JPS62214354A - Method and device for depth-directional analysis - Google Patents

Method and device for depth-directional analysis

Info

Publication number
JPS62214354A
JPS62214354A JP61058652A JP5865286A JPS62214354A JP S62214354 A JPS62214354 A JP S62214354A JP 61058652 A JP61058652 A JP 61058652A JP 5865286 A JP5865286 A JP 5865286A JP S62214354 A JPS62214354 A JP S62214354A
Authority
JP
Japan
Prior art keywords
solvent
sample
solution
depth
certain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61058652A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Soejima
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61058652A priority Critical patent/JPS62214354A/en
Publication of JPS62214354A publication Critical patent/JPS62214354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To analyze depth-directional variation of composition speedily with high accuracy up to a deep point without discrimination between a principle component and a fine-amount component by dissolving a sample in a fresh solvent inward from its surface and taking the solvent out with time. CONSTITUTION:When the sample 6 is dipped in the solvent 4 in a dissolving tank 2 for a certain time so that a surface to be analyzed contacts the solvent 4, the sample 6 begins to be solved out from the surface and a solution of components of the surface layer of the sample 6 up to certain depth is obtained. Then, a valve 8 is opened to take the solution out and a fresh solvent 4 is supplied to the dissolving tank 2 from a solvent tank 10; and the sample 6 is dipped again for the certain time, and then a solution of the sample 6 by certain depth from the surface exposed by said dissolution is produced. Thus, solvents 4 are changed at proper intervals of time to obtain solutions of the sample of every certain thickness in the depth direction. Those solutions are analyzed by a liquid sample analyzing device to know the depth-directional variation of the chemical composition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、素材や表面処理を施した材料の化学組成が表
面から内部に向ってどのように変化しているかを分析す
る方法及びその装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a method and apparatus for analyzing how the chemical composition of a raw material or surface-treated material changes from the surface toward the inside. It is related to.

(従来の技術) 素材自体に限らず1表面処理層やメッキ層、多層膜など
においても、深さ方向の分析に対するニーズは拡大して
きている。
(Prior Art) The need for depth analysis is expanding, not only for materials themselves but also for single surface treatment layers, plating layers, multilayer films, and the like.

深さ方向の組成変化を分析するにはいくつかの方法があ
る。
There are several methods to analyze composition changes in the depth direction.

(+)試料を一定量研磨しては研磨層又は母材を分析す
ることを繰り返す方法。
(+) A method of repeatedly polishing a certain amount of a sample and then analyzing the polished layer or base material.

この方法では操作が面倒であり、また、分析操作を自動
化することができない。
This method is cumbersome to operate and also cannot automate analysis operations.

(2)表面分析手法を用いる方法。(2) A method using a surface analysis method.

SIMS(二次イオン質量分析): この方法はへ単位で、微量元素の分析も可能である。し
かしμm1単位の比較的厚い層には適用することができ
ない。
SIMS (Secondary Ion Mass Spectrometry): This method is capable of analyzing trace elements in units of hemis. However, it cannot be applied to a relatively thick layer on the order of μm.

XPS(X線光電子分光、ESCA)やAES(オージ
ェ電子分光)とイオンエツチングの組み合わせによる方
法: この方法はへ単位の微量分析には適用することができず
、また、μm llj位の厚い店の分析に適用する場合
にも問題が多い。
A method using a combination of XPS (X-ray photoelectron spectroscopy, ESCA) or AES (Auger electron spectroscopy) and ion etching: This method cannot be applied to trace analysis in units of h There are also many problems when applied to analysis.

GDS (グロー放電スペクトロスコヒー):この方法
は上記のSIMSによる方法やXPSとイオンエツチン
グによる方法などと比べると。
GDS (Glow Discharge Spectroscopy): This method is compared to the above SIMS method and the XPS and ion etching method.

高速に分析を行なうことが可能であり、また、微量分析
も可能である。
It is possible to perform analysis at high speed, and also allows for trace analysis.

しかしながら、SIMSをはじめとするこれらの表面分
析手法による深さ方向の分析方法では、元素により選択
エツチングが行なわれるため、正確な分析結果を得る」
二で問題がある。
However, depth analysis methods using these surface analysis methods, such as SIMS, perform selective etching depending on the element, so accurate analysis results can be obtained.
There is a problem with the second one.

