JPS622158B2 - - Google Patents

Info

Publication number
JPS622158B2
JPS622158B2 JP56176981A JP17698181A JPS622158B2 JP S622158 B2 JPS622158 B2 JP S622158B2 JP 56176981 A JP56176981 A JP 56176981A JP 17698181 A JP17698181 A JP 17698181A JP S622158 B2 JPS622158 B2 JP S622158B2
Authority
JP
Japan
Prior art keywords
control valve
piston
communication passage
mechanisms
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56176981A
Other languages
Japanese (ja)
Other versions
JPS5877197A (en
Inventor
Masao Noguchi
Kyoshi Sano
Kimyoshi Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56176981A priority Critical patent/JPS5877197A/en
Publication of JPS5877197A publication Critical patent/JPS5877197A/en
Publication of JPS622158B2 publication Critical patent/JPS622158B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 この発明は2台の圧縮機構を並設した回転式の
密閉型圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary hermetic compressor in which two compression mechanisms are arranged in parallel.

従来、2台の圧縮機を並列に運転したり、片側
運転して能力制御する方式や、2台の圧縮機構を
同じ密閉容器内に配設して、前記の並列運転なら
びに片側運転と同様な運転を行なつて能力制御す
る2−圧縮機方式が考えられている。しかし、振
動および騒音が大きいため、問題であつた。
Conventionally, two compressors have been operated in parallel or on one side to control capacity, and two compression mechanisms have been installed in the same sealed container to achieve the same type of operation as the above-mentioned parallel and one-sided operation. A two-compressor system is being considered in which the capacity is controlled by operating the compressor. However, it was a problem because of the large vibration and noise.

回転式の密閉型圧縮機において、振動および騒
音が生じるのは次の理由による。この種圧縮機で
は、偏心して回転するピストンの回転に伴ないシ
リンダ内の気体が圧縮されるが、所定回転位置で
圧縮気体を放出すると、急激にシリンダの内圧が
低下する。この内圧の変化が偏心しているピスト
ンに作用するため、ピストンのシヤフト回りのト
ルク変動となる。このトルク変動が軸受等を介し
て密閉容器に伝わり、振動および騒音の原因とな
る。詳しくは、前記トルク変動と、前記シヤフト
を回転させる電動機構のシヤフト回転数変動に伴
なう電磁力変動と、慣性力変動との合力が振動発
生原因となる。圧縮機を並列運動した場合は、前
記トルク変動が重なり合い、回転振動エネルギが
2倍となるため、密閉容器に伝わる振動伝播も大
きくなり、騒音放散もより一層大きくなる。
The reason why vibration and noise occur in a rotary hermetic compressor is as follows. In this type of compressor, the gas inside the cylinder is compressed as the eccentrically rotating piston rotates, but when the compressed gas is released at a predetermined rotational position, the internal pressure of the cylinder drops rapidly. This change in internal pressure acts on the eccentric piston, resulting in torque fluctuations around the piston shaft. This torque fluctuation is transmitted to the sealed container via bearings and the like, causing vibration and noise. Specifically, the vibration is caused by the resultant force of the torque fluctuation, the electromagnetic force fluctuation accompanying the shaft rotational speed fluctuation of the electric mechanism that rotates the shaft, and the inertial force fluctuation. When the compressors are operated in parallel, the torque fluctuations overlap and the rotational vibration energy is doubled, which increases vibration propagation to the closed container and further increases noise dissipation.

また、従来、このような振動および騒音の抑制
を図つた回転型圧縮機として、2つの圧縮機構を
設け、そのピストンの偏心部を180゜ずらしたも
のが提案されている(実開昭52−109207号公
報)。これによれば、幾分かは振動抑制効果が得
られる。
In addition, as a rotary compressor designed to suppress such vibration and noise, a rotary compressor has been proposed in which two compression mechanisms are provided and the eccentric portions of the pistons are shifted by 180 degrees (Utility Model Opening in 1973). Publication No. 109207). According to this, a vibration suppressing effect can be obtained to some extent.

しかし、両圧縮機構の回転方向が同じ方向であ
るため、偏心部が180゜ずれていても、各圧縮機
構のトルク変動力は同方向に重なり合い、やはり
振動および騒音が大きくなる。
However, since both compression mechanisms rotate in the same direction, even if the eccentric portions are deviated by 180 degrees, the torque fluctuation forces of each compression mechanism overlap in the same direction, resulting in increased vibration and noise.

この発明の目的は、圧縮動作に伴なつてピスト
ンに生じたトルク変動により密閉容器が振動する
ことを抑制し、騒音低減を図ることである。
An object of the present invention is to suppress vibrations of a closed container due to torque fluctuations generated in a piston due to compression operation, and to reduce noise.

