourth step, adding water to make a slurry to elute the dissolved components, separating the eluate and drying it. A method for producing high-grade iron oxide powder.
(2)第一工程の予備中和後の溶液は、第一鉄イオンお
よび亜鉛イオンを主成分とし、マグネシウム、カルシウ
ム、ナトリウム、カリウム、砒素、ケイ素を含有する特
許請求の範囲第1項記載のフェライト磁性材料用高品位
酸化鉄粉末の製造方法。
(2) The solution after pre-neutralization in the first step is mainly composed of ferrous ions and zinc ions, and contains magnesium, calcium, sodium, potassium, arsenic, and silicon. A method for producing high-grade iron oxide powder for ferrite magnetic materials.
JP60156877A 1985-07-18 1985-07-18 Production of high-quality iron oxide powder for ferrite magnetic material Pending JPS6221716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60156877A JPS6221716A (en) 1985-07-18 1985-07-18 Production of high-quality iron oxide powder for ferrite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60156877A JPS6221716A (en) 1985-07-18 1985-07-18 Production of high-quality iron oxide powder for ferrite magnetic material

Publications (1)

Publication Number Publication Date
JPS6221716A true JPS6221716A (en) 1987-01-30

Family

ID=15637340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60156877A Pending JPS6221716A (en) 1985-07-18 1985-07-18 Production of high-quality iron oxide powder for ferrite magnetic material

Country Status (1)

Country Link
JP (1) JPS6221716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267669A (en) * 1987-04-23 1988-11-04 Murata Mach Ltd Method for stopping rotation of rewinding package in automatic winder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63267669A (en) * 1987-04-23 1988-11-04 Murata Mach Ltd Method for stopping rotation of rewinding package in automatic winder

Similar Documents

Publication Publication Date Title
EP1097247B1 (en) A method for isolation and production of magnesium based products
Min et al. Removal and stabilization of arsenic from anode slime by forming crystal scorodite
CA1076368A (en) Upgrading the nickel content from low grade nickel lateritic iron ores by a combined process of segregation and magnetic separation or flotation
KR20080016607A (en) A process for the treatment of electric and other furnace dusts and residues containing zinc oxides and zinc ferrites
US5204084A (en) Hydrometallurgical production of zinc oxide from roasted zinc concentrates
JP5374040B2 (en) Precipitation of iron oxide from acidic iron salt solutions.
US5089242A (en) Method for selectively separating a non-ferrous metal
EA018749B1 (en) Method for treating nickel laterite ore
US3856512A (en) Processing titaniferous iron ores for the recovery of aluminum, chromium, iron, titanium and vanadium
USRE29598E (en) Method for recovering vanadium-values from vanadium-bearing iron ores and iron ore concentrates
US5762891A (en) Process for stabilization of arsenic
JP5133403B2 (en) Method for producing Fe, Ni-containing raw material, ferronickel mass using the Fe, Ni-containing raw material, and method for producing the same
JPS589815A (en) Manufacture of high purity alumina
US3776717A (en) Method for processing of red mud
JP3197288B2 (en) Simultaneous wet treatment of zinc concentrate and zinc leaching residue
WO1994012675A1 (en) Beneficiation of titaniferous ores
US2417101A (en) Titaniferous magnetite treatment
US4137293A (en) Producing gypsum and magnetite from ferrous sulfate and separating
CA1338370C (en) Process for recovering non-ferrous metal values, especially nickel, cobalt, copper and zinc, by using melt and melt coating sulphation, from raw materials containing said metals
US4244925A (en) Method for production of alkali metal chromates from chrome ores
US2718455A (en) Process for producing basic iron sulfate
JPS6221716A (en) Production of high-quality iron oxide powder for ferrite magnetic material
US2381565A (en) Chromium recovery
CN113136488A (en) Wet treatment process for iron vitriol slag in zinc hydrometallurgy
AU767802B2 (en) Sulfatisation process for metal extraction from sulfide ores