JPS62214334A - Surface flaw detector - Google Patents

Surface flaw detector

Info

Publication number
JPS62214334A
JPS62214334A JP5881286A JP5881286A JPS62214334A JP S62214334 A JPS62214334 A JP S62214334A JP 5881286 A JP5881286 A JP 5881286A JP 5881286 A JP5881286 A JP 5881286A JP S62214334 A JPS62214334 A JP S62214334A
Authority
JP
Japan
Prior art keywords
infrared
amplifier
signal
inspected
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5881286A
Other languages
Japanese (ja)
Inventor
Kazumi Sugino
杉野 一美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5881286A priority Critical patent/JPS62214334A/en
Publication of JPS62214334A publication Critical patent/JPS62214334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To eliminate a secular change in the infrared detection sensitivity of a detector from affecting inspection and decision making even in case the secular change by comparing the detection signal of an infrared detector with a predetermined reference level and calibrating the gain of an amplifier according to the comparison result. CONSTITUTION:The detection signal of the infrared detector 1 composed of an infrared detecting element 2 and a lens 3 is amplified by am amplifier 4 whose gain is varied with an external signal and then the amplified signal is processed by a signal processor 5 to perform defect detection. A divider 6, on the other hand, receives the detection signal of the detector 1 and the preset reference level e0 is divided by its detection signal er. Then, the rate e0/er of the calibration of the initial gain G0 of the amplifier G0 based upon the division result is sent to a sensitivity setter 7. The gain Gr after the calibration which is obtained through the arithmetic operation of the setter 7 based upon a specific expression is sent to the amplifier 4, whose gain is calibrated. Thus, the gain of the amplifier 4 is controlled to obtain the same signal as that in case the infrared detection sensitivity is constant by the signal processor 5 even if the infrared detection sensitivity varies.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は1例えばビレットやスラブ又はパイプ等の鉄
鋼製品を生産するラインにおいてそれら鉄鋼製品表面に
存在する欠陥を検出する表面欠陥探傷装置に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a surface defect detection device for detecting defects existing on the surface of steel products, such as billets, slabs, pipes, etc., on a production line for those products. It is.

〔従来の技術〕[Conventional technology]

第4図(a)は1例えば特開昭57−111437号公
報に示された従来の表面欠陥探傷装置を示す図であシ2
図において、αeはスラブ等の被検査材。
FIG. 4(a) is a diagram showing a conventional surface defect detection device disclosed in, for example, Japanese Unexamined Patent Publication No. 57-111437.
In the figure, αe is the material to be inspected, such as a slab.

(Iυは被検査材四の表面を加熱するための表面加熱器
、αηは被検査材USの表面から放射される赤外線を走
査しながら検出するところの赤外線スキャナ。
(Iυ is a surface heater for heating the surface of the inspected material 4, and αη is an infrared scanner that scans and detects infrared rays emitted from the surface of the inspected material US.

舖は赤外線スキャナ住ηの映像信号を処理するところの
映像処理器である。
Alternatively, it is a video processor that processes video signals from an infrared scanner.

従来の表面欠陥探傷装置は上記のように構成され9例え
ば被検査材四の表面を誘導加熱装置等の表面加熱器Iで
加熱すると、被検査材αQの表面に存在する凹状傷(ワ
レIr5)や凸状価(ヘゲvlJ)等の欠陥部は熱伝導
状態や熱ふく射状態が欠陥の存在しない領域と異なるた
めに欠陥部の温度が周辺部よシ高くなることが知られて
いる。従って表面加熱後の被検査材(IIの表面を赤外
線スキャナ面で走査映像し、映像処理6舖で信号処理し
て信号の高い部分、即ち温度の高い部分を検出すること
によって、欠陥部を検出できるのである。
The conventional surface defect detection device is constructed as described above.9 For example, when the surface of the inspected material 4 is heated with a surface heater I such as an induction heating device, concave flaws (cracks Ir5) existing on the surface of the inspected material αQ are detected. It is known that the temperature of a defective portion such as a convex portion or a convex portion (hege vlJ) is higher than that of the surrounding area because the thermal conduction state and thermal radiation state are different from those of a region where no defect exists. Therefore, defects are detected by scanning and imaging the surface of the inspected material (II) after surface heating with an infrared scanner, and processing the signal in the image processing unit 6 to detect areas with high signals, that is, areas with high temperature. It can be done.

また、第4図(b)は、上記赤外線スキャナ蜆ηに使わ
れ、赤外線を検出する赤外線検出器を説明するための図
である。同図において、前記赤外線検出器(1)は赤外
線検出素子(2)及び赤外線を受光するレンズ(3)と
を有し、被検査材tteの表面からふく射される赤外線
は上記レンズ(3)を透過して上記赤外線検出素子(2
)にて検出される。
Further, FIG. 4(b) is a diagram for explaining an infrared detector that is used in the infrared scanner η and detects infrared rays. In the figure, the infrared detector (1) has an infrared detection element (2) and a lens (3) that receives infrared rays, and the infrared rays radiated from the surface of the material to be inspected tte pass through the lens (3). It passes through and the above infrared detection element (2
) is detected.

従って、前記映像処理6舖は、前記赤外線検出器(1)
による検出信号を増幅し9例えばある判定レベルと比較
することにより欠陥部を検出していた。
Therefore, the video processing unit 6 or the infrared detector (1)
A defective portion has been detected by amplifying the detection signal obtained by the method and comparing it with, for example, a certain determination level.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図は上記赤外線検出器(1)による被検査材の表面
欠陥の検出データの一例である。
FIG. 5 is an example of data detected by the infrared detector (1) on surface defects of the inspected material.