この発明の密閉型圧縮機は、密閉容器と、各々
シリンダとこのシリンダ内で回転する偏心ピスト
ンと仕切ベーンとからなり互いに同軸心に並設さ
れて前記密閉容器に収納されかつ前記ピストンの
回転方向が互いに逆の一対の圧縮機構と、これら
一対の圧縮機構の前記シリンダ内の空間間に吐出
孔近傍領域で連通する連通路と、ころ連通路を開
閉する連通路制御弁と、前記各圧縮機構の前記ピ
ストンの位置を各々検出するピストン位置検知機
構と、これらピストン位置検知機構の検知信号を
受け前記両ピストンの回転角度が互いに逆方向で
同じ大きさという位置関係がくずれたときに前記
連通制御弁を開き動作させる制御弁制御装置とを
備えたものである。
The hermetic compressor of the present invention includes a hermetic container, a cylinder, an eccentric piston rotating within the cylinder, and a partition vane, each arranged coaxially in parallel with each other and housed in the hermetic container, and in the direction of rotation of the piston. a pair of compression mechanisms with opposite sides to each other, a communication passage that communicates between the spaces in the cylinders of the pair of compression mechanisms in a region near the discharge hole, a communication passage control valve that opens and closes the roller communication passage, and each of the compression mechanisms. a piston position detection mechanism that detects the position of each of the pistons; and a communication control system when the positional relationship in which the rotation angles of both pistons are the same in opposite directions is broken in response to detection signals from these piston position detection mechanisms. It is equipped with a control valve control device that opens and operates the valve.

この発明の構成によると、回転方向が逆の一対
の圧縮機構を、同軸心に位置して同じ密閉容器に
設置しているため、各圧縮機構のシヤフト回りに
生じる振動原因となる各力の合力が、全く正負逆
となつて密閉容器に伝わる。そのため、密閉容器
に生じる両圧縮機構からの振動が相殺され、低振
動、低騒音となる。前記振動原因となる各力の合
力とは、シリンダ内のガス圧力変動による力、シ
ヤフト回転数変動に伴う電磁力の変動、および慣
性力の変動の合力である。
According to the configuration of this invention, since a pair of compression mechanisms with opposite rotational directions are installed coaxially in the same sealed container, the resultant force of each force that causes vibrations occurs around the shaft of each compression mechanism. However, the polarity is completely reversed and is transmitted to the sealed container. Therefore, the vibrations generated in the closed container from both compression mechanisms cancel each other out, resulting in low vibration and low noise. The resultant force of the forces that cause the vibration is the resultant force of the force due to the gas pressure fluctuation in the cylinder, the electromagnetic force fluctuation due to the shaft rotational speed fluctuation, and the inertial force fluctuation.

また、各圧縮機構に生じる負荷の不均一などに
より、両圧縮機構の回転数に差が生じると、前述
の相殺による振動抑制効果が減じられるが、次の
ように常に互いの回転数の一致が得られる。すな
わち、両圧縮機構のピストンの回転位置がずれる
と、これがピストン位置検知信号に検知されて連
通路制御弁が開く。そのため、両圧縮機構のシリ
ンダ内室に圧力差がないように瞬時にバランスさ
れる。この結果、負荷トルク変動も等しくなるた
め、回転数が等しくなるとともに、両ピストンの
位置関係も次第に等しくなり、再び完全な振動相
殺効果が得られるようになる。このように、常に
振動相殺による振動抑制効果が得られる。
Additionally, if there is a difference in the rotation speeds of both compression mechanisms due to uneven loads on each compression mechanism, the vibration suppression effect due to the above-mentioned cancellation will be reduced, but as shown below, the rotation speeds must always match each other. can get. That is, when the rotational positions of the pistons of both compression mechanisms deviate, this is detected by the piston position detection signal and the communication passage control valve opens. Therefore, the pressure is instantly balanced so that there is no pressure difference in the cylinder interiors of both compression mechanisms. As a result, the load torque fluctuations become equal, the rotational speed becomes equal, and the positional relationship between both pistons gradually becomes equal, so that a complete vibration canceling effect can be obtained again. In this way, vibration suppression effects can always be obtained through vibration cancellation.