(3)試料を研磨又は破断して試料の断面を露出させ、
その断面にEl”’MAなどのマイクロビーム手法を適
用する方法: この方法では断面を露出させた試料を作成するのに手間
がかかり、また、深さ方向の平均情報を得ることが難し
いという問題がある。
(3) polishing or breaking the sample to expose the cross section of the sample;
A method of applying a microbeam method such as El'''MA to the cross section: This method requires time and effort to create a sample with an exposed cross section, and it is difficult to obtain average information in the depth direction. There is.

(発明が解決しようとする問題点) 本発明は試料の主成分又は微兄成分を問わず、かなり深
い所まで高速で高感度に組成の深さ方向の変化を分析す
ることのできる方法及びその装置を提供することを目的
とするものである。
(Problems to be Solved by the Invention) The present invention provides a method and method capable of analyzing changes in the composition in the depth direction at high speed and with high sensitivity to a considerable depth, regardless of whether it is the main component or the minor component of the sample. The purpose is to provide a device.

(問題点を解決するための手段) 本発明の方法では、新しい溶媒により試料を表面から内
部方向に向って溶解させ、その溶液を時間の経過ととも
に取り出し、取り出したそれぞれの溶液を液状試料分析
装置により分析する。
(Means for Solving the Problems) In the method of the present invention, a sample is dissolved inward from the surface using a new solvent, the solution is taken out over time, and each taken out solution is transferred to a liquid sample analyzer. Analyze by.

本発明方法を実施するには、例えば、試料をある時間溶
媒に浸した後、再びその試料を新しい溶媒にある時間浸
すことを繰り返し、それぞれの溶液を分析するようにし
てもよいし、又は溶媒をある流量で流しておき、試料を
その溶媒に浸し、流出する溶液を適当な時間ごとに取り
出して、もしくは連続的に分析するようにしてもよい。
To carry out the method of the present invention, for example, a sample may be immersed in a solvent for a certain period of time, and then the sample may be immersed again in a new solvent for a certain period of time, and each solution may be analyzed. The solution may be allowed to flow at a certain flow rate, the sample immersed in the solvent, and the flowing solution taken out at appropriate intervals or analyzed continuously.

また1本発明の装置は、実施例を示す図に示されるよう
に、試料(6)を溶媒(4)中に浸漬する溶解槽(2)
と、溶解槽(2)に溶媒(4)を供給する溶媒供給手段
(lO)と、溶解槽(2)の溶液を分析する液状試料分
析装置と、溶媒供給手段(10)の溶媒供給を制御し、
溶解槽(2)から液状試料分析装置への溶液供給を制御
する制[!It (12,] 4.8”)を備えている
In addition, the apparatus of the present invention includes a dissolution tank (2) in which the sample (6) is immersed in the solvent (4), as shown in the figure showing the embodiment.
, a solvent supply means (lO) for supplying the solvent (4) to the dissolution tank (2), a liquid sample analyzer for analyzing the solution in the dissolution tank (2), and a solvent supply means (10) for controlling the solvent supply. death,
A control system that controls the supply of solution from the dissolution tank (2) to the liquid sample analyzer [! It (12,] 4.8").

(作用) 試料(6)をある時間溶媒(4)に浸すと試料(6)が
表面からある量溶は出し、試料(6)の表面層のある深
さまでの成分の溶けた溶液ができる。次にその試料(6
)を再び新しい溶媒(4)にある時間浸すと、今度は先
の溶解により露出した表面から試料(6)がある深さま
で溶けた溶液ができる。このように、適当な時間ごとに
溶媒(4)を換えることにより、深さ方向のある厚さず
つの試料が溶解した溶液が得られる。これらの溶液を液
状試料分析装置により分析すると、その試料(6)の深
さ方向の化学組成の変化を知ることができる。
(Function) When the sample (6) is immersed in the solvent (4) for a certain period of time, a certain amount of the sample (6) is dissolved from the surface, creating a solution in which the components of the sample (6) are dissolved to a certain depth in the surface layer. Next, the sample (6
) is again immersed in a new solvent (4) for a certain period of time, this time a solution is created in which the sample (6) is dissolved to a certain depth from the surface exposed by the previous dissolution. In this way, by changing the solvent (4) at appropriate intervals, a solution in which a certain thickness of the sample in the depth direction is dissolved can be obtained. When these solutions are analyzed using a liquid sample analyzer, changes in the chemical composition of the sample (6) in the depth direction can be determined.