同図(a)中、Pは被検査材αQの表面欠陥であり。In the figure (a), P is a surface defect of the inspected material αQ.

また(b)のグラフは被検査材+IIの表面をその長手
方向即ち矢印人に渡って上記赤外線検出器(1)で走査
した場合の赤外線検出信号であって、グラフの縦軸は受
信電圧、及び横軸は被検葺材ueO長手方向における信
号の検出位置である。
The graph in (b) is an infrared detection signal when the surface of the material to be inspected +II is scanned in its longitudinal direction, that is, across the arrow direction, with the infrared detector (1), and the vertical axis of the graph is the received voltage; The horizontal axis is the signal detection position in the longitudinal direction of the roofing material ueO to be tested.

信号r1及びr2は2両方とも前記赤外線検出器(1)
による検出信号の例である。
Signals r1 and r2 are both detected by the infrared detector (1).
This is an example of a detection signal obtained by

前記したように、この表面欠陥探傷の原理は被検査材表
面を加熱した結果、欠陥部分の熱伝導や熱ふく射状態が
異なるために欠陥部の温度が周辺部よシ高くなることを
利用しているため、欠陥部の赤外線の感度は周辺部よシ
高くなシ、従って例えば第5図ta)のような被検査材
aeを走査した場合は(b)に示されたように信号r1
または信号r2はちょうど欠陥部が最も受信電圧が高く
、欠陥部から遠ざかるほど低くなシ、欠陥部から十分能
れている部分は最も受信電圧が低くてしかも平坦である
As mentioned above, the principle of surface defect detection is to utilize the fact that as a result of heating the surface of the material to be inspected, the temperature of the defective area becomes higher than that of the surrounding area due to differences in heat conduction and heat radiation conditions at the defective area. Therefore, the sensitivity of infrared rays in the defective part is higher than that in the surrounding part. Therefore, for example, when scanning the inspected material ae as shown in Fig. 5 (ta), the signal r1 as shown in (b)
Alternatively, the signal r2 has the highest received voltage at the defective part, and decreases as the distance from the defective part increases, and the received voltage is the lowest and flat in the part that is sufficiently removed from the defective part.

同図(C1に示されたようにデータ即ち信号r1または
信号r2がある信号レベルまで増幅され、その増幅信号
即ち信号rt/または信号r〆が予め設定されている判
定レベルhと比較され1判定レベルhを越える部分が欠
陥と判定される。
As shown in the same figure (C1), data, that is, signal r1 or signal r2, is amplified to a certain signal level, and the amplified signal, that is, signal rt/or signal r〆 is compared with a preset judgment level h, and a 1 judgment is made. A portion exceeding level h is determined to be defective.

一方、従来の表面欠陥探傷装置においては、赤外線検出
器(1)の内部の赤外線検出素子(2)そのものの経年
変化やあるいは雰囲気温度の変動による感度変動が生じ
る可能性があり、また赤外線検出器(1)の受光口に設
けられているレンズ(3)のような光学部品には特に外
界に面している表面に種々の付着物が付きやすく、その
付着物による光の散乱や吸収によシ、やはシ赤外線検出
器+1)としての感度が低下する可能性があるために1
次のような問題点がめった。
On the other hand, in conventional surface defect detection equipment, sensitivity fluctuations may occur due to aging of the infrared detection element (2) itself inside the infrared detector (1) or changes in ambient temperature. Optical components such as the lens (3) installed in the light receiving port (1) are prone to various deposits, especially on the surface facing the outside world, and the scattering and absorption of light by these deposits can cause problems. 1) Because the sensitivity as an infrared detector + 1) may decrease,
The following problems were encountered.

即ち、第1図(1))において前記信号r1及びr2は
That is, in FIG. 1(1)), the signals r1 and r2 are as follows.

第−及び第二の状態に対応する検出信号であシ。and a detection signal corresponding to the first and second states.

ここで、第−及び第二の状態とは前述したように。Here, the second and second states are as described above.

前記赤外線検出器(1+の赤外線検出感度に影響を与え
る要因、即ち前記赤外線検出素子(2)の雰囲気温度、
あるいは受光口の光学部品の表面付着物などが原因とな
って、赤外線検出感度が互いに異なっている状態を指す
Factors that affect the infrared detection sensitivity of the infrared detector (1+), that is, the ambient temperature of the infrared detection element (2),
Alternatively, it refers to a state in which the infrared detection sensitivities differ from each other due to things such as deposits on the surface of the optical components of the light receiving port.

よって図示し友ように、前記第−及び第二の状態釜々に
対応する前記信号r1及びr2は互いに全体的に値が異
なる。よって前記信号r1及びr2が一定の利得で増幅
された結果の信号rt/及びr2/が。
Therefore, as shown in the figure, the signals r1 and r2 corresponding to the second and second state groups have totally different values from each other. Therefore, the signals r1 and r2 are amplified with a constant gain, resulting in signals rt/ and r2/.

前記判定レベルhで判定されると2図示の如く。If the judgment is made at the judgment level h, as shown in Figure 2.

第一の状態に対応する信号r1/からは欠陥部分は幅d
として検出されるが、第二の状態に対応する信号r2’
からは欠陥部分は検出されない。
From the signal r1/ corresponding to the first state, the defective part has a width d
, but the signal r2' corresponding to the second state is detected as
No defective parts are detected.

即ち、前記赤外線検出器(1)に前述したように赤外線
検出器(1)に前述したように赤外線検出感度の経時変
化が生じたために、同じ被検査材傾を検査しているにも
かかわらず、欠陥検出結果が時によって異なり、よって
検査判定あるいは欠陥検出の再現性、信頼性が低かった
That is, because the infrared detection sensitivity of the infrared detector (1) has changed over time as described above, even though the same inclination of the material to be inspected is being inspected. However, the defect detection results differ from time to time, resulting in low reproducibility and reliability of inspection judgments or defect detection.