この発明の一実施例を図面に示す。図におい
て、1は密閉容器であり、これに圧入されたステ
ータ2,3と、シヤフト6,7にそれぞれ焼嵌め
により固定されたロータ4,5とで、2台の電動
機構26,25が構成されている。8,9は、2
台のそれぞれの圧縮機構を示す。これらの圧縮機
構8,9のうち圧縮機構8は、シリンダフレーム
10、ピストン12および仕切り壁16によつて
構成されている。シリンダ内室18は軸受14と
仕切り壁16によつて気密にタンク室24と遮断
され、かつピストン12にスプリング22によつ
て圧接されている仕切ベーン20によつて高圧室
と低圧室に仕切られている。他方の圧縮機構9も
前記圧縮機構8と同様に構成されている。すなわ
ち、シリンダフレーム11、ピストン13、仕切
ベーン19および仕切り壁16によつてシリンダ
内室17がタンク内室23と気密に遮断され、か
つ、高圧室と低圧室とに仕切られて構成されてい
る。シリンダ内室17とシリンダ内室18とは冷
媒通路としては、区分されて構成される。圧縮機
構8においては、冷媒は吸入管(図示せず)から
吸込まれてシリンダ内室18に流入し、これが電
動機構26の駆動力によるピストン12の回転に
よつて圧力上昇する。圧力上昇した冷媒は、吐出
弁28を押し開いて、タンク内室24に噴出さ
れ、さらに電動機構26の冷媒通路を経て、吐出
管30に向う。他方の圧縮機構9の冷媒流れの順
路は、前記吸入管と独立した吸入管から吸い込ん
だ冷媒が、シリンダ内室17に流入し、電動機構
25の駆動力によるピストン13の回転によつて
圧力上昇し、吐出弁27を押し開いて、タンク内
室23に至り吐出管29に向うように構成されて
いる。圧縮機構8,9の潤滑手段は独立して適切
に構成されている。シリンダ内室17とシリンダ
内室18とはそれぞれの吐出孔31,32を含む
シリンダ内室高圧側領域間において、仕切り壁1
6に設けられた連通路33で連通している。この
連通路33は、摺動可能に設定した磁性部材34
とこの磁性部材34を吸引するコイル36′とか
らなる連通路制御弁36で閉じるように構成され
ている。さらに、仕切ベーン20,19と連動可
能にしたピストン位置検知機構38,39を配設
してある。このピストン位置検知機構38,39
は、仕切ベーン20,19に永久磁石部材を固定
し、この永久磁石部材の磁界変化を検出するコイ
ルをシリンダフレーム10,11に配設して構成
されている。さらに、前記ピストン位置検知機構
38,39からの検知信号を、ターミナル端子4
0,41を通じて取り出し、比較回路42に入力
して比較信号を作り、これを通電制御回路43へ
導き、比較信号に応じて駆動電圧源44からの電
流を制御して、ターミナル端子37に印加し、連
通路制御弁36を制御するように構成されてい
る。また、圧縮機構8と9のそれぞれのピストン
12と13が互いに逆回転するように電動機構2
6と25とが設計され、配設されている。
An embodiment of the invention is shown in the drawings. In the figure, 1 is a sealed container, and two electric mechanisms 26, 25 are configured by stators 2, 3 press-fitted into the container, and rotors 4, 5 fixed to shafts 6, 7 by shrink fitting, respectively. has been done. 8,9 is 2
Each compression mechanism of the table is shown. Of these compression mechanisms 8 and 9, the compression mechanism 8 is composed of a cylinder frame 10, a piston 12, and a partition wall 16. The cylinder inner chamber 18 is airtightly isolated from the tank chamber 24 by the bearing 14 and the partition wall 16, and is partitioned into a high pressure chamber and a low pressure chamber by a partition vane 20 which is pressed against the piston 12 by a spring 22. ing. The other compression mechanism 9 is also configured similarly to the compression mechanism 8. That is, the cylinder interior chamber 17 is airtightly isolated from the tank interior chamber 23 by the cylinder frame 11, piston 13, partition vane 19, and partition wall 16, and is partitioned into a high pressure chamber and a low pressure chamber. . The cylinder inner chamber 17 and the cylinder inner chamber 18 are configured to be separated as refrigerant passages. In the compression mechanism 8, the refrigerant is sucked through a suction pipe (not shown) and flows into the cylinder inner chamber 18, and its pressure increases as the piston 12 rotates due to the driving force of the electric mechanism 26. The refrigerant whose pressure has increased pushes open the discharge valve 28, is ejected into the tank interior 24, and further passes through the refrigerant passage of the electric mechanism 26 toward the discharge pipe 30. The flow path of the refrigerant in the other compression mechanism 9 is such that refrigerant is sucked in from a suction pipe independent of the suction pipe, flows into the cylinder inner chamber 17, and its pressure increases due to the rotation of the piston 13 by the driving force of the electric mechanism 25. Then, the discharge valve 27 is pushed open to reach the tank inner chamber 23 and to the discharge pipe 29. The lubrication means of the compression mechanisms 8, 9 are suitably constructed independently. The cylinder inner chamber 17 and the cylinder inner chamber 18 are defined by the partition wall 1 between the cylinder inner chamber high pressure side regions including the respective discharge holes 31 and 32.
They communicate through a communication path 33 provided at 6. This communication path 33 is connected to a magnetic member 34 that is set to be slidable.
The communication passage control valve 36 is configured to be closed by a communication passage control valve 36 consisting of a coil 36' that attracts the magnetic member 34, and a coil 36' that attracts the magnetic member 34. Furthermore, piston position detection mechanisms 38 and 39 which can be interlocked with the partition vanes 20 and 19 are provided. This piston position detection mechanism 38, 39
The permanent magnet members are fixed to partition vanes 20 and 19, and coils for detecting changes in the magnetic field of the permanent magnet members are arranged in cylinder frames 10 and 11. Furthermore, the detection signals from the piston position detection mechanisms 38 and 39 are transmitted to the terminal terminal 4.
0 and 41, input it to the comparator circuit 42 to create a comparison signal, guide it to the energization control circuit 43, control the current from the drive voltage source 44 according to the comparison signal, and apply it to the terminal terminal 37. , and is configured to control the communication passage control valve 36. Further, the electric mechanism 2 is arranged so that the pistons 12 and 13 of the compression mechanisms 8 and 9 rotate in opposite directions.
6 and 25 are designed and installed.

