JPS6221548B2 - - Google Patents

Info

Publication number
JPS6221548B2
JPS6221548B2 JP5001680A JP5001680A JPS6221548B2 JP S6221548 B2 JPS6221548 B2 JP S6221548B2 JP 5001680 A JP5001680 A JP 5001680A JP 5001680 A JP5001680 A JP 5001680A JP S6221548 B2 JPS6221548 B2 JP S6221548B2
Authority
JP
Japan
Prior art keywords
fluorine compound
fire
agent
fire extinguisher
organic fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5001680A
Other languages
Japanese (ja)
Other versions
JPS56145869A (en
Inventor
Shintaro Fuji
Toshiro Mochama
Yutaka Nakamura
Junpei Chokai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MYATA KOGYO KK
Original Assignee
MYATA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MYATA KOGYO KK filed Critical MYATA KOGYO KK
Priority to JP5001680A priority Critical patent/JPS56145869A/en
Publication of JPS56145869A publication Critical patent/JPS56145869A/en
Publication of JPS6221548B2 publication Critical patent/JPS6221548B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は粉末消火剀の改良に関し、その目的ず
するずころは、埓来の粉末消火剀が有しおいる速
消性を倱うこずなく消火しおか぀可燃性液䜓䞊に
十分に浮遊するこずができるように匷力な撥氎・
撥油性を持たせ、しかそ环積効果が有り、消火埌
の再着火を確実に防止するこずの可胜な消火剀を
埗るようにしたものである。 䞀般に粉末消火剀は、朚材或いは油火灜等のい
ずれを問わず消火胜力が高く、か぀充填する消火
噚の容量を小さくするこずができるこず、たた火
灜の皮類を問わずに著るしい速消性を有するもの
であるずころから広く䜿甚されおいる。 しかしかかる䞀般の粉末消火剀は必ずしもその
火灜の皮類のすべおに぀いお完壁な効力を期埅し
埗るものではなく、特に油火灜における再着火阻
止胜力に劣るずいう難点がある。䞀般に粉末消火
剀の䞻剀は火灜により熱分解しお、炭酞ガス、ア
ンモニアガス等の䞍燃性ガスを発生したり、或い
は燃焌の負觊媒䜜甚を発揮する化合物が遞ばれ、
たずえばアンモニりム等のリン酞塩類ず炭酞氎玠
ナトリりム等の炭酞塩類等が消火噚より有効に攟
射し易い化合物ずしお甚いられ、さらに消火噚内
で固たらないように添加剀ずしおこれにホワむト
カヌボン、雲母、タルク等ずさらに撥氎性・防湿
性を持たせるために、シリコヌン化合物、金属石
鹞、ワツクス等で加工を行な぀おいる。 ずころが、ここに䜿甚されるシリコヌン化合物
等は氎をはじく性胜を有する反面、逆に油に察し
おは溶け易い芪油性を有するために、可燃性液䜓
に接觊するず沈柱しおしたうずいう欠点を有す
る。すなわちこれは泡消火剀のように可燃性液䜓
衚面に环積しお空気を遮断する胜力が粉末消火剀
にはなく、このために可燃郚分を瞬時に消火しお
したわなければ䞀旊消火した郚分に他の火源があ
る堎合には再着火するのを免れないずいうこずを
意味する。 そこで粉末消火剀の䞻剀及び流動性改良剀に察
しお北玠化合物による凊理を斜すこずによ぀お䞊
蚘した難点を解決する詊みが本発明者らの研究に
よりすすめられおきた。 すなわち䞊蚘した粉末消火剀を油面䞊に浮かせ
るようにするためには粉末消火剀を有機北玠化合
物にお凊理するにが最も奜たしいこずが刀明し
た。 ここに䜿甚される北玠化合物の内容をしめせ
ば、〜20個奜たしくは〜12個の炭玠原子を有
する北玠化脂肪族基を有し、氎䞍溶性25℃で
重量以䞋で䞻芁転移枩床即ち融点、ガラス転
移点あるいは軟化点20℃以䞊で分子量が玄700〜
箄200000の非粘着性化合物である。 このような有機北玠化合物の䟋を挙げれば次の
通りである。 (1) 炭玠数〜20のフルオロアルキル基を有する
ビニル単量䜓の単独重合䜓たたは北玠を含たな
いビニル単量䜓ずの共重合䜓。 フルオロアルキル基を有するビニル単量䜓の
䟋ずしおは次のものが挙げられる。 C7F15CH2OCOCHCH2 C8F17SO2NC3H7CH2CH2OCOCHCH2 C8F17SO2NCH3CH2CH2OCOCCH3
CH2 C7F15CONC2H5CH2CH2OCOCCH3
CH2 CF3CF25CH2CH2OCOCHCH2 CF3CF29CH2CH2OCHCH2 C8F17CH211OCOCCH3CH2 CF32CFOCH25OCOCHCH2 C8F17SO2NCH2CH2OCOCHCH22 C8F17SO2NCH3CH210COOCH2CHCH2 C8F17SO2NC2H5CH2CH2OCOCH CHCOOC4H9 C6F13SO2NCH3CH2CH2OCOCHCH2 C8F17SO2NHCH2CH2SO2CHCH2 フツ玠を含たないビニル単量䜓の䟋ずしおは
゚チレン、プロピレン、プチレン、ブタゞ゚
ン、む゜プレン、クロロプレン、塩化ビニル、
塩化ビニリデン、スチレン、メタアクリル
酞のアルコヌルたたはアルキルアミンいずれ
も炭玠数20以䞋ずの゚ステルたたはアミド、
ゞアセトンアクリルアミド、―メチロヌルア
クリルアミド、アクリロニトリル、アクリルア
ミド、ビニルアセテヌト、シロキサン結合を有
するビニル化合物などがあげられる。いずれの
単量䜓も混合しお䜿甚するこずができる。 これらの単独重合䜓あるいは共重合䜓はビニ
ル重合の公知の方法によ぀お行なうこずができ
るが、䟋えばラゞカル開始剀を䜿甚した溶液重
合、或いぱマルゞペン重合等が䞀般的であ
る。 重合䜓の分子量は開始剀濃床連鎖移動剀の皮
類ず濃床によ぀お奜たしい範囲に調敎出来る
が、䞀般に3000以䞊が奜たしい。 (2) 炭玠数〜20のフルオロアルキル基含有の䞀
䟡もしくは倚䟡アルコヌルず北玠化されおもよ
い䞀䟡もしくは倚䟡カルボン酞ずのポリ゚
ステル。北玠化されおもよい䞀䟡もしくは倚䟡
アルコヌルず炭玠数〜20のフルオロアルキル
基を有する䞀䟡もしくは、倚䟡カルボン酞ずの
ポリ゚ステル。 この堎合䜿甚される成分の䟋を次にあげる。 C9F19CH2CH2OH C8F17SO2NC3H7CH2CH2OH C8F17SO2NCH2CH2OH2 C8F17SO2NC2H5CH2CHOHCH2OH C7F15COOH C8F17SO2NC3H7CH2COOH 安息銙酞、アゞピン酞、セバシン酞、フタル
酞、マレむン酞、トリメリツト酞、゚チレング
リコヌルモノメチル゚ヌテル、゚チレングリコ
ヌル、プロピレングリコヌル、ゞ゚チレングリ
コヌル、グリセリン、ポリプロピレングリコヌ
ル、―゚チルヘキサノヌル、ステアリルアリ