溶媒(4)を連続的に流しておいて試料(6)を溶媒(
4)に浸した場合には、試料(6)が溶媒(4)に表面
から順次溶けだしていくので、試料(6)が溶解した溶
液を溶解槽2から流出させ、適当な時間間隔で取り出し
て、又は連続的に分析することによっても試料(6)の
深さ方向の化学組成の変化を知ることができる。
The solvent (4) is continuously flowing and the sample (6) is poured into the solvent (
4), the sample (6) will gradually dissolve into the solvent (4) from the surface, so the solution containing the sample (6) will flow out from the dissolution tank 2 and be taken out at appropriate intervals. Alternatively, changes in the chemical composition in the depth direction of the sample (6) can be known by continuous analysis.

(実施例) 図は本発明の分析装置の一実施例を表わす。(Example) The figure represents one embodiment of the analyzer of the present invention.

2は溶解槽であり、溶解槽2には溶媒4が溜められ、そ
の溶媒4に試料6が浸hツされる。溶解槽2の底部には
出ロアが設けられ、この出ロアにはバルブ8が設けられ
ている。このバルブ8の開閉動作により溶解槽2内の溶
液を排出したり、溜めたりできるようになっている。
2 is a dissolution tank, in which a solvent 4 is stored, and a sample 6 is immersed in the solvent 4. A lower outlet is provided at the bottom of the dissolution tank 2, and a valve 8 is provided on the lower outlet. By opening and closing the valve 8, the solution in the dissolution tank 2 can be discharged or stored.

溶解槽2の上方には溶媒供給手段としての溶媒槽10が
設けられている。溶媒槽lOには溶媒4が収容される。
A solvent tank 10 is provided above the dissolution tank 2 as a solvent supply means. The solvent 4 is stored in the solvent tank IO.

溶14QJlloの底部には溶媒供給口11が設けられ
、溶媒供給口11にはバルブ12が設けられている。バ
ルブ12を介して溶媒4が溶解槽2に注入されるように
なっている。
A solvent supply port 11 is provided at the bottom of the solvent 14QJllo, and a valve 12 is provided in the solvent supply port 11. Solvent 4 is injected into dissolution tank 2 via valve 12 .

14はバルブ制御装置であり、溶解槽2の出口のバルブ
8及び溶媒槽10の溶媒供給口11のバルブ12の開閉
動作を制御している。
Reference numeral 14 denotes a valve control device, which controls the opening and closing operations of the valve 8 at the outlet of the dissolution tank 2 and the valve 12 at the solvent supply port 11 of the solvent tank 10.

溶解槽2の出ロアのバルブ8を介して溶解槽2から取り
出された溶液は、必要な量が液状試料分析装置へ4かれ
て分析され、残りはバルブ16を経て排出口17から排
出される。
The required amount of the solution taken out from the dissolution tank 2 via the lower valve 8 of the dissolution tank 2 is transferred to the liquid sample analyzer 4 and analyzed, and the rest is discharged from the discharge port 17 via the valve 16. .

液状試料分析装置としては例えば、ICP (誘導結合
プラズマ発光分析装置)、原子吸光分析装置、又はLC
(液体クロマトグラフ)などを使用することができる。
Examples of liquid sample analyzers include ICP (inductively coupled plasma emission spectrometer), atomic absorption spectrometer, or LC.
(liquid chromatograph) etc. can be used.

液状試料分析装置としてICP又はLCを用いる場合に
は特定成分又は多成分の深さ方向の分布を知ることがで
き、原子吸光分析装置を用いる場合には特定成分の深さ
方向の分布を知ることができる。
When using ICP or LC as a liquid sample analyzer, it is possible to know the distribution of a specific component or multiple components in the depth direction, and when using an atomic absorption spectrometer, it is possible to know the distribution of specific components in the depth direction. I can do it.

溶媒4としては試料に応じて適当なものを選択すること
ができる。例えば試料が鉄である場合には加熱した硝酸
あるいは王水、試料が銅合金の場合には加熱した硝酸、
試料がアルミニウム合金の場合には加熱した塩酸、試料
がチタン合金の場合には硫酸、試料が全又は白金の場合
には王水、試料が銀の場合には硝酸、試料がフェロマン
ガンやフェロクロームのようなフェロ合金の場合には無
機酸を使用することができる。
An appropriate solvent 4 can be selected depending on the sample. For example, if the sample is iron, heated nitric acid or aqua regia; if the sample is a copper alloy, heated nitric acid,
Heated hydrochloric acid if the sample is an aluminum alloy, sulfuric acid if the sample is a titanium alloy, aqua regia if the sample is pure or platinum, nitric acid if the sample is silver, ferromanganese or ferrochrome. In the case of ferroalloys such as ferroalloys, inorganic acids can be used.