つぎに、この密閉型圧縮機の動作を説明する。
初めに、2台の圧縮機構8,9が共に回転してい
る場合、それぞれのシリンダ内室17,18に流
入した冷媒がピストン12,13の圧縮作用によ
つて圧力上昇し、かつ一定圧に達した後、吐出弁
27,28を開いて吐出され、さらに、上死点が
仕切ベーン19,20点近傍に達すると、急激に
ほぼ吸入圧まで低下する。この一連の過程におけ
る圧力変化において、これに対応して、前記冷媒
の圧力が偏心しているピストン12,13に作用
するため、一種の負荷トルク変動として生れると
同時に、電動機構25,26のトルク変動の原因
にもなる。これが従来の単体の圧縮機のように圧
縮機の軸まわりの一次の回転振動の発生原因にな
る。この上に、回転数の二次成分のトルク変動に
よる回転振動、さらに電源周波数の2倍の電磁ト
ルク変動による回転振動が同時に発生する。その
ため、例えば従来の圧縮機を能力制御方式のマル
チ空調用として、2台並列するとすれば、圧縮機
の回転振動エネルギが2倍になるため、圧縮機を
固定している基板、外枠に対する振動伝播も大き
くなり、これに対応して騒音放散も非常に大きく
なるため問題である。しかし、この実施例の圧縮
機の場合、それぞれの圧縮機構8,9が逆回転す
るように設定してあるため、互いの冷媒圧力によ
る負荷トルク変動は相殺されて零に近い程度に小
さくなる。また、回転数の二次成分のトルク変動
や、電磁トルク変動も逆位相になるため、これら
の合成された変動も非常に小さくなる。この結
果、振動や騒音が大幅に軽減される。
Next, the operation of this hermetic compressor will be explained.
First, when the two compression mechanisms 8 and 9 are rotating together, the pressure of the refrigerant flowing into the respective cylinder inner chambers 17 and 18 increases due to the compression action of the pistons 12 and 13, and the pressure remains constant. After that, the discharge valves 27 and 28 are opened and the pressure is discharged, and when the top dead center reaches the vicinity of the partition vane 19 and 20 points, the pressure suddenly decreases to almost the suction pressure. Correspondingly to the pressure changes in this series of processes, the pressure of the refrigerant acts on the eccentric pistons 12 and 13, resulting in a kind of load torque fluctuation, and at the same time the torque of the electric mechanisms 25 and 26. It can also cause fluctuations. This causes primary rotational vibration around the shaft of the compressor as in a conventional single compressor. In addition to this, rotational vibrations due to torque fluctuations of the secondary component of the rotational speed and further rotational vibrations due to electromagnetic torque fluctuations twice the power supply frequency occur simultaneously. Therefore, for example, if two conventional compressors are used in parallel for multi-air conditioning using a capacity control system, the rotational vibration energy of the compressor will be doubled, which will cause vibrations to the board and outer frame that fixes the compressor. This is a problem because the propagation becomes large and the noise dissipation correspondingly becomes very large. However, in the case of the compressor of this embodiment, since the compression mechanisms 8 and 9 are set to rotate in opposite directions, the load torque fluctuations caused by the respective refrigerant pressures cancel each other out and become small to the extent close to zero. Further, since the torque fluctuation of the second-order component of the rotational speed and the electromagnetic torque fluctuation are also in opposite phase, the combined fluctuation thereof is also extremely small. As a result, vibration and noise are significantly reduced.

