JPH0321867A - Method and apparatus for analyzing gaseous component in metal - Google Patents

Method and apparatus for analyzing gaseous component in metal

Info

Publication number
JPH0321867A
JPH0321867A JP1157016A JP15701689A JPH0321867A JP H0321867 A JPH0321867 A JP H0321867A JP 1157016 A JP1157016 A JP 1157016A JP 15701689 A JP15701689 A JP 15701689A JP H0321867 A JPH0321867 A JP H0321867A
Authority
JP
Japan
Prior art keywords
sample
gas
analysis
carrier gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1157016A
Other languages
Japanese (ja)
Inventor
Shigeki Tomiyama
冨山 茂樹
Norihiko Suzuki
敬彦 鈴木
Noboru Demukai
登 出向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1157016A priority Critical patent/JPH0321867A/en
Publication of JPH0321867A publication Critical patent/JPH0321867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To make exact analysis with less fluctuations by placing an analysis sample of metal into a high-frequency coil, energizing the high-frequency coil to suspend the sample in air and continuing the energization to heat and dissolve the sample. CONSTITUTION:The gas from a gas source 5 is passed in a dissolving and extracting chamber C2 and a preliminary chamber C1 to form an inert gaseous atmosphere. A shutter S2 is opened and a cylinder L1 is actuated to advance a receiving tray P1 into the extracting chamber C2. The tray P1 is rotated 180 deg. by the revolution of a motor M to drop the sample 7a into a container P2. The tray P1 is reset and the shutter S2 is closed. The sample 7a is suspended in the extracting chamber C2 by electromagnetic induction when the container P2 is risen by actuating a cylinder L2. The temp. of the sample 7a increases and the sample dissolves when the energization is continued and, therefore, the released gas is exctracted by the inert carrier gas and the quantity thereof is measured by a determining device 6. The inert gas is then passed to cool the suspended sample 7b. The sample 7b falls into the container P2 when the high-frequency electric power is interrupted.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、浮遊溶解の技術を利用して金属中のガス成分
を分析する方法と、その分析法の実施に使用する装置に
関する。 [従来の技術】 特殊鋼やチタン合金は、その中に含まれている微量の窒
素、水素、酸素あるいはアルゴンなどのガス成分が、特
性に大きな影響を及ぼす。 工程管理、製品品質の評価
、ざらには研究開発のため、微量のこれら成分を正確に
定量することが重要な課題である。 従来の分析法は、試料を真空中または不活性ガス雰囲気
中で加熱して溶解し、放出されたガスを、それぞれのガ
スに適した方法で定量するという手段によっている。 
加熱法には、高周波誘導、電気抵抗あるいはインパルス
加熱があり、定量法にはガス容量法、電m滴定法、赤外
1!A@収法、熱伝導度法などがある。 最も代表的な
のは、不活性ガス中におけるインパルス加熱と、赤外線
吸収法または熱伝導度法との組み合わせである。 いずれの手法によるとしても、試料は黒鉛製のルツボに
入れて加熱溶解しているのが現状である。 試料に含まれていた窒素、水素、アルゴンなどの量は、
測定値から黒鉛ルツボのブランク値を差し引いて算出す
るが、測定値が低くなるにつれてブランク値が相対的に
大きくなり、その影響が増すことはいうまでもない。 金属材料の性能への要求は益々高まり、それにこたえる
精練技術の向上により、定量すべき戊分の含有醋はごく
微量である。 水素の分析に例をとると、含有11pp
m内外のものを定量する必要があり、一方でブランク値
はo.2ppmに達する。 ブランク値を減らす目的で黒鉛ルツボを加熱して脱ガス
すると、表面のガスは除去できても、黒鉛ルツボが溶融
した金属試料で浸食ざれやすくなり、その結果、ルツボ
内部のガスが出てしまい、ブランク値は期待したほど低
下しない。 従来の分析法で到達できる温度は、高周波加熱によると
き約2000℃、インパルス加熱で約3OOO℃である
。 高融点金属たとえばTa  (融点約3000℃)
、W(同約3410℃〉の分析には、これではやや不足
である。 TiやTi合金中の窒素を定量する場合、窒
素はほとんどTINの形態をとっているといわれ、その
分解温度は約3000℃であるから、やはり正確な分析
は従来技術では困難である。 [発明が解決しようとする課題】 本発明の目的は、金属中の窒素、水素、酸素、アルゴン
などのガス成分を定量するに当り、黒鉛ルツボに由来す
るブランク値の影響を解消してバラツキの小さい分析値
を得られるようにするとともに、高融点金属や高分解温
度の化合物を対象とする分析を容易に行なうことのでき
る分析方法を提供することにある。 そのような分析方
法の実施に使用する装置を提供することもまた、本発明
の目的に含まれる。