次に、本実施例を用いて深さ方向の分析を行なう手順を
説明する。
Next, a procedure for performing analysis in the depth direction using this embodiment will be explained.

溶解槽2に分析すべき試料6を入れ、バルブ12を開い
て溶媒4を一定量注入する。このとき、試料6は、深さ
方向の組成分析を行なおうとする面だけを残して他の面
を溶媒に溶けない材料で被っておくか、分析を行なおう
とする面だけが溶媒4に触れるようにしておく。溶解槽
2内で試料6が溶媒4に浸漬された状態で一定時間維持
する。このとき、溶解槽2内には試料6が表面から一定
の深さまで溶は出した溶液ができる。
A sample 6 to be analyzed is placed in the dissolution tank 2, a valve 12 is opened, and a fixed amount of the solvent 4 is injected. At this time, the sample 6 can either leave only the surface on which the depth direction composition analysis is to be performed and cover the other surfaces with a material that is not soluble in the solvent, or only the surface on which the analysis is to be performed is exposed to the solvent 4. Leave it touching. The sample 6 is kept immersed in the solvent 4 in the dissolution tank 2 for a certain period of time. At this time, a solution is formed in the dissolution tank 2 in which the sample 6 is dissolved from the surface to a certain depth.

一定時間経過後バルブ8を開けて溶解槽2内の溶液を全
量取り出し、その中から必要量を分取して液体試料分析
装置へ導き、分析を行う。
After a certain period of time has elapsed, the valve 8 is opened to take out the entire amount of the solution in the dissolution tank 2, and a necessary amount is extracted from it and guided to a liquid sample analyzer for analysis.

これにより試料6の入った溶解槽2は一旦空になる。そ
こで再びバルブ8を閉じバルブ12を開けて新しい溶媒
4を一定量注入し、′試料6を再び溶媒4に浸す。これ
により先の溶解により露出した試料6の表面から再び溶
解が始まる。そして−・定時間が経過するとバルブ8を
開けて溶解槽2内の溶液を取り出し、その必要量を分取
して液状試料分析装置へ導き分析を行なう。今度の溶液
中には先の露出した表面から一定の深さまでの試料が溶
は出している。
As a result, the dissolution tank 2 containing the sample 6 is temporarily emptied. Then, close the valve 8 again, open the valve 12, inject a certain amount of new solvent 4, and immerse the sample 6 in the solvent 4 again. As a result, dissolution starts again from the surface of the sample 6 exposed by the previous dissolution. Then, after a certain period of time has elapsed, the valve 8 is opened to take out the solution in the dissolution tank 2, and the required amount is taken out and introduced to a liquid sample analyzer for analysis. The sample from the previously exposed surface to a certain depth has been dissolved into the solution.

以後、同じ手順を繰り返すことによって深さ方向の組成
変化を求めることができる。
Thereafter, the composition change in the depth direction can be determined by repeating the same procedure.

以上の手順は溶解槽2に溶媒4を一定時間溜めておいて
試料6を深さ方向の一定量を溶解させるようにする方法
であるが、バルブ12とバルブ8を所定の大きさに開け
ておき、溶媒4が溶解槽2を通って試料6を溶解させな
がら連続して出ロアから流出するようにしてもよい。そ
の場合、液状試料分析装置による分析は、適当な時間間
隔で行なってもよく、又は連続的に行なってもよい。
The above procedure is a method of storing the solvent 4 in the dissolution tank 2 for a certain period of time and dissolving a certain amount of the sample 6 in the depth direction. Alternatively, the solvent 4 may pass through the dissolution tank 2 and continuously flow out from the outlet lower while dissolving the sample 6. In that case, the analysis by the liquid sample analyzer may be performed at appropriate time intervals or may be performed continuously.

区の実施例では溶解M!2への溶[4の供給及び溶解槽
2からの溶液の取り出しを自然流出入によって行なうよ
うにしているが、ポンプを使用して溶媒を供給したり溶
液を取り出すようにしてもよい。
In the example of the ward, melting M! Although the supply of the solution [4 to the solution tank 2] and the removal of the solution from the dissolution tank 2 are carried out by natural inflow and outflow, a pump may be used to supply the solvent or take out the solution.