これにつき、第2図ないし第4図とともに説明
する。第1図の圧縮機構9に作用する力は、シヤ
フト7の回りのθ方向に関し第2図のようにな
る。曲線Aはガス圧力変動力、曲線Bはシヤフト
7の回転数変動に伴なう電磁力の変動力、曲線C
は慣性力の変動力であり、その合力は曲線Dとな
る(なお、シヤフト7の1回転を360゜としてい
る)。
This will be explained with reference to FIGS. 2 to 4. The force acting on the compression mechanism 9 in FIG. 1 is as shown in FIG. 2 in the θ direction around the shaft 7. Curve A is the fluctuating force of gas pressure, curve B is the fluctuating force of electromagnetic force due to the fluctuation of the rotation speed of shaft 7, and curve C is
is the fluctuating force of the inertial force, and the resultant force is curve D (note that one revolution of the shaft 7 is 360°).

一方、圧縮機構8に作用力は、シヤフト6の回
転方向θ′が圧縮機構9と反対方向であるため、
第3図に示すように、シヤフト6の回りのθ方向
に関し、圧縮機9からの作用力と全く正負逆の力
が作用する。曲線A′〜D′は第2図の曲線A〜D
に対応する力を示す。
On the other hand, the force acting on the compression mechanism 8 is because the rotational direction θ' of the shaft 6 is opposite to that of the compression mechanism 9.
As shown in FIG. 3, in the θ direction around the shaft 6, a force that is completely opposite in positive and negative to the acting force from the compressor 9 acts. Curves A' to D' are curves A to D in Figure 2.
Shows the power corresponding to

したがつて、密閉容器1に励起される振動は、
第4図に示すように、圧縮機構9からの作用力
(曲線E)と圧縮機構8からの作用力(曲線F)
とが、シヤフト6,7の軸心回りに関し、正負逆
の関係になつて、作用して発生することになる。
この場合に、両圧縮機構8,9に作用するガス圧
力変動力の大きさが大きく、かつ各圧縮機構8,
9の回転数が等しい場合は、作用力E,Fは完全
に打消し合い、結果的に圧縮機の振動は、曲線G
で示すように大幅に小さくなり、騒音が低減され
る。
Therefore, the vibration excited in the closed container 1 is
As shown in FIG. 4, the acting force from the compression mechanism 9 (curve E) and the acting force from the compression mechanism 8 (curve F)
This occurs because the positive and negative polarities are inversely related to each other around the axes of the shafts 6 and 7.
In this case, the magnitude of the gas pressure fluctuation force acting on both compression mechanisms 8, 9 is large, and each compression mechanism 8,
When the rotational speeds of the compressors 9 and 9 are equal, the acting forces E and F completely cancel each other out, and as a result, the vibration of the compressor follows the curve G.
As shown in , the noise is significantly reduced.

しかし、冷凍サイクルの負荷条件の違いによつ
て、2台のそれぞれの圧縮機構8,9の冷媒圧力
に差が現われ、それぞれの圧縮機構8,9の回転
数に差が生じると、合成された負荷トルク変動に
は、相殺効果が悪くなり、むしろ大きくなる場合
が生じる。これに対してはそれぞれのシリンダ内
室17,18の高圧側の冷媒圧力がピストン1
2,13の吐出工程の終了まで常に等しくなるよ
うにしておけば、それぞれのピストン12,13
にかかる圧力による負荷トルクが逆位相で、かつ
ほぼ等しい状態に保つことができる。この結果、
回転数はほぼ等しく、同期に近い速度で回転する
ために、合成された負荷トルク変動は相殺効果が
大きくなり、大幅に軽減できることになる。
However, due to differences in the load conditions of the refrigeration cycle, a difference appears in the refrigerant pressure of the two compression mechanisms 8 and 9, and a difference in the rotational speed of the compression mechanisms 8 and 9. With respect to load torque fluctuations, there may be cases where the offsetting effect becomes worse and even becomes larger. In contrast, the refrigerant pressure on the high pressure side of each cylinder inner chamber 17, 18 is
If the pistons 2 and 13 are always kept equal until the end of the discharge process, the pistons 12 and 13, respectively.
It is possible to maintain the load torque due to the pressure applied to the two in opposite phases and in a substantially equal state. As a result,
Since the rotation speeds are approximately equal and the rotation speeds are close to synchronous, the resulting load torque fluctuations have a large canceling effect and can be significantly reduced.