この発明は、前述のような問題点を解消するためになさ
れたもので、前記赤外線検出器(1)の赤外線検出感度
の経時変化があった場合でも、赤外線検出感度が一定の
場合と同様の信号が前記赤外線検出器(11の検出信号
の増幅信号として得られ、検査判定に前記赤外線検出器
(1)の赤外線検出感度の影響がない表面欠陥探傷装置
を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and even if the infrared detection sensitivity of the infrared detector (1) changes over time, the infrared detection sensitivity remains the same as when the infrared detection sensitivity is constant. The object of the present invention is to obtain a surface defect detection device in which a signal is obtained as an amplified signal of the detection signal of the infrared detector (11), and the inspection judgment is not affected by the infrared detection sensitivity of the infrared detector (1).

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る表面欠陥探傷装置は、前記赤外線検出器
の検出信号を増幅し、かつ外部からの信号によって利得
が変えられる増幅器と、被検査材の検査中でない時に前
記赤外線検出器で受光できる様に設置した基準赤外線発
光器と、その基準赤外線発光器の赤外線の前記赤外線検
出器による検出信号で予め定めた基準レベルを除した結
果と。
The surface defect detection device according to the present invention includes an amplifier that amplifies the detection signal of the infrared detector and whose gain can be changed by an external signal, and a device that allows the infrared detector to receive light when the material to be inspected is not being inspected. a reference infrared light emitter installed in the reference infrared light emitter, and the result of dividing the detection signal of the infrared rays of the reference infrared light emitter by the infrared detector by a predetermined reference level.

前記増幅器の初期に定めた利得とにより前記増幅器の較
正後の利得を設定する機能を有する感度較正器を備えた
ものである。
The sensitivity calibrator has a function of setting the gain after calibration of the amplifier based on the gain determined at the initial stage of the amplifier.

または前記赤外線検出器の検出信号を増幅し。Or amplify the detection signal of the infrared detector.

かつ、外部からの信号によって利得が変えられ゛る増幅
器と、被検査材の検査中でない時に、所定の大きさの人
工欠陥を有する感度較正試験材を加熱し、その感度較正
試験材からふく射される人工欠陥部の赤外線のピーク値
を求め、そのピーク値で予め定めた基準レベルを除し、
さらにその結果と前記増幅器の初期に定めた利得とによ
り前記増幅器の較正後の利得を設定する機能を有する感
度較正器とを備えたものである。
In addition, an amplifier whose gain can be changed by an external signal is used, and when the material to be inspected is not being inspected, a sensitivity calibration test material having an artificial defect of a predetermined size is heated, and radiation from the sensitivity calibration test material is heated. Find the peak value of the infrared rays of the artificial defect, and divide the predetermined reference level by that peak value.
The apparatus further includes a sensitivity calibrator having a function of setting the calibrated gain of the amplifier based on the result and the initially determined gain of the amplifier.

なお、前記基準赤外線発光器の発する赤外線を前記赤外
線検出器に受光させる手段としては、前記基準赤外線発
光器の放射赤外線を直接か、または反射鏡に反射させる
かして空中伝播させたシ。
Note that the means for causing the infrared detector to receive the infrared rays emitted by the reference infrared emitter is to transmit the infrared rays emitted by the reference infrared emitter either directly or by reflecting them on a reflector to propagate through the air.

前記基準赤外線発光器に光ファイバを接続して。Connecting an optical fiber to the reference infrared emitter.

その光ファイバによって、赤外線を前記赤外線検出器の
受光口にまで導く手段を用いる。
Means is used to guide infrared rays to the light receiving aperture of the infrared detector using the optical fiber.

〔作用〕[Effect]

この発明における表面欠陥探傷装置は、前md赤外線検
出器の外部に基準赤外線発光器を設けて。
The surface defect detection device according to the present invention includes a reference infrared light emitter provided outside the front MD infrared detector.

その放射赤外線の前記赤外線検出器による検出信号と予
め定めた基準レベルとの比較結果に基づいて前記増幅器
の利得を較正することによって、前記赤外線検出器の赤
外線検出感度の変動に関係なく、赤外線検出感度が一定
である場合と同様の信号が前記増幅器の出力信号として
、その出力信号を処理し、検査判定を行う信号処理器に
送出される。
By calibrating the gain of the amplifier based on the comparison result between the detection signal of the infrared radiation detector by the infrared detector and a predetermined reference level, infrared detection can be performed regardless of fluctuations in the infrared detection sensitivity of the infrared detector. A signal similar to that when the sensitivity is constant is sent as an output signal of the amplifier to a signal processor that processes the output signal and makes a test determination.

または、いま一つの発明による表面欠陥探傷装置は、所
定の大きさの人工欠陥を有する感度較正試験材を具備し
ており、加熱後の前記感度較正試験材の人工欠陥部から
の赤外線の前記赤外線検出器による検出信号のピーク値
と予め定めた基準レベルとの比較結果に基づいて、前記
増幅器の利得を較正することによシ、前記赤外線検出器
の赤外線検出感度の変動に関係なく、赤外線検出感度が
一定の場合と同様の信号が前記増幅器の出力信号として
前記信号処理器に送出される。
Alternatively, the surface defect detection device according to another invention includes a sensitivity calibration test material having an artificial defect of a predetermined size, and the infrared rays emitted from the artificial defect portion of the sensitivity calibration test material after heating are provided. By calibrating the gain of the amplifier based on the comparison result between the peak value of the detection signal by the detector and a predetermined reference level, infrared detection can be performed regardless of fluctuations in the infrared detection sensitivity of the infrared detector. A signal similar to that in the case of constant sensitivity is sent to the signal processor as the output signal of the amplifier.