試料6の深さ方向の層によっては溶出速度が変化するこ
とがあり、また、深さの位置によって一回の分析に供す
る厚さを大きくしたり小さくしたりする場合がある。そ
のような場合、試料6を溶媒4に浸漬する時間を変えた
り、溶媒4の量を変えたり、又は溶媒4の種類を途中で
変えるといった方法も可能である。
The elution rate may change depending on the layer in the depth direction of the sample 6, and the thickness to be subjected to one analysis may be increased or decreased depending on the depth position. In such a case, it is also possible to change the time for which the sample 6 is immersed in the solvent 4, change the amount of the solvent 4, or change the type of the solvent 4 midway through.

(発明の効果) 本発明では新しい溶媒により試料を表面から内部方向に
向って溶解させ、その溶液を時間の経過とともに取り出
し、取り出したその溶液を液状試料分析装置により分析
するようにした。
(Effects of the Invention) In the present invention, a sample is dissolved inward from the surface using a new solvent, the solution is taken out over time, and the taken out solution is analyzed by a liquid sample analyzer.

溶媒により試料をエツチングするので、SIMSなどの
気相中でのエツチングを利用する表面分析手法を用いた
従来の方法に比べて選択エツチングの問題を少なくする
ことができ、試料の主成分、微量成分を問わずに分析す
ることができる。また、溶媒を選択することにより、か
なり深いところまで、高速で高感度に分析することがで
きる。
Since the sample is etched with a solvent, problems with selective etching can be reduced compared to conventional methods using surface analysis methods such as SIMS that utilize etching in the gas phase, and the main components and trace components of the sample can be etched. It can be analyzed without asking. Furthermore, by selecting a solvent, it is possible to analyze a fairly deep area at high speed and with high sensitivity.

また、溶媒の種類、溶媒の量、浸漬時間などを選択する
ことによって、多種類の試料に対して深さ分解能や分析
速度を制御することができ、また、主成分、微量成分又
は特定成分を選択的に分析することもできるので、本発
明方法は用途の広い分析方法である。
In addition, by selecting the type of solvent, amount of solvent, immersion time, etc., it is possible to control the depth resolution and analysis speed for many types of samples. Since selective analysis is also possible, the method of the present invention is a versatile analytical method.

本発明装置によれば無人の自動深さ分析システムを構築
することが容易である。
According to the device of the present invention, it is easy to construct an unmanned automatic depth analysis system.

【図面の簡単な説明】 図は本発明装置の一実施例を示す概略断面図である。 2・・・・・・溶解槽、 4・・・・・・溶媒、 6・・・・・試料、 8.12・・・・・・バルブ。 ■ 0 ・・・ ・・・ ン111[媒M 、14・・
・・・・バルブ制御装置。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a schematic sectional view showing an embodiment of the device of the present invention. 2...Dissolution tank, 4...Solvent, 6...Sample, 8.12...Valve. ■ 0 ・・・ ・・・ 111 [medium M, 14...
...Valve control device.

Claims (5)