この実施例の場合、それぞれのシリンダ内室1
7,18の高圧側領域間に圧力差が生じている間
では、ピストン12,13の位置関係が異なつて
いるため、これに対してそれぞれの仕切ベーン1
9,20の変位差が生じ、さらに、それぞれのピ
ストン位置検知機構38,39の検知信号、比較
回路42の比較信号が異なり、これに対応して、
通電制御回路43の通電流が決定される。さらに
この駆動電流に応じて、連通路制御弁36により
連通路33が開通するように制御されて、それぞ
れのシリンダ内室17,18間に圧力差がないよ
うに瞬時にバランスされる。この結果、負荷トル
ク変動も等しくなるため、回転数が等しくなると
同時に、ピストン12,13の位置関係も次第に
等しくなる。この結果、それぞれのピストン1
2,13にかかる冷媒圧による負荷トルク変動
は、大きさがほぼ等しく、位相が逆向きとなるた
め、合成された負荷トルク変動は大幅に軽減され
る。また、これらに対応して二次のトルク変動成
分および電磁トルク変動も大きさがほぼ等しく、
位相が逆位相となるため、これらの合成された負
荷トルク変動も非常に小さくなる。また、それぞ
れのシリンダ内室17,18で高圧側の圧力差に
応じて連通路が変化するため、体積効率の低下を
極力押えることが可能になる。
In this embodiment, each cylinder inner chamber 1
Since the positional relationship of the pistons 12 and 13 is different while there is a pressure difference between the high-pressure side regions of the partition vanes 1 and 18,
A displacement difference of 9 and 20 occurs, and furthermore, the detection signals of the respective piston position detection mechanisms 38 and 39 and the comparison signal of the comparison circuit 42 are different, and correspondingly,
The current flowing through the current flowing control circuit 43 is determined. Further, in accordance with this drive current, the communication passage 33 is controlled to open by the communication passage control valve 36, and the pressure is instantly balanced so that there is no pressure difference between the respective cylinder inner chambers 17, 18. As a result, the load torque fluctuations become equal, so that the rotational speeds become equal and at the same time, the positional relationship between the pistons 12 and 13 gradually becomes equal. As a result, each piston 1
The load torque fluctuations due to the refrigerant pressure applied to the refrigerant pressures 2 and 13 are approximately equal in magnitude and have opposite phases, so that the combined load torque fluctuations are significantly reduced. Correspondingly, the secondary torque fluctuation components and electromagnetic torque fluctuations are also approximately equal in magnitude,
Since the phases are opposite, the combined load torque fluctuation also becomes very small. Further, since the communication path changes in each cylinder inner chamber 17, 18 according to the pressure difference on the high pressure side, it becomes possible to suppress a decrease in volumetric efficiency as much as possible.

一方、マルチ冷凍サイクルを停止して、片側の
冷凍サイクルのみ運転する場合、これに応じて一
方の圧縮機構8,9を停止する必要がある。この
場合、連通路33を遮断して、それぞれのシリン
ダ内室17,18間の冷媒の流れを止めることが
必要である。この実施例では、一方の圧縮機構8
が停止すると、この停止した圧縮機構8に対応す
るピストン位置検知機構38の検知信号が零にな
り、この場合の通電制御回路43の出力も零にな
るように通電制御回路43が構成されている。こ
れより連通路制御弁36がOFF状態になり、連
通路33が閉じられるように設計されている。こ
のため、動作中の圧縮機構9から停止中の圧縮機
構8への冷媒の移動がなく、従来の圧縮機単体の
運転と同様の作用で運転される。なお、圧縮機構
8のみを運転する場合も同様である。そのため、
一台分の負荷トルク変動が生じるが、圧縮機全体
の慣性項が二台分に相当して大きいために回転振
動は小さくなる。この結果、システムとしての振
動およびそれに応じた騒音も小さくすることがで
きる。
On the other hand, when the multi-refrigeration cycle is stopped and only one of the refrigeration cycles is operated, it is necessary to stop one of the compression mechanisms 8 and 9 accordingly. In this case, it is necessary to block the communication passage 33 to stop the flow of refrigerant between the respective cylinder inner chambers 17 and 18. In this embodiment, one compression mechanism 8
When the compression mechanism 8 stops, the detection signal of the piston position detection mechanism 38 corresponding to the stopped compression mechanism 8 becomes zero, and the energization control circuit 43 is configured so that the output of the energization control circuit 43 in this case also becomes zero. . The communication passage control valve 36 is then turned OFF, and the communication passage 33 is designed to be closed. Therefore, there is no movement of refrigerant from the compressor mechanism 9 in operation to the compressor mechanism 8 in a stopped state, and the compressor is operated in the same manner as a conventional compressor alone. Note that the same applies when only the compression mechanism 8 is operated. Therefore,
Although the load torque fluctuation for one compressor occurs, the rotational vibration becomes small because the inertia term of the entire compressor is large enough to correspond to that for two compressors. As a result, the vibration of the system and the corresponding noise can also be reduced.