〔実施例〕〔Example〕

第1図はこの発明の特徴をなす表面欠陥探傷装置の一実
施例であって、同図において、(1)は赤外線検出器で
あり、赤外線検出素子(2)及びレンズ(3)よシ構成
されている。また(4)は増幅器であって。
FIG. 1 shows an embodiment of a surface defect detection device which is a feature of the present invention. has been done. Further, (4) is an amplifier.

前記赤外線検出器(11の検出信号を増幅し、かつ外部
からの信号によシ、利得が変えられる。(5)は信号処
理器であって、前記増幅器(4)の増幅信号を処理し、
欠陥検出を行う。一方、(6)は割算器であって、前記
赤外線検出器+11の検出信号を受けて、その検出信号
で予め設定した基準レベルを除するもので、また(7)
は感度設定器であシ、前記増幅器(4)に初期利得を設
定し、かつ前記割算器(6)の出力信号により前記初期
利得を較正し、較正後の利得を前記増幅器(4)に設定
する。そして、(8)は感度較正器であって前記割算器
(6)及び前記感度設定器(7)よシ構成される。(9
)は制御器であって、被検査材の検査中か検査中でない
時かに応じて前記感度較正器(8)及び前記信号処理器
(5)の動作を切り換える動作を行う。なお、qQは基
準赤外線発光器(以下単に発光器)、住υは表面加熱器
、及びaりは所定の大きさの人工欠陥を有する感度較正
試験材である。また、検査中には、前記感度較正試験材
住りの代わシに前記被検査材傾が存在する。
The detection signal of the infrared detector (11) is amplified, and the gain is changed depending on an external signal. (5) is a signal processor that processes the amplified signal of the amplifier (4),
Perform defect detection. On the other hand, (6) is a divider which receives the detection signal of the infrared detector +11 and divides a preset reference level by the detection signal, and (7)
is a sensitivity setting device, which sets an initial gain to the amplifier (4), calibrates the initial gain using the output signal of the divider (6), and applies the calibrated gain to the amplifier (4). Set. And (8) is a sensitivity calibrator, which is composed of the divider (6) and the sensitivity setter (7). (9
) is a controller that switches the operations of the sensitivity calibrator (8) and the signal processor (5) depending on whether the material to be inspected is being inspected or not. Note that qQ is a reference infrared light emitter (hereinafter simply referred to as a light emitter), υ is a surface heater, and a is a sensitivity calibration test material having an artificial defect of a predetermined size. Further, during the inspection, the gradient of the material to be inspected exists in place of the sensitivity calibration test material.

そこで2本発明による前記増幅器(4)の利得の制御に
よ)、赤外線検出感度に変動があっても、赤外線検出感
度が一定の場合と同様の信号が前記信号処理器(5)に
て得られる方法を以下に詳しく述べる。
Therefore, by controlling the gain of the amplifier (4) according to the present invention), even if the infrared detection sensitivity fluctuates, the signal processor (5) can obtain the same signal as when the infrared detection sensitivity is constant. The method used will be described in detail below.

即ち、前記発光器tIQの発する赤外線の前記赤外線検
出器(11による任意の時の検出信号をerとし。
That is, let the detection signal at any time by the infrared detector (11) of the infrared rays emitted by the light emitter tIQ be er.

前記増幅器(4)の較正後の利得をorとすると、前記
検出信号erの増幅された結果の信号erGrが一定値
になるように、前記利得Grを前記感度較正器(8)が
設定する。
If the calibrated gain of the amplifier (4) is or, the sensitivity calibrator (8) sets the gain Gr so that the signal erGr resulting from the amplification of the detection signal er has a constant value.

ところで、前記一定値としては9例えば次の値を用いる
。即ち、前記赤外線検出器(11が所定の管理された状
態、換言すれば、前記赤外線検出素子(2)の雰囲気温
度がある温度に設定されていたシ。
Incidentally, the constant value is 9, for example, the following value is used. That is, the infrared detector (11) is in a predetermined controlled state, in other words, the ambient temperature of the infrared detecting element (2) is set to a certain temperature.

受光口のレンズ(3)などの光学部品の表面に付着物が
ないなどの所定の初期状態にある時の前記発光器Q1の
発する赤外線の前記赤外線検出器(1)による検出信号
をeOとし、またこの状態において初期利得として予め
前記感度較正器(8)の設定した利得をGQとすると、
前記検出信号eoの初期利得G。
Let eO be the detection signal of the infrared rays emitted by the light emitter Q1 by the infrared detector (1) when the surface of the optical component such as the lens (3) of the light receiving port is in a predetermined initial state such that there is no deposit on the surface; Further, in this state, if the gain preset by the sensitivity calibrator (8) is GQ as the initial gain,
an initial gain G of the detection signal eo;

による増幅信号eOGOを前述の一定値とするのである
The amplified signal eOGO is set to the above-mentioned constant value.

即ち、任意の時の前記発光器illの赤外線の検出信号
の増幅信号erGrを一定値e OGGとすることを式
に表わすと以下のようになる。
That is, setting the amplified signal erGr of the infrared detection signal of the light emitter ill at any time to a constant value e OGG is expressed as follows.

θrGr ”” eOGO・・・・・・・・・・・・・
・・・・・fl)よって、(1)式よシ、較正後の利得
orは次式にて表わされる。
θrGr ”” eOGO・・・・・・・・・・・・・
...fl) Therefore, based on equation (1), the gain or after calibration is expressed by the following equation.