The present invention relates to a method for analyzing gas components in metals using floating dissolution technology, and an apparatus used to carry out the analysis method. [Prior Art] The characteristics of special steel and titanium alloy are greatly affected by trace amounts of gas components such as nitrogen, hydrogen, oxygen, or argon contained therein. Accurately quantifying trace amounts of these components is an important issue for process control, product quality evaluation, and research and development. Conventional analytical methods rely on heating and dissolving the sample in vacuum or in an inert gas atmosphere, and quantifying the released gas using a method appropriate for each gas.
Heating methods include high-frequency induction, electrical resistance, and impulse heating, and quantitative methods include gas volumetric method, electrom titration method, and infrared 1! There are methods such as A@accumulation method and thermal conductivity method. The most typical is a combination of impulse heating in an inert gas and infrared absorption or thermal conductivity methods. Regardless of which method is used, the current situation is that the sample is placed in a graphite crucible and heated and melted. The amount of nitrogen, hydrogen, argon, etc. contained in the sample is
It is calculated by subtracting the blank value of the graphite crucible from the measured value, and it goes without saying that as the measured value decreases, the blank value becomes relatively large and its influence increases. Demands for the performance of metal materials are increasing, and improvements in scouring technology have made it possible to quantify the amount of sulfur contained in metal materials. Taking the analysis of hydrogen as an example, the content is 11pp.
It is necessary to quantify what is inside and outside m, while the blank value is o. It reaches 2ppm. When a graphite crucible is heated and degassed for the purpose of reducing the blank value, even though the gas on the surface can be removed, the graphite crucible becomes susceptible to erosion by the molten metal sample, and as a result, the gas inside the crucible comes out. The blank value does not drop as much as expected. The temperatures that can be reached with conventional analytical methods are about 2000° C. when using high frequency heating and about 300° C. when using impulse heating. High melting point metal such as Ta (melting point approximately 3000℃)
, W (approximately 3410°C). When quantifying nitrogen in Ti or Ti alloys, it is said that most of the nitrogen is in the form of TIN, and its decomposition temperature is approximately Since the temperature is 3000°C, accurate analysis is still difficult with conventional techniques. [Problems to be Solved by the Invention] The purpose of the present invention is to quantify gas components such as nitrogen, hydrogen, oxygen, and argon in metals. In doing so, it is possible to eliminate the influence of blank values originating from graphite crucibles to obtain analytical values with small variations, and it is also possible to easily conduct analyzes targeting high melting point metals and compounds with high decomposition temperatures. It is an object of the present invention to provide an analytical method.It is also an object of the present invention to provide an apparatus for use in carrying out such an analytical method.