コヌル。 前蚘ポリ゚ステルは分子量が1000以䞊が
奜たしい。 (3) 炭玠数〜20のフルオロアルキル基を有する
䞀䟡たたは倚䟡アルコヌル堎合によ぀おは北
玠を含たない䞀䟡たたは倚䟡アルコヌルを混ぜ
おも良いず䞀䟡たたは倚䟡む゜シアネヌト䟋
えばプニルヘ゜シアネヌト、トリレンゞむ゜
シアネヌト、ゞプニルメタンゞむ゜シアネヌ
ト、ヘキサメチレンゞむ゜シアネヌト、ポリメ
チレンポリプニルむ゜シアネヌトずのポ
リりレタン。 該ポリりレタンは分子量が700以䞊のも
のが奜たしい。 (4) 炭玠数〜20のフルオロアルキル基を有する
゚ポキシ化合物䟋えば の単独重合䜓および奜たしくはプロピレンオ
キサむド、゚ピクロルヒドリンなどの北玠䞍含
゚ポキシ化合物ずの共重合䜓。 このような重合䜓の分子量は3000以䞊が奜た
しい。 ここに䜿甚される有機北玠化合物は、分子䞭
に重量以䞊の北玠原子を有するこずが必芁
であり、又分子構造䞭に芪氎性の官胜基や構造
及び消火しようずするガ゜リン、アルコヌルな
どの有機溶剀に易溶性を䞎える官胜基や構造を
有さないこずが奜たしい。 しかしおここに䜿甚される有機北玠化合物は、
濃床0.5重量の垌釈液溶液たたは分散液を
䜜り、これにポリ゚ステル100加工糞織物を浞
し、り゚ツト、り゚むト・ピツクアツプ50織
物ず等重量の垌釈液が付着したたで絞り、170
℃で分也燥させた埌凊理織物をAATCC Test
Method 118―1966法で枬定したずき、以䞊即
ち―テトラデカンが織物に浞透しないような撥
油性を有すべきであり、たた圓該有機北玠化合物
は前蚘ず同様の凊理織物をAATCC Test
Method 22―197.1スプレヌ法で枬定したずき50
以䞊即ち氎が織物の裏面ぞにじみ出ないような撥
氎性を瀺すべきである。 䞊蚘の有機北玠化合物による凊理方法の出珟は
氎のみらずメタノヌル或いは溶剀の劂き油火灜に
察しおも極めお良奜な消火胜力を有するずころの
粉末消火剀を埗るこずができるこずを確認した。 ずころが䞊蚘した粉末消火剀に察しお有機北玠
化合物をも぀お凊理を斜こした消火剀は結局末だ
実甚化させるたでに至぀おいない。 すなわち、研究結果によればその最倧の原因は
有機北玠化合物が高䟡であるにもかかわらず、粉
末消火剀を可燃性液䜓衚面に浮遊させるために十
分な凊理をおこなうずすれば、その添加量を想像
以䞊に倚くする必芁があり、実際問題ずしお高䟡
な北玠化合物を倚量に添加するこずは著るしくコ
スト高ずなるのみならず、衚面付着性があたり良
奜ではないずこから、その添加量の割合に比しお
可燃液䜓衚面に浮遊する床合いはさしお向䞊しな
いのであたり効果がないこずがわか぀た。 そこで本発明者らは䞊蚘した問題を根本的に解
決すべくさらに研究を進めた結果、高䟡な北玠化
合物を倚量に添加する必芁がある原因は、消火剀
の䞻剀及び流動性改良剀の各粒子はそれ自䜓が倚
孔質であるばかりでなく、その衚面に倚くの凹凞
郚を有する結果著るしく衚面積が倧きい。したが
぀おかかる各粒子に察しお北玠化合物による凊理
を斜こしおも、その倚くは䞊蚘した各粒子の倚孔
質郚内及び倚くの凹凞郚内に吞収されるばかりで
なく、䞀般的にその衚面に察しお北玠化合物を均
䞀に付着させるこずが困難であるこずがわか぀
た。 そこで本発明においおは、粉末消火剀の䞻剀及
び流動性改良剀に察し、あらかじめアクリル暹
脂、ポリスチレン等の各皮暹脂、あるいはロゞ
ン、酢酞セルロヌズ等の倩然有機物による衚面改
質剀を溶剀垌釈、あるいは熱溶融たたはスプレヌ
ドラむダヌのうちいずれかの手段により消火剀の
各粒子を被芆凊理した埌、これに撥氎・撥油性を
有する有機北玠化合物を添加凊理するこずによ぀
お理想的な粉末消火剀を埗るようにしたものであ
る。 すなわち、本発明においおは有機北玠化合物に
よる凊理を行う前に、消火剀の䞻剀及び流動性改
良剀に察しお予めアクリル等の各皮暹脂、或いは
ロゞン等の倩然有機物による衚面改質剀による被
芆凊理を斜すこずにより各粒子の倚孔質衚面及び
凹凞郚をある皋床平滑化するこずにより衚面積を
小さくさせお有機北玠化合物の付着性を良奜にす
るのみならず付着面積を少なくするこずにより有
機北玠化合物の添加䜿甚量を極端に枛少させ、そ
の少量添加により有効に付着し、しかもメタノヌ
ル等の可燃性液䜓衚面に十分に浮遊させるこずの
できるようにしたものである。 䞊蚘した衚面改質剀ずしおは、消火剀の粒子に
付着しおその倚孔質衚面及び凹凞郚をある皋床平
滑化させお衚面積を小さくするこずのできる物質
であればよく、たずえばアクリル暹脂、ポリスチ
レン、メラミン暹脂、゚ポキシ暹脂、ポリ゚チレ
ン、ポリピロピレン等の各皮暹脂類、或いはロゞ
ン、酢酞セルロヌズ等の倩然有機物などもその䞀
䟋ずしお挙げるこずができる。 衚面改質剀による䞻剀或いは流動性改良剀の凊
理方法に関しおは特に限定せられるべきではない
が、その䞀䟋を瀺せば䞻剀或いは流動性改良剀を
撹拌しながら䞊蚘した衚面改質剀の垌釈溶液を噎
霧ノズルで吹き぀け也燥させる䞀次凊理工皋ず、
さらにその也燥したものを撹拌させながら有機北
玠化合物の垌釈溶液を噎霧也燥させる二次凊理工
皋ずからなるものである。しかし、䞊蚘した䞀次
ず二次の凊理工皋を経ずに、衚面改質剀ず有機北
玠化合物ずの混合物を甚いお凊理するこずによ぀
おも、性胜䞊においおほずんど劣るこずなしに、
実甚的凊理を行うこずができる。たた、これらの
ほか、熱溶融、あるいはスプレヌドラむダヌによ
る被芆凊理手段も有効である。 たた、䞊蚘した有機北玠化合物及び衚面改質剀
の垌釈に䜿甚される溶液ずしおは、凊理剀の皮類
によ぀おも異なるが、䞀般に無機・有機溶剀が䜿
甚され、具䜓䟋ずしおは、 ●――トリクロル゚タン ●ゞクロロメタン ●メチル・゚チル・ケトン ●む゜プロピルアルコヌル ●アセトン ●トル゚ン 等の䜿甚が考えられる。 さらに衚面改質剀の䜿甚量に぀いおみればその
䞻剀或いは流動性改良剀に察する付着量は効果が
瀺される皋床でよいが逆に倚すぎる堎合には䞍経
枈であるばかりでなく消火性胜も悪圱響を及がす
堎合も考えられるので䞀般に0.001〜10重量の
範囲が奜たしい。たた消火剀の浮遊効果をより䞀
局向䞊させるためにシラスバルヌンや䞭空ガラス
球等の添加も考えられる。 䞊蚘したように本発明の粉末消火剀は䞀般火灜
のみならず油火灜に察しおも著効を発揮し、さら
に通垞の朚材火灜、電気火灜、シラン化合物、ア
ルキルアルミニりム等の有機金属火灜などにも有
効であるほか、匕火が危惧される液䜓衚面にこれ
を予め散垃しおおけば火灜の予防効果も著るし
い。 そしお䜕よりも本発明にあ぀おは消火剀の䞻剀
及び流動性改良剀に察しお安䟡な衚面改質剀をも
぀お凊理させるものであるるために高䟡な有機北
玠化合物の添加を最少限床に枛少させるこずがで
きるからこの皮粉末消火剀ずしおのコストの著る
しい䜎枛をはかるこずができる。 実斜䟋  衚面改質剀ずしお ゚ポキシ暹脂をMEKにより0.5ずの濃床
溶液に垌釈し、これにリン酞二氎玠アンモニりム
100郚、助剀ホワむトカヌボン郚の混合物
を撹拌混入しお䞊蚘垌釈液100を甚意し、さら
にこれを80℃で時間也燥させお埌乳鉢ですり぀
ぶした埌30メツシナの篩でふるい分けお凊理粉末
を埗た䞀次凊理工皋。 有機北玠化合物ずしお C8F17SO2NCH3CH2CH2OCOCHCH290
郚、β―ヒドロキシ゚チルメタクリレヌト10郚及
びアゟビスむ゜ブチロニトリル郚をベンゟトリ
フルオラむド1000郚䞭に溶かし、これを80℃で
時間撹拌するこずにより分子量玄䞇の共重合䜓
溶液を埗、さらにこの溶液を――トリクル
゚タンで垌釈しお垌釈液を埗た。 䞊蚘䞀次凊理工皋で埗られた粉末ず有機北玠化