Gr! GQ−・・・・・・・・・・・・・・・・・・
+21r 言い換えれば、前記発光器ulの発する赤外線の初期に
おける検出信号即ち基準レベルeoと任意の時の検出信
号erとの比を前記初期利得ogにかけたものが、較正
後の利得Grであるといえる。
Gr! GQ-・・・・・・・・・・・・・・・・・・
+21r In other words, the post-calibration gain Gr is obtained by multiplying the initial gain og by the ratio of the initial detection signal of the infrared rays emitted by the light emitter ul, that is, the reference level eo, and the detection signal er at any time. .

従って2以上記述した利得の較正を第1図における各部
の動作に当てはめると、前記基準レベル6Qが前記割算
器(6)に被除数として予め設定される。さらに、前記
検出信号erで前記割算器(6)にて前記基準レベル1
i1Qを除し、(2)式における。前記初期利得Goに
対し較正するべき比率(eo/er)が前記割算器(6
)から前記感度設定器(7)に送出される。そして、初
期利得GQが設定されている前記感度設定器(7)にて
(2)式の演算が行われ、較正後の前記利得orが前記
感度設定器(7)よシ、前記増幅器(4)に設定される
Therefore, when the gain calibration described above is applied to the operation of each part in FIG. 1, the reference level 6Q is preset as the dividend in the divider (6). Furthermore, with the detection signal er, the divider (6) outputs the reference level 1.
In equation (2), by dividing i1Q. The ratio (eo/er) to be calibrated to the initial gain Go is determined by the divider (6
) is sent to the sensitivity setting device (7). Then, the calculation of equation (2) is performed in the sensitivity setter (7) in which the initial gain GQ is set, and the gain or after calibration is determined by the sensitivity setter (7) and the amplifier (4). ) is set.

なお、前記制御器(9)は被検査材の検査中には前記感
度較正器(8)を動作させず、先の較正後の利得を保ち
、かつ前記信号処理器(5)を動作させ、被検査材の検
査中でない時には逆に前記感度較正器(8)を動作させ
、前記信号処理器(5)は動作させないようにする。
Note that the controller (9) does not operate the sensitivity calibrator (8) during the inspection of the material to be inspected, maintains the gain after previous calibration, and operates the signal processor (5); Conversely, when the material to be inspected is not being inspected, the sensitivity calibrator (8) is operated, and the signal processor (5) is not operated.

なお、前記初期利得GQは1例えば次のようにして定め
られる。即ち、予め所定の深さ及び幅の人工欠陥を有す
る感度較正試験材Uaを表面加熱した後、前記赤外線検
出器(1)による、前記感度較正試験材uりからふく射
される赤外線の検出信号を前記増幅器(4)で増幅した
後、前記信号処理器(5)にて。
Note that the initial gain GQ is determined to be 1, for example, as follows. That is, after surface-heating the sensitivity calibration test material Ua having an artificial defect of a predetermined depth and width in advance, the detection signal of infrared rays radiated from the sensitivity calibration test material Ua by the infrared detector (1) is detected. After being amplified by the amplifier (4), the signal is amplified by the signal processor (5).

前記人工欠陥の前記所定の幅が検出されるような一定の
判定レベルを前記人工欠陥の深さに応じて前記信号処理
器(5)に定めておいた時点での前記増幅器(4)の利
得を0(、とする。
the gain of the amplifier (4) at the time when a certain determination level at which the predetermined width of the artificial defect is detected is determined in the signal processor (5) according to the depth of the artificial defect; Let be 0(,.

なお1本実施例によれば、前記感度較正試験材αりは初
期利得GQを定める時にのみ用いて、前記増幅器(4)
の利得の較正には前記発光器(11の発する赤外線の検
出信号を用いるため、前記感度較正試験材(ls5は必
要ない。
According to this embodiment, the sensitivity calibration test material α is used only when determining the initial gain GQ, and the sensitivity calibration test material α is used only when determining the initial gain GQ.
Since the infrared detection signal emitted by the light emitter (11) is used to calibrate the gain, the sensitivity calibration test material (ls5) is not necessary.

なお2本実施例では、前記増幅器(4)の利得の較正手
段である感度較正器(8)として、前記発光器a〔の発
する赤外線の検出信号erと予め設定しである基準レベ
ルeQとの比を求める割算器(6)と、前記初期利得G
Qと前記割算器(6)の出力から較正し利得を設定し直
す即ち(2)式の演算を行う感度設定器(7)とを用い
ているが、(1)式を満たすような較正利得Grを前記
検出信号erに対し求めることができるような他の回路
構成であってもよく9本実施例と同様の効果を奏する。
In this embodiment, a sensitivity calibrator (8) serving as a means for calibrating the gain of the amplifier (4) is used to calibrate the infrared detection signal er emitted by the light emitter a and a preset reference level eQ. A divider (6) for calculating the ratio and the initial gain G
Q and a sensitivity setting device (7) that calibrates and resets the gain from the output of the divider (6), that is, calculates the equation (2), is used, but the calibration that satisfies the equation (1) is used. Other circuit configurations that can determine the gain Gr for the detection signal er may also be used, and the same effects as in the ninth embodiment can be achieved.

