JPS6221382B2 - - Google Patents

Info

Publication number
JPS6221382B2
JPS6221382B2 JP54139943A JP13994379A JPS6221382B2 JP S6221382 B2 JPS6221382 B2 JP S6221382B2 JP 54139943 A JP54139943 A JP 54139943A JP 13994379 A JP13994379 A JP 13994379A JP S6221382 B2 JPS6221382 B2 JP S6221382B2
Authority
JP
Japan
Prior art keywords
weight
carbon fiber
polyarylene sulfide
sulfide resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54139943A
Other languages
Japanese (ja)
Other versions
JPS5665044A (en
Inventor
Hitoshi Izutsu
Hiroshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP13994379A priority Critical patent/JPS5665044A/en
Publication of JPS5665044A publication Critical patent/JPS5665044A/en
Publication of JPS6221382B2 publication Critical patent/JPS6221382B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は機械的強度、耐熱性、成形加工性の改
良された炭素繊維強化樹脂組成物に関する。 ポリアリーレンスルフイド樹脂は樹脂単独では
機械的強度、耐熱性、成形加工性が充分でなく、
ガラス繊維や炭素繊維を添加し、これらの性能を
改良することが行なわれている。しかしながら、
炭素繊維の場合、ガラス繊維の場合に比較して、
ポリアリーレンスルフイド樹脂と該強化繊維との
密着性が弱く、充分な強化効果が得られず、特に
耐衝撃性の低いことが判明した。 更に炭素繊維とポリアリーレンスルフイド樹脂
との密着性が不充分であるためポリアリーレンス
ルフイド樹脂マトリツクス中の炭素繊維の分散が
悪く、ガラス繊維の場合に比較して成形加工性が
悪いと云う問題が生じた。 本発明者らは以上の難点を解決すべく鋭意検討
の結果、炭素繊維の表面に0.1〜10重量%の範囲
の低融点ポリアミド樹脂及び/又は液状もしくは
固状エポキシ化合物を存在せしめポリアリーレン
スルフイド樹脂との密着性を向上せしめかつポリ
アリーレンスルフイド樹脂として、ガラス繊維の
場合に通常用いられてきたものよりも分子量の小
さいものを選択することによつて、ポリアリーレ
ンスルフイド樹脂中の炭素繊維の分散性が良好と
なり機械的強度、耐熱性、成形加工性が改良され
た炭素繊維強化ポリアリーレンスルフイド樹脂組
成物が得られることを見出した。 即ち、本発明は、炭素繊維3〜60重量%、ガラ
ス繊維0〜50重量%及びポリアリーレンスルフイ
ド樹脂97〜40重量%からなり、該炭素繊維には炭
素繊維を基準にして0.1〜15重量%の低融点ポリ
アミド樹脂及び/及は液状もしくは固状エポキシ
化合物が付着しており、しかも該ポリアリーレン
スルフイド樹脂がASTM D1238―70Tで定めるメ
ルトインデクサーにて300℃、2160gの荷重下で
5以上のメルトフローレイトを有することを特徴
とする炭素繊維強化樹脂組成物を提供する。 本発明で使用する低融点ポリアミド樹脂は、ナ
イロン6共重合体、ナイロン6,6共重合体、ナ
イロン6,10共重合体、ナイロン11およびその共
重合体、ナイロン12およびその共重合体、ヒドロ
キシアルキル化ナイロン、アルコキシアルキル化
ナイロンなどの低融点ポリアミド樹脂であつて、
融点が200℃以下特に180℃以下のものが好まし
い。ヒドロキシアルキル化ナイロンとしては例え
ばヒドロキシメチルやヒドロキシエチルナイロン
6などが好ましく、ヒドロキシアルキル化ナイロ
ンは例えばメトキシメチル、メトキシエチル、エ
トキシメチル、プロポキシメチルまたはブトキシ
メチル化したナイロン6などが好ましい。 また液状もしくは固状のエポキシ化合物として
は、例えばビスフエノールA、ビスフエノール
F、ビスフエノールSなどのジグリシジル化合物
およびその重合体、ノボラツク樹脂、フエノール
フタレインなどのポリフエノールからのエポキシ
樹脂、シクロヘキセンジオキシドなどの脂肪族系
エポキシ化合物及び重合体、エポキシ化大豆油、
窒素、リン、ケイ素などを含有したエポキシ化合
物および重合体などが使用できる。 ポリアミド樹脂及びエポキシ化合物の炭素繊維
への付着は、ポリアリーレンスルフイド樹脂、炭
素繊維、低融点ポリアミド樹脂及び/又はエポキ
シ化合物の3者又は4者を同時に加熱、混練する
ことによつても達成するとは可能であるが、あら
かじめ、低融点ポリアミド樹脂及び/又はエポキ
シ化合物を炭素繊維に付着させチヨツプ状とする
のが取扱いおよびポリアリーレンスルフイド樹脂
との均一分散性の上で好ましい。 ポリアミド樹脂及びエポキシ化合物の炭素繊維
に対する付着量は、炭素繊維を基準にして0.1〜