合物垌釈液ずを混合し、これを80℃で時間也燥
埌乳鉢ですり぀ぶした埌30メツシナの篩でふるい
分けるこずにより凊理粉末を埗た二次凊理工
皋。 次に口埄30mmの耇数の詊料ピンに30mlの可燃性
液䜓をずり、それぞれにの䞊蚘凊理粉末をふ
りかけた埌時間を経おから凊理粉末の浮遊の皋
床を芳察した。 さらにガラスロヌト70φの䞋端を厚手の玙
で抌え、凊理剀60を入れた埌にその玙をはずし
お流れ萜ちる床合いを枬定した。 たた最埌に䞊蚘凊理薬剀を消火噚に1.2Kg充填
し、これを宀枩でケ月間攟眮した埌、その固結
状態を芳察した。 䞊蚘の各芳察結果は第衚に瀺す通りである。
尚、再着火性に぀いおみれば〇印を付したものは
裞火を液面䞊cmに近づけたが匕火するこずがな
か぀た。 この実隓結果によれば消火剀の䞻剀及び流動性
改良剀に察する有機北玠化合物の添加量を、衚面
改質剀による前凊理を斜こさない堎合に比べお玄
70節枛させるこずができた。
The present invention relates to an improvement of a dry powder fire extinguishing agent, the purpose of which is to extinguish a fire without losing the quick extinguishing properties of conventional dry powder fire extinguishers, and to be able to sufficiently float on flammable liquids. Strong water repellent and
To obtain a fire extinguishing agent that is oil repellent, has a cumulative effect, and can reliably prevent re-ignition after extinguishing the fire. In general, dry powder extinguishing agents have high extinguishing ability regardless of whether it is a wood or oil fire, can be filled with a smaller volume of fire extinguisher, and have extremely fast extinguishing properties regardless of the type of fire. It is widely used because of its characteristics. However, such general dry powder extinguishing agents cannot necessarily be expected to be completely effective against all types of fires, and have a drawback in that they are particularly poor in their ability to prevent re-ignition in oil fires. In general, the main agent of dry powder fire extinguishers is a compound that thermally decomposes during a fire and generates nonflammable gas such as carbon dioxide gas or ammonia gas, or that exhibits a negative catalytic effect on combustion.
For example, phosphates such as ammonium and carbonates such as sodium bicarbonate are used as compounds that are easily emitted by fire extinguishers, and additives such as white carbon, mica, and talc are added to these to prevent them from solidifying in the fire extinguisher. In order to make it water-repellent and moisture-proof, it is treated with silicone compounds, metal soap, wax, etc. However, although the silicone compounds used here have the ability to repel water, they have lipophilic properties that make them easily soluble in oil, so they have the disadvantage that they precipitate when they come into contact with flammable liquids. In other words, powder extinguishing agents do not have the ability to accumulate on the surface of flammable liquids and cut off air like foam does, and for this reason, unless the flammable parts are extinguished instantly, other extinguishing parts This means that if there is a fire source, it will inevitably ignite again. Accordingly, the inventors of the present invention have made efforts to solve the above-mentioned problems by treating the main agent and fluidity improver of powder fire extinguishing agents with a fluorine compound. That is, it has been found that it is most preferable to treat the dry powder fire extinguishing agent with an organic fluorine compound in order to make the powder fire extinguishing agent float on the oil surface. The fluorine compound used herein has a fluorinated aliphatic group having 3 to 20 carbon atoms, preferably 6 to 12 carbon atoms, and is water-insoluble (1 at 25°C).