また、第2図は、前記実施例と同様の効果を有する他の
実施例を示している。即ち、前記発光器a〔の発する赤
外線の代わシに、検査中でない、任意の時において前記
表面加熱器Qυによシ加熱された。所定の大きさの人工
欠陥を有する前記感度較正試験材aりからふく射される
人工欠陥部の赤外線の前記赤外線検出器(1)による検
出信号を用いるもので2例えばその検出信号のピーク値
をerとすると、前記割算器(6)にてピークホールド
回路α湯が検出した前記ピーク値e、で前記割算器(6
)に設定されている基準レベルeQを除し、前記感度設
定器(7)が前記割算器(6)の出力を用いて前記(2
)式の演算を行い前記増幅器(4)の較正後の利得Gr
を算出するようにしても、前記実施例と同様の効果を奏
する。なお、この場合は初めに前記赤外線検出器(1)
を前述した所定の初期状態に保っておいた時に前記感度
較正試験材(2)によシ前記信号処理器(5)の判定レ
ベルを定める時と同時に前記増幅器(4)の前記初期利
得GQが定められる時、やはシ同時に。
Further, FIG. 2 shows another embodiment having the same effects as the above embodiment. That is, instead of the infrared rays emitted by the light emitter a, the surface heater Qυ was heated at any time not during the inspection. It uses a detection signal from the infrared detector (1) of the infrared rays of the artificial defect portion radiated from the sensitivity calibration test material a having an artificial defect of a predetermined size. Then, the divider (6) uses the peak value e detected by the peak hold circuit α in the divider (6).
), and the sensitivity setter (7) uses the output of the divider (6) to calculate the reference level eQ set to (2).
) is calculated to obtain the calibrated gain Gr of the amplifier (4).
Even if it is calculated, the same effect as in the embodiment described above can be obtained. In this case, first the infrared detector (1)
is maintained at the predetermined initial state described above, the initial gain GQ of the amplifier (4) is determined by the sensitivity calibration test material (2) at the same time as determining the judgment level of the signal processor (5). At the appointed time, at the same time.

この状態における前記ピークホールド回路αjによる前
記感7JI較正試験材azの人工欠陥部の赤外線のピー
ク値を検出しておいて、そのピーク値を前記基準レベル
eoとし、また前記割算器(6)に被除数として設定し
ておく。
In this state, the peak value of the infrared rays of the artificial defect part of the Sense 7JI calibration test material az is detected by the peak hold circuit αj, and the peak value is set as the reference level eo, and the divider (6) Set it as the dividend.

この実施例においては前記実施例で使用されている前記
発光器a0は必要ない。
In this embodiment, the light emitter a0 used in the previous embodiment is not needed.

また2本実施例においては、前記赤外線検出器(1)の
受光口に設けられている光学部品として、前記レンズ(
3)を示したが、前記赤外線検出器(1)の内部に設置
されている前記赤外線検出素子(2)に受光させるよう
な他の光学部品が前記レンズ(3)の代わシに設けられ
ている場合でも本実施例と同様の効果を奏する。
In addition, in the second embodiment, the lens (
3), but another optical component is provided in place of the lens (3) to allow the infrared detection element (2) installed inside the infrared detector (1) to receive light. Even in the case where there is an object, the same effects as in this embodiment can be obtained.

また2本実施例では前記発光器α1の位置が被検査材μ
Gを間にはさんで前記赤外線検出器t1)と反対側にな
っているが、第3図(a)に示したように前記発光器u
0が前記赤外線検出器(11の外部で、かつ。
In addition, in the two embodiments, the position of the light emitter α1 is
G is on the opposite side from the infrared detector t1), but as shown in FIG. 3(a), the light emitter u
0 is outside the infrared detector (11), and.

他の位置にあっても反射鏡Iを用いて前記発光器Hの放
射光を反射させて前記赤外線検出器(1)に受光させら
れる場合でもよく2本実施例と同様の効果を奏する。
Even in other positions, the emitted light from the light emitter H may be reflected using the reflecting mirror I and received by the infrared detector (1), and the same effects as in the two embodiments can be achieved.

なお、この場合は、前記発光器α〔が本実施例のように
被検査材USの下側に配置されるよシもメンテナンスが
しやすい等の設置条件の良い位置に設置できる利点があ
る。
In this case, there is an advantage that the light emitting device α can be installed in a position with favorable installation conditions such as easy maintenance, rather than being placed below the object to be inspected US as in the present embodiment.

また2本実施例では前記発光器Q(Iを前記赤外線検出
器(1)に受光させる手段として前記発光器α・からの
放射光が空中を伝ばんして直接、前記赤外線検出器(1
)に受光されるように前記発光器a・を配置しているが
2例えば、第3図(b)のように前記発光器σ1を任意
の場所に設置して、光ファイバ(15を前記発光器01
から前記赤外線検出器(1)まで接続して前記光ファイ
バ<15にはって前記発光器Qlの光を導くようにして
も前記実施例と同様の効果を奏する。
In addition, in this embodiment, as a means for causing the infrared detector (1) to receive light from the light emitter Q(I), the emitted light from the light emitter α propagates through the air and is directly transmitted to the infrared detector (1).
2. For example, as shown in FIG. 3(b), the light emitter σ1 is installed at an arbitrary location and the optical fiber (15 is connected to the light emitting device σ1). Vessel 01
Even if the optical fiber is connected to the infrared detector (1) and the light from the light emitter Ql is guided through the optical fiber <15, the same effect as in the embodiment described above can be obtained.

なお、この場合は、前記発光器−が前述の二つの実施例
よシもさらにメンテナンスがしやすい等の設置条件の良
い位置に設置できる利点があシ。
In this case, there is an advantage that the light emitting device can be installed in a position with good installation conditions such as easier maintenance than in the above two embodiments.