【課題を解決するための手段】[Means to solve the problem]

本発明の分析方法は、浮遊溶解技術を用いて金属中の窒
素、水素、酸素、アルゴンなどのガス成分を定量分析す
る方法であって、高周波コイル中に金属の分析試料を置
いて高周波コイルに通電することによりこの試料を空中
に浮遊させ、通電を続けて加熱することによって試料を
溶解させ、試料から放出されたガスを不活性なキVリア
ガスにのせてとり出し、キャリアガス中の分析対象をそ
れぞれの分析法に従って定量することからなる。 浮遊溶解技術は、上記のように金属のような導電性材料
を高周波コイル内の交番電磁場中において空中に浮遊さ
せ、その状態で誘導加熱を続けることにより溶解させる
技術であって、ルツボなどを用いないために容器からの
汚染の心配がないという利点をもつ。 キャリアガスとしては、ArZ口eおよびN2からえら
んだガスであって、分析対象成分と異なるものを使用す
ればよい。 キャリアガスにより抽出された各成分の量を測定するに
は、従来既知の技術を利用すればよい。 まず、分析対象の定量を妨害する物質が含まれていると
きは、これも既知の手段によりその物質を除去したうえ
で、必要によりシリカゲルやモレキュラーシーブを用い
たカラム分離法などで分析対象を分離し、熱伝導度法、
赤外線吸収法などの方法で測定を行なう。 本発明の分析装置は、浮遊溶解技術を用いて金属中の窒
素、水素、酸素、アルゴンなどのガス成分を定量分析す
る装置であって、図に示すように、石英ガラス管(1)
、その外側に巻いた高周波コイル{2}および上記管内
の高周波電磁場中に分析試料を位置させるための試料搬
送手段(3)から構成される浮遊溶解部をそなえ、これ
に高周波電源{4}、管内に不活性キャリアガスを流通
させるためのガス源(5)およびキャリアガスにより抽
出された分析対象ガスの定量装置(6)を組み合わせて
なる。 [作 用】 図示した装置による分析手順を示せば、まずバルブ(v
1)および(v5〉を開いて、溶解抽出室(C2)内に
ガス源(5)からの不活性キャリアガスを流通させ、空
気をパージして室内を不活性ガス雰囲気にする。 次に
シャッター(S1〉を開いて受皿(P1)上に分析試料
(7a)をのせ、シャッター(S1)を閉じてバルブ(
v3)および(v4)を開けば、予備室(C1〉内も不
活性ガス雰囲気に保たれる。 バルブ(v2)および(■6〉を開いて、ガスを定量装
置(6〉に導きながらバルブ(V1).(V3),(V
4)および(v5〉を閉じ、シャッター(S2)を開く
。 シリンダー〈L1〉を作動させて受皿(P1)を溶解抽
出室(C2)内の点線の位置まで前進させ、モーター(
M)の回転により受皿(P1)を180゜回転ざせるこ
とにより、実線の位置に待機していた容器(P2)に試
料(7a)を落す。 受皿(P1)の180゜の回転とシリンダー(L1)の
作動による後退を行なって受皿を復帰させたのち、シャ
ッター〈S2)を閉じる。 電源(4〉からコイル(2)に高周波電力を供給し、シ
リンダー(L2)@作動させて容器(P2)を点線の位
置まで上昇させると、分析試料は電磁誘導により溶解抽
出室(C2)内に浮遊するから、シリンダー(L2)を
作動させて容器(P2)を下方に復帰させる。 通電を
続ければ、試料の温度が高まって溶解するに至るから、
放出されるガスを不活性キャリアガスで抽出し、定量装
@(6)でその量を測定する。 抽出が終ったならば、バルブ(■2)および(v6〉を
閉じ、バルブ(■1)および(■5)を開いて大量の不
活性ガスを流通させ、なお浮遊している試料(7b)を
冷却する。 十分に冷却したところで、シリンダー(L
2)を作動させて容器(P2)を上方に動かし、高周波
電力の供給を停止すると、冷却された試料は容器(P2
)に落下する。 バルブ(v1)および(v5〉を閉じ
、シリンダー([2)を作動させて容器(P2)をもと
の位置へ戻す。 シリンダー(L3〉を作動させて溶解抽出室(C2)を
開放し、容器(P2)をシリンダー{L2}とともに下
方へ動かせば、分析ずみの試料を取り除くことができる
。 シリンダー(L3)を作動させて溶解抽出室(C2)を
閉じれば、最初の状態に戻って、次の分析を繰り返すこ
とができる。 [実施例1】 純Ti中の窒素の定量を、口eガス抽出一熱伝導度法に
より実施した。 抽出のための溶解を、黒鉛ルツボのイ
ンパルス加熱による従来技術と、浮遊溶解による本発明
法の両方で行なって比較した。 本発明により、下記の測定データが得られた。 平均値又と標準@差σを比較して示せば、つぎのとおり
である。 従来技術により測定した値が低いのは、前記したように
li中の窒素がTi Nとなっていて、黒鉛ルツボのイ
ンパルス加熱の温度では分解が不十分で、完全に抽出で
きなかったためと考えられる。 [実施例2】 図に示した本発明の装置について、試料を用いないで水
素の定量のブランク値だけ測定した。 従来の黒鉛ルツボを使用した場合のブランク値と比較す
ると、つぎのようになる。 [発明の効果】 本発明は、金属を空中に浮遊させた状態で溶解する技術
を金属の分析に適用することによって、金属中の窒素、
水素、酸素、アルゴンなどのガス成分の分析に黒鉛ルツ
ボを使用する必要をなくした。 それにより、黒鉛ルツ
ボに由来する高いブランク値にわずらわされることなく
、バラツキの小さい正確な分析値を得ることが可能にな
った。 浮遊溶解によるときは、従来の加熱溶解技術の限界であ
った3000℃を超え、3500℃に達する高温を得る
ことができるから、従来は困難であったTaやWのよう
な高融点金属の分析においても、信頼できる値が本発明
により得られるようになった。 ざらに、黒鉛ルツボが不要になることは、分析コストの
低減に役立つ。
The analysis method of the present invention is a method for quantitatively analyzing gas components such as nitrogen, hydrogen, oxygen, and argon in metals using floating dissolution technology, in which a metal analysis sample is placed in a high-frequency coil. The sample is suspended in the air by applying electricity, and the sample is dissolved by continuing to apply electricity and heating, and the gas released from the sample is taken out on an inert gas, and the target of analysis in the carrier gas is removed. It consists of quantifying according to each analytical method. As mentioned above, floating melting technology is a technology in which conductive materials such as metals