% by weight or less), the main transition temperature (melting point, glass transition point, or softening point) is 20℃ or higher, and the molecular weight is about 700~
Approximately 200,000 non-stick compounds. Examples of such organic fluorine compounds are as follows. (1) A homopolymer of a vinyl monomer having a fluoroalkyl group having 3 to 20 carbon atoms or a copolymer with a vinyl monomer that does not contain fluorine. Examples of vinyl monomers having a fluoroalkyl group include the following. C 7 F 15 CH 2 OCOCH=CH 2 C 8 F 17 SO 2 N (C 3 H 7 ) CH 2 CH 2 OCOCH=CH 2 C 8 F 17 SO 2 N (CH 3 ) CH 2 CH 2 OCOC (CH 3 )=
CH 2 C 7 F 15 CON(C 2 H 5 ) CH 2 CH 2 OCOC(CH 3 )=
CH 2 CF 3 (CF 2 ) 5 CH 2 CH 2 OCOCH=CH 2 CF 3 (CF 2 ) 9 CH 2 CH 2 OCH=CH 2 C 8 F 17 (CH 2 ) 11 OCOC(CH 3 )=CH 2 (CF 3 ) 2 CFO (CH 2 ) 5 OCOCH=CH 2 C 8 F 17 SO 2 N (CH 2 CH 2 OCOCH=CH 2 ) 2 C 8 F 17 SO 2 N (CH 3 ) (CH 2 ) 10 COOCH 2 CH=CH 2 C 8 F 17 SO 2 N (C 2 H 5 )CH 2 CH 2 OCOCH CHCOOC 4 H 9 C 6 F 13 SO 2 N(CH 3 )CH 2 CH 2 OCOCHCH 2 C 8 F 17 SO 2 NHCH 2 CH 2 SO 2 CHCH 2 Fluorine Examples of vinyl monomers that do not include ethylene, propylene, butylene, butadiene, isoprene, chloroprene, vinyl chloride,
Vinylidene chloride, styrene, ester or amide of (meth)acrylic acid with alcohol or alkylamine (all having 20 or less carbon atoms);
Examples include diacetone acrylamide, N-methylolacrylamide, acrylonitrile, acrylamide, vinyl acetate, and vinyl compounds having a siloxane bond. Any of the monomers can be used in combination. These homopolymers or copolymers can be produced by a known method of vinyl polymerization, for example, solution polymerization using a radical initiator or emulsion polymerization is common. The molecular weight of the polymer can be adjusted within a preferred range depending on the concentration of the initiator and the type and concentration of the chain transfer agent, but it is generally preferably 3000 or more. (2) A (poly)ester of a monohydric or polyhydric alcohol containing a fluoroalkyl group having 3 to 20 carbon atoms and a monohydric or polyhydric carboxylic acid that may be fluorinated. A (poly)ester of a monohydric or polyhydric alcohol which may be fluorinated and a monohydric or polyhydric carboxylic acid having a fluoroalkyl group having 3 to 20 carbon atoms. Examples of ingredients used in this case are listed below. C 9 F 19 CH 2 CH 2 OH C 8 F 17 SO 2 N (C 3 H 7 ) CH 2 CH 2 OH C 8 F 17 SO 2 N (CH 2 CH 2 OH) 2 C 8 F 17 SO 2 N ( C 2 H 5 ) CH 2 CH (OH) CH 2 OH C 7 F 15 COOH C 8 F 17 SO 2 N (C 3 H 7 ) CH 2 COOH Benzoic acid, adipic acid, sebacic acid, phthalic acid, maleic acid, trimellitic acid, ethylene glycol monomethyl ether, ethylene glycol, propylene glycol, diethylene glycol, glycerin, polypropylene glycol, 2-ethylhexanol, stearyl alcohol. The (poly)ester preferably has a molecular weight of 1000 or more. (3) A monohydric or polyhydric alcohol having a fluoroalkyl group having 3 to 20 carbon atoms (in some cases, a fluorine-free monohydric or polyhydric alcohol may be mixed) and a monohydric or polyhydric isocyanate, e.g. (Poly)urethanes with phenyl hesocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, polymethylene polyphenyl isocyanate. The (poly)urethane preferably has a molecular weight of 700 or more. (4) Epoxy compounds having a fluoroalkyl group