以上のように、この発明の密閉型圧縮機は、回
転方向が逆の一対の圧縮機構を、同軸心に配置し
て同じ密閉容器に設置しているため、各圧縮機構
のシヤフト回りに生じる振動原因となる各力の合
力が、全く正負逆となつて密閉容器に伝わる。そ
のため、密閉容器に生じる両圧縮機構からの振動
が相殺され、低振動、低騒音となる。前記振動原
因となる各力の合力とは、シリンダ内のガス圧力
変動による力、シヤフト回転数変動に伴う電磁力
の変動、および慣性力の変動の合力である。
As described above, in the hermetic compressor of the present invention, a pair of compression mechanisms with opposite rotational directions are arranged coaxially and installed in the same closed container, so vibrations generated around the shafts of each compression mechanism are The resultant force of each of the causes is transmitted to the sealed container with completely opposite polarity. Therefore, the vibrations generated in the closed container from both compression mechanisms cancel each other out, resulting in low vibration and low noise. The resultant force of the forces that cause the vibration is the resultant force of the force due to the gas pressure fluctuation in the cylinder, the electromagnetic force fluctuation due to the shaft rotational speed fluctuation, and the inertial force fluctuation.

また、各圧縮機構に生じる負荷の不均一などに
より、両圧縮機構の回転数に差が生じると、前述
の相殺による振動抑制効果が減じられるが、次の
ように常に互いの回転数の一致が得られる。すな
わち、両圧縮機構のピストンの回転位置がずれる
と、これがピストン位置検知信号に検知されて連
通路制御弁が開く。そのため、両圧縮機構のシリ
ンダ内室に圧力差がないように瞬時にバランスさ
れる。この結果、負荷トルク変動も等しくなるた
め、回転数が等しくなるとともに、両ピストンの
位置関係も次第に等しくなり、再び完全な振動相
殺効果が得られる。このように、常に振動相殺に
よる振動抑制効果が得られるという効果がある。
Additionally, if there is a difference in the rotation speeds of both compression mechanisms due to uneven loads on each compression mechanism, the vibration suppression effect due to the above-mentioned cancellation will be reduced, but as shown below, the rotation speeds must always match each other. can get. That is, when the rotational positions of the pistons of both compression mechanisms deviate, this is detected by the piston position detection signal and the communication passage control valve opens. Therefore, the pressure is instantly balanced so that there is no pressure difference in the cylinder interiors of both compression mechanisms. As a result, the load torque fluctuations become equal, so the rotational speed becomes equal, and the positional relationship between both pistons gradually becomes equal, again achieving a complete vibration canceling effect. In this way, there is an effect that a vibration suppressing effect can always be obtained by vibration cancellation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の断面図、第2図
はその一方の圧縮機構に作用する力の計算値の説
明図、第3図は他方の圧縮機構に作用する力の計
算値の説明図、第4図は同じくその密閉容器に励
起される振動の説明図である。 1……密閉容器、8,9……圧縮機構、10,
11……シリンダ、12,13……ピストン、2
5,26……電動機構、33……連通路、36…
…連通路制御弁、38,39……ピストン位置検
知機構、42……比較回路、43……通電制御回
路。
Fig. 1 is a sectional view of one embodiment of the present invention, Fig. 2 is an explanatory diagram of the calculated value of the force acting on one compression mechanism, and Fig. 3 is an illustration of the calculated value of the force acting on the other compression mechanism. The explanatory diagram, FIG. 4, is also an explanatory diagram of vibrations excited in the closed container. 1... Airtight container, 8, 9... Compression mechanism, 10,
11...Cylinder, 12,13...Piston, 2
5, 26...Electric mechanism, 33...Communication path, 36...
...Communication passage control valve, 38, 39...Piston position detection mechanism, 42...Comparison circuit, 43...Electrification control circuit.