are suspended in the air in an alternating electromagnetic field inside a high-frequency coil, and melted by continuing induction heating in this state, using a crucible etc. This has the advantage that there is no need to worry about contamination from the container. As the carrier gas, a gas selected from ArZ port e and N2, which is different from the component to be analyzed, may be used. Conventionally known techniques may be used to measure the amount of each component extracted by the carrier gas. First, if a substance that interferes with the quantification of the analyte is contained, remove that substance using known means, and then separate the analyte using a column separation method using silica gel or molecular sieves, if necessary. and thermal conductivity method,
Measurement is performed using methods such as infrared absorption method. The analyzer of the present invention is an apparatus for quantitatively analyzing gas components such as nitrogen, hydrogen, oxygen, and argon in metals using floating dissolution technology.
, a floating melting section consisting of a high frequency coil {2} wound on the outside and a sample transport means (3) for positioning the analysis sample in the high frequency electromagnetic field inside the tube, which is connected to a high frequency power source {4}, It combines a gas source (5) for flowing an inert carrier gas into the tube and a quantitative determination device (6) for the gas to be analyzed extracted by the carrier gas. [Function] To show the analysis procedure using the illustrated device, first, the valve (v
1) and (v5) are opened to allow the inert carrier gas from the gas source (5) to flow into the dissolution/extraction chamber (C2), and the air is purged to create an inert gas atmosphere inside the chamber.Next, the shutter is opened. Open (S1), place the analysis sample (7a) on the saucer (P1), close the shutter (S1), and close the valve (
By opening v3) and (v4), the inside of the preliminary chamber (C1) is also maintained in an inert gas atmosphere.Open the valve (v2) and (■6>, and while guiding the gas to the metering device (6>) (V1).(V3),(V
4) Close and (v5) and open the shutter (S2). Operate the cylinder <L1> to advance the saucer (P1) to the position indicated by the dotted line in the lysis/extraction chamber (C2), and turn on the motor (
By rotating the saucer (P1) by 180 degrees by rotating M), the sample (7a) is dropped into the container (P2) waiting at the position indicated by the solid line. After the saucer (P1) is rotated through 180 degrees and moved backward by the operation of the cylinder (L1) to return the saucer, the shutter (S2) is closed. When high-frequency power is supplied from the power supply (4) to the coil (2) and the cylinder (L2) is activated to raise the container (P2) to the position indicated by the dotted line, the analysis sample is moved into the dissolution and extraction chamber (C2) by electromagnetic induction. The cylinder (L2) is activated to return the container (P2) downward. If the electricity is continued, the temperature of the sample will rise and it will melt.