having 3 to 20 carbon atoms, e.g. Homopolymers of and preferably copolymers with fluorine-free epoxy compounds such as propylene oxide and epichlorohydrin. The molecular weight of such a polymer is preferably 3000 or more. The organic fluorine compound used here must have 5% by weight or more of fluorine atoms in its molecule, and must also have a hydrophilic functional group or structure in its molecular structure, as well as the presence of gasoline, alcohol, etc. to extinguish the fire. It is preferable that it does not have a functional group or structure that provides easy solubility in organic solvents. However, the organic fluorine compound used here is
Prepare a diluted liquid (solution or dispersion) with a concentration of 0.5% by weight, soak a 100% polyester textured yarn fabric in it, and squeeze it until it reaches 50% (the same weight of the diluted liquid as the fabric has adhered).
AATCC Test of post-treated fabrics dried at ℃ for 3 minutes
When measured by Method 118-1966 method, it should have oil repellency of 4 or more, that is, n-tetradecane does not penetrate into the fabric, and the organic fluorine compound should have an oil repellency of 4 or more, that is, n-tetradecane does not penetrate into the fabric.
Method 22—50 when measured using the 197.1 spray method
In other words, it should exhibit water repellency such that water does not ooze out to the back side of the fabric. The advent of the treatment method using the above-mentioned organic fluorine compounds has confirmed that it is possible to obtain a dry powder fire extinguishing agent that has extremely good extinguishing ability not only for water fires but also for oil fires such as methanol or solvents. However, a fire extinguishing agent prepared by treating the above-mentioned powder fire extinguishing agent with an organic fluorine compound has not yet been put into practical use. In other words, the research results show that the main reason for this is that although organic fluorine compounds are expensive, if sufficient treatment is carried out to make the powder fire extinguisher float on the surface of the flammable liquid, the amount added must be reduced. It is necessary to add more than expected, and as a practical matter, adding a large amount of expensive fluorine compounds not only significantly increases costs, but also the surface adhesion is not very good, so the proportion of the amount added must be adjusted. It was found that the degree of floating on the surface of the combustible liquid did not improve much compared to that of the flammable liquid, so it was not very effective. Therefore, the present inventors conducted further research to fundamentally solve the above-mentioned problems, and found that the reason for the need to add large amounts of expensive fluorine compounds is that each particle of the main agent and fluidity improver of the fire extinguisher is Not only is it porous itself, but it also has many irregularities on its surface, resulting in a significantly large surface area. Therefore, even if each particle is treated with a fluorine compound, most of the fluorine compound is not only absorbed into the porous parts and many irregularities of each particle mentioned above, but also generally affects the surface of the particle. It