Claims (1)

【特許請求の範囲】 1 密閉容器と、各々シリンダとこのシリンダ内
で回転する偏心ピストンと仕切ベーンとからなり
互いに同軸心に並設されて前記密閉容器に収納さ
れかつ前記ピストンの回転方向が互いに逆の一対
の圧縮機構と、これら一対の圧縮機構の前記シリ
ンダ内の空間間に吐出孔近傍領域で連通する連通
路と、この連通路を開閉する連通路制御弁と、前
記各圧縮機構の前記ピストンの位置を各々検出す
るピストン位置検知機構と、これらピストン位置
検知機構の検知信号を受け前記両ピストンの回転
角度が互いに逆方向で同じ大きさという位置関係
がくずれたときに前記連通路制御弁を開き動作さ
せる制御弁制御装置とを備えた密閉型圧縮機。 2 前記連通路制御弁が電磁石からなり、前記ピ
ストン位置検知機構が前記各圧縮機構の前記仕切
ベーンに連通する永久磁石部材とこの永久磁石部
材の磁界の変化を検知するコイルとからなり、前
記制御弁制御装置が前記両ピストン位置検知機構
の出力を比較する比較回路とこの比較回路の出力
に応じて前記制御弁制御装置に通電する通電制御
回路とからなる特許請求の範囲第1項記載の密閉
型圧縮機。
[Scope of Claims] 1. Comprised of a sealed container, a cylinder, an eccentric piston rotating within the cylinder, and a partition vane, each of which is arranged coaxially in parallel and housed in the sealed container, and the rotational directions of the pistons are mutually aligned. a pair of opposite compression mechanisms; a communication passage that communicates between the spaces in the cylinders of the pair of compression mechanisms in a region near the discharge hole; a communication passage control valve that opens and closes the communication passage; a piston position detection mechanism that detects the position of each piston, and a communication passage control valve that detects the positional relationship in which the rotation angles of both pistons are opposite to each other and have the same magnitude in response to detection signals from these piston position detection mechanisms. A hermetic compressor equipped with a control valve control device that opens and operates the compressor. 2. The communication path control valve is composed of an electromagnet, and the piston position detection mechanism is composed of a permanent magnet member that communicates with the partition vane of each compression mechanism and a coil that detects a change in the magnetic field of this permanent magnet member, and The seal according to claim 1, wherein the valve control device comprises a comparison circuit that compares the outputs of both the piston position detection mechanisms, and an energization control circuit that energizes the control valve control device in accordance with the output of the comparison circuit. mold compressor.
JP56176981A 1981-10-31 1981-10-31 hermetic compressor Granted JPS5877197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56176981A JPS5877197A (en) 1981-10-31 1981-10-31 hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56176981A JPS5877197A (en) 1981-10-31 1981-10-31 hermetic compressor

Publications (2)

Publication Number Publication Date
JPS5877197A JPS5877197A (en) 1983-05-10
JPS622158B2 true JPS622158B2 (en) 1987-01-17

Family

ID=16023087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56176981A Granted JPS5877197A (en) 1981-10-31 1981-10-31 hermetic compressor

Country Status (1)

Country Link
JP (1) JPS5877197A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864193A (en) * 2021-10-28 2021-12-31 珠海凌达压缩机有限公司 Crankshaft assembly, pump body assembly and compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109207U (en) * 1976-02-16 1977-08-19

Also Published As

Publication number Publication date
JPS5877197A (en) 1983-05-10

Similar Documents

Publication Publication Date Title
US4726739A (en) Multiple cylinder rotary compressor
KR102292995B1 (en) Scroll compressor
JPH04179887A (en) Scroll type compressor
CN101611229A (en) Rotary compressor
JPH05172076A (en) Multi-cylinder rotary compressor
KR100315954B1 (en) Compressor
KR100879177B1 (en) Rotary two stage compressor
AU2006327370A1 (en) Motor and compressor
JPS622158B2 (en)
JPS627398B2 (en)
JPH06317262A (en) Rotation speed detecting device for scroll type fluid machine
JPH0882296A (en) Rolling piston expander
JP2004084568A (en) Multistage compression type rotary compressor and displacement capacity ratio setting method therefor
WO2019021432A1 (en) Scroll compressor
JPS6291680A (en) Variable delivery type scroll compressor
JP2002364564A (en) Scroll fluid machine
JP2005344683A (en) Hermetic compressor
WO2019187272A1 (en) Rotary compressor
WO2025074539A1 (en) Screw compressor and refrigeration cycle device
JPS6229784A (en) Scroll type fluid machine
JP2790515B2 (en) 2-cylinder rotary compressor
US20230069288A1 (en) Motor and electric compressor
JP2635395B2 (en) Rotary compressor
JPH02181092A (en) Rotary compressor
JP2516773Y2 (en) Scroll compressor