また反射m(141が不要であることはいうまでもない
It goes without saying that the reflection m (141) is unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、基準赤外線発光器の
発する赤外線か、所定の大きさの人工欠陥を有する感度
較正試験材の加熱後のふく射赤外線の前記赤外線検出器
による検出信号を用いて予め設定されている基準レベル
との比較結果に基づき前記増幅器の利得を較正するので
、前記赤外線検出器の赤外線検出感度の変動に関係なく
赤外線検出感度が一定の場合と同様の信号が前記増幅器
の出力信号として前記信号処理器に送出されるため、検
査判定あるいは欠陥検出の信頼性が向上する効果がある
As described above, according to the present invention, the detection signal by the infrared detector of the infrared rays emitted by the reference infrared emitter or the infrared rays radiated after heating the sensitivity calibration test material having an artificial defect of a predetermined size is used. Since the gain of the amplifier is calibrated based on the comparison result with a preset reference level, the same signal as when the infrared detection sensitivity of the infrared detector is constant is generated regardless of fluctuations in the infrared detection sensitivity of the infrared detector. Since it is sent to the signal processor as an output signal, it has the effect of improving the reliability of inspection judgment or defect detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による表面欠陥探傷装置を
示す図、第2図及び第3図はこの発明の他の実施例によ
る表面欠陥探傷装置を示す図、第4図は従来の表面欠陥
探傷装置を示す図、第5図は従来の表面欠陥探傷装置に
おける問題点を説明するための図である。 図において、(1)は赤外線検出器、(4)は増幅器。 (5)は信号処理器、(8)は感度較正器、(9)は制
御器。 +1(Iは基準赤外線発光器、aυは表面加熱器、住の
は感度較正試験材、 Q41は反射鏡、霞は光ファイバ
である。 なお1図中、同一符号は同一あるいは相当部分を示す。
FIG. 1 shows a surface defect detection device according to one embodiment of the present invention, FIGS. 2 and 3 show surface defect detection devices according to other embodiments of the invention, and FIG. 4 shows a conventional surface defect detection device. FIG. 5 is a diagram showing a defect detection device, and is a diagram for explaining problems in the conventional surface defect detection device. In the figure, (1) is an infrared detector, and (4) is an amplifier. (5) is a signal processor, (8) is a sensitivity calibrator, and (9) is a controller. +1 (I is the reference infrared light emitter, aυ is the surface heater, Sumino is the sensitivity calibration test material, Q41 is the reflector, and Kasumi is the optical fiber. In Figure 1, the same symbols indicate the same or equivalent parts.

Claims (5)

【特許請求の範囲】[Claims] (1)被検査材を加熱する表面加熱器と、前記加熱後の
被検査材表面からふく射される赤外線を受光し電気信号
に変換する赤外線検出器と、その赤外線検出器の電気信
号を増幅し、かつ外部からの信号によつて利得を変える
ことができる増幅器と、その増幅器の出力に接続され、
前記赤外線検出器の検出信号の前記増幅器による増幅信
号を処理して検査判定を行う信号処理器と、被検査材の
検査中でない時に前記赤外線検出器で受光できるように
設置した基準赤外線発光器と、前記増幅器に初期利得を
設定し、かつ前記基準赤外線発光器からの赤外線の前記
赤外線検出器による検出信号と予め定めた基準のレベル
との比較を用いて前記増幅器の較正後の利得を算出し前
記増幅器に設定し直す感度較正器と、被検査材の検査中
には前記感度較正器を動作させず先に較正した利得を保
つようにし、かつ前記信号処理器を動作させ、一方検査
中でない時は前記感度較正器を動作させ前記信号処理器
を動作させないように切り換える機能を有する制御器と
を備えたことを特徴とする表面欠陥探傷装置。
(1) A surface heater that heats the inspected material, an infrared detector that receives infrared rays emitted from the heated surface of the inspected material and converts it into an electrical signal, and amplifies the electrical signal of the infrared detector. , and an amplifier whose gain can be changed by an external signal, and connected to the output of the amplifier,
a signal processor that processes the amplified signal of the infrared detector detected by the amplifier to make an inspection determination; and a reference infrared light emitter installed so that the infrared detector can receive the light when the material to be inspected is not being inspected. , setting an initial gain in the amplifier, and calculating a calibrated gain of the amplifier using a comparison between a detection signal of the infrared rays from the reference infrared light emitter by the infrared detector and a predetermined reference level; The sensitivity calibrator is reset to the amplifier, the sensitivity calibrator is not operated during inspection of the material to be inspected to maintain the previously calibrated gain, and the signal processor is operated, while the inspection target is not being inspected. and a controller having a function of switching the sensitivity calibrator to operate and the signal processor to disable the operation.
(2)前記基準赤外線発光器を前記赤外線検出器に受光
させる方法として、前記赤外線検出器が受光できる光路
上で、かつ被検査材がない時に受光されるような位置に
前記基準赤外線発光器が配置され、被検査材がない時に
前記基準赤外線発光器の放射光を空中伝播させ、前記赤
外線検出器の受光口に到達させる特許請求の範囲第(1
)項記載の表面欠陥探傷装置。
(2) As a method for causing the infrared detector to receive light from the reference infrared light emitter, the reference infrared light emitter is placed on an optical path where the infrared detector can receive light and at a position where light can be received when there is no material to be inspected. claim 1, in which the radiation light of the reference infrared emitter is propagated through the air and reaches the light receiving port of the infrared detector when there is no material to be inspected.
) The surface defect detection device described in item 2.
(3)前記基準赤外線発光器を前記赤外線検出器に受光
させる方法として、前記基準赤外線発光器の他に反射鏡
を前記赤外線検出器の外部に一個かまたは複数個設け、
前記基準赤外線発光器の放射光を前記反射鏡にて一回ま
たは複数回反射させ、前記赤外線検出器の受光口にまで
到着させる特許請求の範囲第(1)項記載の表面欠陥探
傷装置。
(3) As a method for causing the infrared detector to receive the reference infrared emitter, in addition to the reference infrared emitter, one or more reflecting mirrors are provided outside the infrared detector;
The surface defect detection device according to claim 1, wherein the light emitted from the reference infrared light emitter is reflected by the reflector once or multiple times and reaches the light receiving port of the infrared detector.
(4)前記基準赤外線発光器を前記赤外線検出器に受光
させる方法として前記基準赤外線発光器に光ファイバを
接続し、前記基準赤外線発光器から前記赤外線検出器の
受光口にまで前記光ファイバによつて光を導く特許請求
の範囲第(1)項記載の表面欠陥探傷装置。
(4) As a method for causing the infrared detector to receive light from the reference infrared emitter, an optical fiber is connected to the reference infrared emitter, and the optical fiber is connected from the reference infrared emitter to the light receiving port of the infrared detector. A surface defect detection device according to claim 1, which guides light.
(5)被検査材を加熱する表面加熱器と、前記加熱後の
被検査材表面からふく射される赤外線を受光し電気信号
に変換する赤外線検出器と、その赤外線検出器の電気信
号を増幅し、かつ外部からの信号によつて利得を変える
ことができる増幅器と、その増幅器の出力に接続され、
前記赤外線検出器の検出信号の前記増幅器による増幅信
号を処理して検査判定を行う信号処理器と、所定の大き
さの人工欠陥を有する感度較正試験材と、前記増幅器に
初期利得を設定し、かつ前記表面加熱器で加熱された前
記感度較正試験材よりふく射される赤外線のピーク値を
検出し、そのピーク値と予め定めた基準のレベルとの比
較を用いて、前記増幅器の較正後の利得を算出し、前記
増幅器に設定し直す感度較正器と、被検査材の検査中に
は前記感度較正器を動作させず、前記増幅器の先に較正
した利得を保つようにしかつ前記信号処理器を動作させ
、一方、被検査材の検査中でない時には前記感度較正器
を動作させ前記信号処理器を動作させないように切り換
える機能を有する制御器とを備えたことを特徴とする表
面欠陥探傷装置。
(5) A surface heater that heats the inspected material, an infrared detector that receives infrared rays radiated from the heated surface of the inspected material and converts it into an electrical signal, and amplifies the electrical signal of the infrared detector. , and an amplifier whose gain can be changed by an external signal, and connected to the output of the amplifier,
a signal processor that processes an amplified signal of the detection signal of the infrared detector by the amplifier to make an inspection determination; a sensitivity calibration test material having an artificial defect of a predetermined size; and setting an initial gain to the amplifier; The peak value of infrared rays radiated from the sensitivity calibration test material heated by the surface heater is detected, and the calibrated gain of the amplifier is determined by comparing the peak value with a predetermined reference level. a sensitivity calibrator for calculating and resetting in the amplifier; and a sensitivity calibrator for not operating the sensitivity calibrator during inspection of a material to be inspected to maintain the previously calibrated gain of the amplifier; and a controller having a function of operating the sensitivity calibrator and disabling the signal processor when a material to be inspected is not being inspected.
JP5881286A 1986-03-17 1986-03-17 Surface flaw detector Pending JPS62214334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5881286A JPS62214334A (en) 1986-03-17 1986-03-17 Surface flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5881286A JPS62214334A (en) 1986-03-17 1986-03-17 Surface flaw detector