The released gas is extracted with an inert carrier gas and its amount is measured with a meter (6). When the extraction is finished, close the valves (■2) and (v6), open the valves (■1) and (■5) to circulate a large amount of inert gas, and remove the still floating sample (7b). After cooling down sufficiently, remove the cylinder (L).
2) to move the container (P2) upward and stop the supply of high-frequency power, the cooled sample moves into the container (P2).
) to fall. Close the valves (v1) and (v5) and operate the cylinder ([2) to return the container (P2) to its original position. Operate the cylinder (L3) to open the lysis extraction chamber (C2), By moving the container (P2) downwards together with the cylinder {L2}, the analyzed sample can be removed. If the cylinder (L3) is activated and the lysis extraction chamber (C2) is closed, the initial state is restored. The following analysis can be repeated: [Example 1] Determination of nitrogen in pure Ti was carried out by the gas extraction-thermal conductivity method. The dissolution for extraction was carried out using the conventional method by impulse heating of a graphite crucible. The following measurement data were obtained using the present invention: the average value and the standard @ difference σ The reason why the value measured using the conventional technology is low is that, as mentioned above, the nitrogen in li is TiN, and the decomposition is insufficient at the impulse heating temperature of the graphite crucible, so it cannot be completely extracted. [Example 2] Using the apparatus of the present invention shown in the figure, only a blank value for quantitative determination of hydrogen was measured without using a sample.Comparing with the blank value when using a conventional graphite crucible, the following results were obtained. [Effects of the Invention] The present invention applies a technology for dissolving metals suspended in the air to analysis of metals.
Eliminates the need to use graphite crucibles for analysis of gas components such as hydrogen, oxygen, and argon. As a result, it has become possible to obtain accurate analytical values with small variations without being bothered by high blank values derived from graphite crucibles. When using floating melting, it is possible to obtain high temperatures reaching 3,500°C, exceeding the limit of conventional heating melting technology of 3,000°C, making it possible to analyze high-melting point metals such as Ta and W, which was previously difficult. Also, reliable values can now be obtained by the present invention. In general, eliminating the need for a graphite crucible helps reduce analysis costs.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の分析装置の構成を示すものであって、
主要部をなす溶解抽出部を詳細な断面図で、他を簡略に
あらわした系統図である。 1・・・石英ガラス管    2・・・高周波コイル3
・・・試料搬送手段    4・・・高周波電源5・・
・不活性キャリアガス源
The drawings show the configuration of the analysis device of the present invention,
It is a detailed cross-sectional view of the dissolution/extraction part, which is the main part, and a system diagram showing the other parts in a simplified manner. 1... Quartz glass tube 2... High frequency coil 3
...Sample transport means 4...High frequency power source 5...
・Inert carrier gas source