【特許請求の範囲】[Claims] (1)新しい溶媒により試料を表面から内部方向に向っ
て溶解させ、その溶液を時間の経過とともに取り出し、
その溶液を液状試料分析装置により分析することを特徴
とする深さ方向の分析方法。
(1) Dissolve the sample inward from the surface with a new solvent, remove the solution over time,
A depthwise analysis method characterized by analyzing the solution using a liquid sample analyzer.
(2)試料をある時間溶媒に浸した後、再び前記試料を
新しい溶媒にある時間浸すことを繰り返し、それぞれの
溶液を分析する特許請求の範囲第1項に記載の深さ方向
の分析方法。
(2) The depth direction analysis method according to claim 1, wherein after immersing a sample in a solvent for a certain time, the sample is repeatedly immersed in a new solvent for a certain time, and each solution is analyzed.
(3)溶媒をある流量で流しておき、試料をその溶媒に
浸し、流出する溶液を適当な時間ごとに取り出して分析
する特許請求の範囲第1項に記載の深さ方向の分析方法
(3) The depth direction analysis method according to claim 1, wherein the solvent is allowed to flow at a certain flow rate, the sample is immersed in the solvent, and the flowing solution is taken out and analyzed at appropriate intervals.
(4)溶媒をある流量で流しておき、試料をその溶媒に
浸し、流出する溶液を連続的に分析する特許請求の範囲
第1項に記載の深さ方向の分析方法。
(4) The depth direction analysis method according to claim 1, wherein the solvent is allowed to flow at a certain flow rate, the sample is immersed in the solvent, and the flowing solution is continuously analyzed.
(5)試料を溶媒中に浸漬して溶解させる溶解槽と、こ
の溶解槽に溶媒を供給する溶媒供給手段と、前記溶解槽
の溶液を分析する液状試料分析装置と、前記溶媒供給手
段の溶媒供給を制御し、前記溶解槽から液状試料分析装
置への溶液供給を制御する制御装置とを備えた深さ方向
の分析装置。
(5) A dissolution tank for immersing and dissolving a sample in a solvent, a solvent supply means for supplying a solvent to the dissolution tank, a liquid sample analyzer for analyzing the solution in the dissolution tank, and a solvent for the solvent supply means. A depth direction analysis device comprising: a control device that controls supply and controls solution supply from the dissolution tank to the liquid sample analysis device.
JP61058652A 1986-03-15 1986-03-15 Method and device for depth-directional analysis Pending JPS62214354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61058652A JPS62214354A (en) 1986-03-15 1986-03-15 Method and device for depth-directional analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61058652A JPS62214354A (en) 1986-03-15 1986-03-15 Method and device for depth-directional analysis

Publications (1)

Publication Number Publication Date
JPS62214354A true JPS62214354A (en) 1987-09-21

Family

ID=13090513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61058652A Pending JPS62214354A (en) 1986-03-15 1986-03-15 Method and device for depth-directional analysis

Country Status (1)

Country Link
JP (1) JPS62214354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203891A (en) * 2009-03-03 2010-09-16 Toppan Printing Co Ltd Depth direction analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203891A (en) * 2009-03-03 2010-09-16 Toppan Printing Co Ltd Depth direction analysis method

Similar Documents

Publication Publication Date Title
Turnbull et al. Analysis of hydrogen atom transport in a two-phase alloy
US6146895A (en) Method of static headspace analyzer
US5468643A (en) Switching valve system for direct biological sample injection for LC analysis
US4055751A (en) Process control system for the automatic analysis and regeneration of galvanic baths
JPH10246691A (en) Organization treatment device and method
Mitani et al. Automated headspace single-drop microextraction via a lab-in-syringe platform for mercury electrothermal atomic absorption spectrometric determination after in situ vapor generation
US5228967A (en) Apparatus and method for electroplating wafers
JPH0264646A (en) Developing method for resist pattern and developing device using the same
Ebling et al. Sampling and analysis of the sea surface microlayer for dissolved and particulate trace elements
Tindall et al. A ring-disk electrode study of the deposition and stripping of thin copper films at platinum in sulfuric acid
JPS62214354A (en) Method and device for depth-directional analysis
US20050053522A1 (en) Sampling management for a process analysis tool to minimize sample usage and decrease sampling time
Afghan et al. Automated method for determination of nitrilotriacetic acid in natural water, detergents, and sewage samples
JP4372790B2 (en) Actuation device with fringed working area, on-chip lab and microsystem
US4036590A (en) Method and apparatus for the automatic analysis of the concentration of an individual component of a fluid in a metal-depositing bath having several components
DE2646640A1 (en) METHOD AND DEVICE FOR MULTIPLE DEVELOPMENTS OF THIN FILM CHROMATOGRAPHY PLATES
JPH0321867A (en) Method and apparatus for analyzing gaseous component in metal
JP2000298079A (en) Molecule transportation and extraction method
WO1998033052A1 (en) A method of preventing evaporation from liquid samples in small volumes
CH628991A5 (en) METHOD AND APPARATUS FOR AUTOMATIC DETERMINATION OF LOW QUANTITIES OF SUBSTANCES CONTAINED IN A LIQUID.
JP2002283293A (en) Microfluid control device and method of manufacturing
JP3160827B2 (en) Method and apparatus for sequential and continuous measurement of carbon, hydrogen and nitrogen concentrations in molten steel
Coedo et al. Study of the application of air-water flow injection inductively coupled plasma mass spectrometry for the determination of calcium in steels
JP4050577B2 (en) Mercury analyzer and sample changer used therefor
Zaitsev et al. Enhancing the efficiency of anodic stripping voltammetry in systems permitting a change of the solution without opening the circuit