was found that it was difficult to uniformly deposit the fluorine compound. Therefore, in the present invention, a surface modifier made of various resins such as acrylic resin, polystyrene, or natural organic substances such as rosin and cellulose acetate is added to the main agent and fluidity improver of the powder fire extinguisher by diluting it with a solvent or by heat-melting it. After coating each particle of the fire extinguishing agent using either a spray dryer or a spray dryer, an ideal powder fire extinguishing agent can be obtained by adding an organic fluorine compound having water and oil repellency to the particles. This is what I did. That is, in the present invention, before treatment with an organic fluorine compound, the main agent and fluidity improver of the fire extinguisher are coated with a surface modifier made of various resins such as acrylic or natural organic substances such as rosin. By applying this treatment, the porous surface and irregularities of each particle are smoothed to some extent, thereby reducing the surface area and improving the adhesion of the organic fluorine compound. The amount is extremely reduced, and by adding a small amount, it can be effectively attached and moreover, it can be sufficiently suspended on the surface of a flammable liquid such as methanol. The above-mentioned surface modifier may be any substance that can adhere to the particles of the extinguishing agent and smoothen the porous surface and uneven parts to some extent to reduce the surface area, such as acrylic resin, polystyrene, melamine, etc. Examples include various resins such as resin, epoxy resin, polyethylene, and polypropylene, and natural organic substances such as rosin and cellulose acetate. The method of treating the base agent or fluidity improver with the surface modifier is not particularly limited, but one example is to add a diluted solution of the surface modifier described above while stirring the base agent or fluidity modifier. A primary treatment step of spraying and drying with a spray nozzle;
The process further includes a secondary treatment step in which a dilute solution of an organic fluorine compound is spray-dried while stirring the dried product. However, even if the treatment is performed using a mixture of a surface modifier and an organic fluorine compound without going through the above-mentioned primary and secondary treatment steps, there is almost no deterioration in performance.
Practical processing can be performed. In addition to these methods, thermal melting or coating treatment using a spray dryer is also effective. In addition, as solutions used to dilute the above-mentioned organic fluorine compounds and surface modifiers, inorganic and organic solvents are generally used, although they vary depending on the type of treatment agent. Specific examples include: ●1- 1-1 Trichloroethane ●Dichloromethane ●Methyl/ethyl/ketone ●Isopropyl alcohol ●Acetone ●Toluene, etc. may be used. Furthermore, regarding the amount of surface modifier used, it is sufficient that the amount of surface modifier attached to the base agent or fluidity improver is sufficient to show its effect, but on the other hand, if it is too large, it is not only uneconomical but also has a negative effect on fire extinguishing