Claims (3)

【特許請求の範囲】[Claims] (1)高周波コイル中に金属の分析試料を置いて高周波
コイルに通電することによりこの試料を空中に浮遊させ
、通電を続けて加熱することによって試料を溶解させ、
試料から放出されたガスを不活性なキャリアガスにのせ
てとり出し、キャリアガス中の分析対象をそれぞれの分
析法に従つて定量することからなる、金属中のガス成分
を分析する方法。
(1) Placing a metal analysis sample in a high-frequency coil, energizing the high-frequency coil to suspend the sample in the air, and melting the sample by continuing to energize and heat it;
A method for analyzing gas components in metals, which consists of extracting the gas released from the sample by placing it on an inert carrier gas, and quantifying the target to be analyzed in the carrier gas according to the respective analysis method.
(2)分析試料が鋼、またはTi、TaもしくはWまた
はその合金であり、不活性キャリアガスとしてAr、H
eおよびN_2のうち分析対象でないものを使用して実
施する請求項1の方法。
(2) The analysis sample is steel, Ti, Ta, W, or an alloy thereof, and the inert carrier gas is Ar, H
2. The method of claim 1, wherein e and N_2 are not analyzed.
(3)石英ガラス管(1)、その外側に巻いた高周波コ
イル(2)および上記管内の高周波電磁場中に分析試料
を位置させるための試料搬送手段(3)から構成される
浮遊溶解部をそなえ、これに高周波電源(4)、管内に
不活性キャリアガスを流通させるためのガス源(5)お
よびキャリアガスにより抽出された分析対象ガスの定量
装置(6)を組み合わせてなる、金属中のガス成分を分
析する装置。
(3) A floating melting section consisting of a quartz glass tube (1), a high-frequency coil (2) wound around the outside of the tube, and a sample transport means (3) for positioning the analysis sample in the high-frequency electromagnetic field inside the tube. , which is combined with a high frequency power source (4), a gas source (5) for circulating an inert carrier gas in the tube, and a quantitative determination device (6) for the gas to be analyzed extracted by the carrier gas. A device that analyzes components.
JP1157016A 1989-06-20 1989-06-20 Method and apparatus for analyzing gaseous component in metal Pending JPH0321867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157016A JPH0321867A (en) 1989-06-20 1989-06-20 Method and apparatus for analyzing gaseous component in metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157016A JPH0321867A (en) 1989-06-20 1989-06-20 Method and apparatus for analyzing gaseous component in metal