15重量%好ましくは0.3〜10重量%である。この
場合、0.1重量%未満では炭素繊維とポリアリー
レンスルフイド樹脂マトリツクスとの密着性改良
に効果がなく、15重量%を越えるとポリアリーレ
ンスルフイド樹脂本来の機械的強度、耐熱性に悪
影響を及ぼし、不適当である。 従来、炭素繊維強化ポリアリーレンスルフイド
樹脂の成形加工温度が330〜380℃と極めて高く、
他の通常の熱可塑性プラスチツクに比較して、炭
素繊維に付着させポリアリーレンスルフイド樹脂
との密着性改良をする添加物には大きな制限があ
つた。しかしながら、本発明の如く、0.1〜15重
量%の範囲の低融点ポリアミド樹脂及び/又はエ
ポキシ化合物であれば、本発明のポリアリーレン
スルフイド樹脂と組み合わせた場合、これらの付
着剤が全く組成物の耐熱性、強度、成形加工性に
悪影響を及ぼさず炭素繊維とポリアリーレンスル
フイド樹脂との密着性を改良することが判明した
のである。特に低融点ポリアミド樹脂は炭素繊維
のポリアリーレンスルフイド樹脂中の均一分散性
に効果的であつた。 本発明に使用する炭素繊維は、一般にセルロー
ス繊維、アクリル繊維、リグニン繊維、石油系特
殊ピツチなどを原料として焼成された耐炎質、炭
素質、黒鉛質等の種々のタイプが使用でき、本発
明の組成物には3〜60重量%好ましくは5〜50重
量%配合する。該炭素繊維含量が3重量%未満で
は炭素繊維による強化効果が小さく、60重量%を
越えると成形時の流動性が不良となり好ましくな
い。 炭素繊維の長さは0.3〜10mmが好ましく、この
長さのものを使用することによつて、得られる組
成物は0.1〜0.8mm長の炭素繊維を含むとが可能と
なり、より高い機械的強度を得ることができる。
また炭素繊維の直径は約5〜約15μが適当であ
り、通常100〜1000本の炭素繊維を収束させたも
のが取扱いに好都合である。 ポリアリーレンスルフイド樹脂は250℃以上の
融点又は軟化点を有するホモポリマーまたは共重
合体が使用されるが、それはASTM D1238―52T
に規定されるメルトインデクサー(オリフイス径
2.0955φmm×8.0mm)を用いて、300℃、2160g
の荷重下でメルトフローレイト(以下、全て同一
条件)が5以上でなければならず、特に8以上が
好ましい。通常のガラス繊維強化ポリアリーレン
スルフイド樹脂では、該メルトフローレイトが1
〜5のもので充分な機械的強度及び成形加工性の
組成物が得られているが、本発明では該メルトフ
ローレイトが5未満ではポリアリーレンスルフイ
ド樹脂の溶融粘度が高くなり低融点ポリアミド樹
脂及び/又はエポキシ化合物の付着する炭素繊維
との密着性が不充分となり、かつマトリツクス中
の炭素繊維の分散が不良となり、改良された機械
的強度、成形加工性を有する炭素繊維強化組成物
を与えないことが判明した。 また、本発明の組成物には、50重量%以下のガ
ラス繊維を配合してもよい。ガラス繊維の添加は
炭素繊維強化ポリアリーレンスルフイド樹脂組成
物の特に耐衝撃性の改善に効果的である。使用で
きるガラス繊維は長さ0.03〜10mmのものであり、
炭素繊維の添加量によつて、種々の長さのものを
選択することができ、得られる組成物中のガラス
繊維長は0.03〜1.0mmが好ましい。またガラス繊
維は各種のシランカツプリング剤で処理したもの
も使用できる。 本発明の組成物を調製するには、各成分を通常
の加熱混練手段により均一に混合すればよい。加
熱混練手段として1軸押出機、2軸押出機などの
種々のタイプの押出機を用い、本発明の組成物を
ペレツト状にすることが一般的であるが、場合に
よつては射出成形機を用いて直接成形物にしても
よい。加熱温度は280〜400℃が適当である。 また、本発明の組成物にはポリサルホン、ポリ
エーテルサルホン、ポリアリールサルホン、ポリ
ブチレンテレフタレート、ポリエチレンテレフタ
レート、ポリカーポネート、ポリアリーレート、
ポリスチレン、ポリアミド、ポリアミドイミドな
どの熱可塑性重合体、ガラスビーズ、公知の充填
材、離型剤、滑剤、酸化防止剤及び紫外線吸収剤
のような安定剤並びに発泡剤などを適宜含めても
よい。 次に実施例により本発明を詳細に説明する。 実施例 1 種々のメルトフローレイトを有するポリアリー
レンスルフイド樹脂(フイリツプスペトローリア
ム社製、商品名ライトンP―4)70重量部と、炭
素繊維を基準にして3重量%のメトキシメチル化
ナイロン6で表面被覆した6mm長の炭素繊維(太
さ5ミクロン)30重量部とを予備混合し、次いで
φ65mmの1軸押出機(350℃)にて混練し、直径
3mm、長さ6mmのペレツト状組成物を製造した。 このペレツトを340℃で射出成形し、厚さ3mm
×たて20cm×よこ20cmのサンプルピースを作成し
た。 このサンプルピースについて、引張強度及び衝
撃強度(ノツチ付アイゾツト)を測定した。この
結果を次表に示す。
The present invention relates to a carbon fiber reinforced resin composition with improved mechanical strength, heat resistance, and moldability. Polyarylene sulfide resin alone does not have sufficient mechanical strength, heat resistance, and moldability.