Publications (1)

Publication Number Publication Date
JPS62214334A true JPS62214334A (en) 1987-09-21

Family

ID=13095019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5881286A Pending JPS62214334A (en) 1986-03-17 1986-03-17 Surface flaw detector

Country Status (1)

Country Link
JP (1) JPS62214334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029976A1 (en) * 2008-09-10 2010-03-18 シャープ株式会社 Evaluation device, calibration method, calibration program, and recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029976A1 (en) * 2008-09-10 2010-03-18 シャープ株式会社 Evaluation device, calibration method, calibration program, and recording medium

Similar Documents

Publication Publication Date Title
US3451254A (en) Nondestructive tester
US4674325A (en) Microwave moisture sensor
US5460451A (en) Pyrometer including an emissivity meter
GB1401778A (en) Method for measuring the surface temperature of a metal object
JPH06167456A (en) Calibration method of scanner and generation apparatus of prescribed scattered-light amplitude
US7060991B2 (en) Method and apparatus for the portable identification of material thickness and defects along uneven surfaces using spatially controlled heat application
JP4104924B2 (en) Optical measuring method and apparatus
US3434332A (en) Nondestructive tester
KR101770232B1 (en) Method and device for contactlessly determining the temperature of a moving object having an unknown degree of emission
JPS62214334A (en) Surface flaw detector
JPH08184496A (en) Measurement of radiation luminance by angular wave filteringused in temperature measurement of heat radiating body
KR101701409B1 (en) Apparatus and method for generating high resolution and high sensitivie images using terahertz electromagnetic waves
EP0605055B1 (en) Pyrometer including an emissivity meter
JPS62226042A (en) Surface flaw detector
JP3600873B2 (en) Substrate temperature measurement unit
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
JPH05507356A (en) Object temperature measurement method and device and heating method
JPH06294627A (en) Buckling detection method in continuous heat treatment furnace
JP2653288B2 (en) Infrared flaw detector
JPS62194446A (en) Surface flaw detector
JPS6191544A (en) Automatic exposure control for surface defect detection of hot metal material
JPH06222003A (en) Gas concentration measuring equipment
JPH0493730A (en) Temperature measuring apparatus
JPH08122275A (en) Surface flaw inspection device
JP2859043B2 (en) Semiconductor substrate heat treatment equipment