Publications (1)

Publication Number Publication Date
JPH0321867A true JPH0321867A (en) 1991-01-30

Family

ID=15640339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157016A Pending JPH0321867A (en) 1989-06-20 1989-06-20 Method and apparatus for analyzing gaseous component in metal

Country Status (1)

Country Link
JP (1) JPH0321867A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019954A (en) * 2007-07-11 2009-01-29 Wakasawan Energ Kenkyu Center Content measurement method of helium in metal material
US9233148B2 (en) 2009-01-09 2016-01-12 Samuel Bogoch Replikin-based compounds for prevention and treatment of influenza and methods of differentiating infectivity and lethality in influenza
US9254315B2 (en) 2004-04-28 2016-02-09 Samuel Bogoch Systems and methods for identifying replikin scaffolds and uses of said replikin scaffolds
US9273120B2 (en) 2001-03-27 2016-03-01 Samuel Bogoch Anthrax and small pox replikins and methods of use
US9388234B2 (en) 2003-06-06 2016-07-12 Samuel Bogoch Systems and methods for identifying Replikin Scaffolds and uses of said Replikin Scaffolds
US9408902B2 (en) 2007-05-30 2016-08-09 Samuel Bogoch Synthetic replikin peptides against pathogenic infection of invertebrates in aquaculture
JP2017211362A (en) * 2016-05-19 2017-11-30 Jfeスチール株式会社 Method and device for evaluating cleanliness of metal slab
WO2024019093A1 (en) * 2022-07-19 2024-01-25 日本製鉄株式会社 Quantitative analysis method and quantitative analysis device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273120B2 (en) 2001-03-27 2016-03-01 Samuel Bogoch Anthrax and small pox replikins and methods of use
US9388234B2 (en) 2003-06-06 2016-07-12 Samuel Bogoch Systems and methods for identifying Replikin Scaffolds and uses of said Replikin Scaffolds
US9254315B2 (en) 2004-04-28 2016-02-09 Samuel Bogoch Systems and methods for identifying replikin scaffolds and uses of said replikin scaffolds
US9408902B2 (en) 2007-05-30 2016-08-09 Samuel Bogoch Synthetic replikin peptides against pathogenic infection of invertebrates in aquaculture
JP2009019954A (en) * 2007-07-11 2009-01-29 Wakasawan Energ Kenkyu Center Content measurement method of helium in metal material
JP4584288B2 (en) * 2007-07-11 2010-11-17 財団法人若狭湾エネルギー研究センター Method for measuring helium content in metal materials
US9233148B2 (en) 2009-01-09 2016-01-12 Samuel Bogoch Replikin-based compounds for prevention and treatment of influenza and methods of differentiating infectivity and lethality in influenza
JP2017211362A (en) * 2016-05-19 2017-11-30 Jfeスチール株式会社 Method and device for evaluating cleanliness of metal slab
WO2024019093A1 (en) * 2022-07-19 2024-01-25 日本製鉄株式会社 Quantitative analysis method and quantitative analysis device

Similar Documents

Publication Publication Date Title
CN105699412B (en) A kind of rapid solidification metal heat flux measurement device and test method
CN106872512A (en) A kind of method for testing the behavior of metal material rapid solidification and solidification hot-fluid
JP4038123B2 (en) Contained oxygen analyzer and contained oxygen analysis method
JPH0321867A (en) Method and apparatus for analyzing gaseous component in metal
CN102331364A (en) Melted sampling method for aluminum magnesium calcium iron alloy for X-ray fluorescence spectrum analysis
Mirković et al. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
Aune et al. Thermophysical properties of IN738LC, MM247LC and CMSX-4 in the liquid and high temperature solid phase
Britt et al. Investigation into the temperature of metallic high-temperature confocal scanning laser microscope samples
CN113252863A (en) Electromagnetic suspension device and method for detecting evolution of metal alloy solidification structure
US4800747A (en) Method of measuring oxygen in silicon
US4953177A (en) Method and means of reducing the oxidization of reactive elements in an electroslag remelting operation
Leosson et al. Continuous chemical analysis of molten aluminum
JP3663774B2 (en) Method and apparatus for analyzing trace oxygen in metal
Polyanskii et al. Investigation of the completeness of specimen degassing in an analysis of the hydrogen content of aluminum alloys
US5342489A (en) Method of measuring oxygen activities in slag
JPS608749A (en) Quantitative analysis of sample such as metal using graphite crucible
JPH07197135A (en) Temperature controller
JP3659459B2 (en) Thermal desorption gas analyzer and thermal desorption gas analysis method
JPH05346427A (en) Method and apparatus for analyzing constituent of metal
Pauwels et al. Determination of traces of silver in copper by direct Zeeman graphite furnace atomic absorption spectrometry
Bryan et al. Determination of Nitrogen and Oxygen in Steels Using Inert Gas Fusion-Chromatography
MATSUOKA et al. A New Sensor Rapid Analysis of Silicon in Hot Metal Electromotive Force Method
JPH0518961A (en) Method for analyzing nitrogen in metallic sample
CN118483272A (en) Melting point analysis method and melting point instrument based on image recognition
RU2217734C2 (en) Procedure establishing relative content of specified component in analyzed material ( variants )