performance. Generally, the range of 0.001 to 10% by weight is preferable. Additionally, in order to further improve the floating effect of the extinguishing agent, it is also possible to add glass balloons, hollow glass bulbs, etc. As mentioned above, the powder extinguishing agent of the present invention is highly effective against not only general fires but also oil fires, and is also effective against ordinary wood fires, electrical fires, and organic metal fires such as silane compounds and alkyl aluminum fires. Not only is it effective, but it is also highly effective in preventing fires if it is sprayed on surfaces of liquids that are at risk of catching fire. Above all, in the present invention, since the main agent and fluidity improver of the fire extinguisher are treated with an inexpensive surface modifier, the addition of expensive organic fluorine compounds can be reduced to a minimum. Therefore, the cost of this type of powder fire extinguishing agent can be significantly reduced. Example 1 As a surface modifier: Epoxy resin was diluted with MEK to 0.5% and 5% concentration solutions, and ammonium dihydrogen phosphate was added to this solution.
Prepare 100g of the above diluted solution by stirring and mixing a mixture of 100 parts and 4 parts of auxiliary agent (white carbon), dry this at 80℃ for 4 hours, grind it in a mortar, and sieve through a 30 mesh sieve. A treated powder was obtained (primary treatment step). As an organic fluorine compound: C 8 F 17 SO 2 N(CH 3 )CH 2 CH 2 OCOCH=CH 2 90
10 parts of β-hydroxyethyl methacrylate and 1 part of azobisisobutyronitrile were dissolved in 1000 parts of benzotrifluoride, and the mixture was heated at 80°C for 4 parts.
A copolymer solution having a molecular weight of about 30,000 was obtained by stirring for a period of time, and this solution was further diluted with 1-1-1 trickle ethane to obtain a diluted solution. The powder obtained in the above primary treatment step and the diluted organic fluorine compound were mixed, dried at 80°C for 1 hour, ground in a mortar, and then sieved through a 30-mesh sieve to obtain a treated powder (two (next processing step). Next, 30 ml of flammable liquid was placed on a plurality of sample pins each having a diameter of 30 mm, and 1 g of the above-mentioned treated powder was sprinkled onto each sample pin, and the degree of floating of the treated powder was observed after 1 hour had passed. Furthermore, the lower end of a glass funnel (70φ) was held down with thick paper, and after 60 g of the processing agent was added, the paper was removed and the degree to which it flowed was measured. Finally, 1.2 kg of the above-mentioned treatment agent was filled into a fire extinguisher, and after being left at room temperature for one month, the solidification state was observed. The above observation results are shown in Table 1.
Regarding re-ignitability, the items marked with an ○ did not catch fire even when an open flame was brought close to 1 cm above the liquid surface. According to the results of this experiment, the amount of organic fluorine compound added to the main agent and fluidity improver of the fire extinguisher was approximately 30% lower than when no pretreatment with the surface modifier was performed.
We were able to save 70%.

【衚】 実斜䟋  実斜䟋の過皋においお衚面改質剀ずしおアク
リル暹脂を䜿甚し、垌釈液ずしおゞクロロメタン
を甚いおみたずころ第衚に瀺す通りの効果を確
認した。
[Table] Example 2 When an acrylic resin was used as a surface modifier and dichloromethane was used as a diluent in the process of Example 1, the effects shown in Table 2 were confirmed.

【衚】【table】

【衚】 実斜䟋  実斜䟋の過皋においお衚面改質剀ずしお倩然
有機物に属するずころのロゞンを、前蚘実斜䟋
ず同䞀の垌釈液により䜿甚しおみたずころ第衚
に瀺す通りの効果を確認した。
[Table] Example 3 In the process of Example 1, rosin, which belongs to natural organic substances, was used as a surface modifier in the process of Example 2.
When the same dilution solution was used, the effects shown in Table 3 were confirmed.

【衚】 実斜䟋  ゚ポキシ暹脂のMEK垌釈溶液に、前蚘有機北
玠化合物の垌釈溶液を混合し、リン酞二氎玠アン
モニりム100郚、流動性改良剀ホワむトカヌボ
ン郚の混合物を撹拌しながら、䞊蚘混合物を
添加し80℃で時間也燥埌乳鉢ですり぀ぶしお30
メツシナの篩でふるい分け、凊理粉末を埗た。こ
れを甚いお枬定した結果、第衚で瀺す通りの効
果を確認した。
[Table] Example 4 A diluted solution of the organic fluorine compound was mixed with a diluted MEK solution of an epoxy resin, and while stirring a mixture of 100 parts of ammonium dihydrogen phosphate and 4 parts of a fluidity improver (white carbon), Add the above mixture and dry at 80℃ for 2 hours, then grind in a mortar for 30 minutes.
The mixture was sieved through a mesh sieve to obtain a treated powder. As a result of measurements using this, the effects shown in Table 4 were confirmed.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  消火剀の䞻剀及び流動性改良剀に察し、あら
かじめアクリル暹脂、ポリスチレン等の各皮暹
脂、あるいはロゞン、酢酞セルロヌズ等の倩然有
機物による衚面改質剀を溶剀垌釈、あるいは熱溶
融、たたはスプレヌドラむダヌのうちいずれかの
手段により消火剀の各粒子を被芆凊理した埌、こ
れに撥氎・撥油性を有する有機北玠化合物を添加
凊理しおなる粉末消火剀。
1. For the main agent and fluidity improver of the fire extinguisher, apply a surface modifier made of various resins such as acrylic resin or polystyrene, or natural organic substances such as rosin or cellulose acetate in advance by diluting with a solvent, melting with heat, or using a spray dryer. A powder fire extinguisher obtained by coating each particle of the fire extinguisher by any means, and then adding an organic fluorine compound having water and oil repellency thereto.
JP5001680A 1980-04-15 1980-04-15 Powder fire extinguishing substance Granted JPS56145869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001680A JPS56145869A (en) 1980-04-15 1980-04-15 Powder fire extinguishing substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001680A JPS56145869A (en) 1980-04-15 1980-04-15 Powder fire extinguishing substance

Publications (2)

Publication Number Publication Date
JPS56145869A JPS56145869A (en) 1981-11-12
JPS6221548B2 true JPS6221548B2 (en) 1987-05-13

Family

ID=12847196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001680A Granted JPS56145869A (en) 1980-04-15 1980-04-15 Powder fire extinguishing substance

Country Status (1)

Country Link
JP (1) JPS56145869A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096865A1 (en) * 2011-01-10 2012-07-19 3M Innovative Properties Company Fluorinated oxiranes as fire extinguishing compositions and methods of extinguishing fires therewith
CN108905038B (en) * 2018-08-27 2020-07-03 安埜理工倧孊 Micro-capsule fire extinguishing agent based on secondary shock wave throwing and preparation method thereof

Also Published As

Publication number Publication date
JPS56145869A (en) 1981-11-12

Similar Documents

Publication Publication Date Title
AU2005308999B2 (en) Fire extinguishing and/or fire-retardant compositions
EP0774279B1 (en) Water additive and method for fire prevention and fire extinguishing
JP2508760B2 (en) Water and oil repellent with dirt removability
EP0019795A1 (en) Powdery fire-extinguishing agent, and process for its preparation
CN1437497A (en) Fire-extinguishing agent, water for fire extinguishing, and method of fire extinguishing
JPH11506170A (en) Improved aqueous fouling prevention composition
US3459696A (en) Water-repellent compositions
CN103857715A (en) Water-repellent and oil-repellent composition
CA2585697C (en) Methods for preventing and/or extinguishing fires
US3480546A (en) Aqueous foam containing a waterswellable polymer flameproofing composition and process of making same
JPH01271407A (en) Fluorocarbon polymer and composition
CA2015679A1 (en) Water and oil repellent composition
CN109966688A (en) A kind of macromolecule hydrogel extinguishing chemical and preparation method thereof
JP2824514B2 (en) Fire extinguishing method
JPH07255870A (en) Extinguishing medium and its preparation
EP0109046B1 (en) Fire extinguishing composition
JPS6221548B2 (en)
JPS5925871A (en) Dust preventing agent
TW201331439A (en) Surface treatment agent
JPS5831932B2 (en) powder extinguishing agent
JP4221134B2 (en) Heat-sensitive gelling fire fighting water composition and fire fighting method
JPS5859277A (en) Water/oil repellent
JPH0142988B2 (en)
JPH08291468A (en) Fluorine-containing water and oil repellent composition and treating method
CN110124246A (en) A kind of preparation method of graphite ene-type high-efficiency environment friendly extinguishing chemical