Glass fibers and carbon fibers are being added to improve these properties. however,
In the case of carbon fiber, compared to the case of glass fiber,
It was found that the adhesion between the polyarylene sulfide resin and the reinforcing fibers was weak, a sufficient reinforcing effect could not be obtained, and the impact resistance was particularly low. Furthermore, because the adhesion between carbon fiber and polyarylene sulfide resin is insufficient, the dispersion of carbon fiber in the polyarylene sulfide resin matrix is poor, resulting in poor moldability compared to glass fiber. A problem arose. As a result of intensive studies to solve the above-mentioned difficulties, the present inventors have made polyarylene sulfur by adding a low melting point polyamide resin and/or liquid or solid epoxy compound in the range of 0.1 to 10% by weight on the surface of carbon fiber. By improving the adhesion with the polyarylene sulfide resin and selecting a polyarylene sulfide resin with a lower molecular weight than those normally used for glass fibers, It has been found that a carbon fiber-reinforced polyarylene sulfide resin composition having good dispersibility of carbon fibers and improved mechanical strength, heat resistance, and moldability can be obtained. That is, the present invention comprises 3 to 60% by weight of carbon fiber, 0 to 50% by weight of glass fiber, and 97 to 40% by weight of polyarylene sulfide resin, and the carbon fiber contains 0.1 to 15% by weight based on the carbon fiber. % by weight of a low melting point polyamide resin and/or a liquid or solid epoxy compound, and the polyarylene sulfide resin was heated at 300℃ under a load of 2160g using a melt indexer specified by ASTM D1238-70T. Provided is a carbon fiber reinforced resin composition having a melt flow rate of 5 or more. The low melting point polyamide resin used in the present invention includes nylon 6 copolymer, nylon 6,6 copolymer, nylon 6,10 copolymer, nylon 11 and its copolymer, nylon 12 and its copolymer, hydroxy A low melting point polyamide resin such as alkylated nylon or alkoxyalkylated nylon,
Those having a melting point of 200°C or lower, particularly 180°C or lower, are preferred. The hydroxyalkylated nylon is preferably, for example, hydroxymethyl or hydroxyethyl nylon 6, and the hydroxyalkylated nylon is preferably, for example, methoxymethyl, methoxyethyl, ethoxymethyl, propoxymethyl or butoxymethylated nylon 6. Examples of liquid or solid epoxy compounds include diglycidyl compounds such as bisphenol A, bisphenol F, and bisphenol S and their polymers, novolac resins, epoxy resins from polyphenols such as phenolphthalein, and cyclohexene dioxide. aliphatic epoxy compounds and polymers such as epoxidized soybean oil,
Epoxy compounds and polymers containing nitrogen, phosphorus, silicon, etc. can be used. Adhesion of the polyamide resin and epoxy compound to carbon fibers can also be achieved by simultaneously heating and kneading three or four of the polyarylene sulfide resin, carbon fiber, low melting point polyamide resin, and/or epoxy compound. Although it is possible to do so, it is preferable to first attach a low melting point polyamide resin and/or an epoxy compound to carbon fibers and form them into a chop shape from the viewpoint of handling and uniform dispersibility with the polyarylene sulfide resin. The adhesion amount of polyamide resin and epoxy compound to carbon fiber is 0.1 to 0.1 based on carbon fiber.
15% by weight, preferably 0.3-10% by weight. In this case, if it is less than 0.1% by weight, it will not be effective in improving the adhesion between the carbon fiber and the polyarylene sulfide resin matrix, and if it exceeds 15% by weight, it will have a negative effect on the inherent mechanical strength and heat resistance of the polyarylene sulfide resin. and is inappropriate. Conventionally, the molding temperature of carbon fiber reinforced polyarylene sulfide resin was extremely high at 330-380℃.
Compared to other conventional thermoplastics, there are significant limitations on the additives that can be attached to carbon fibers to improve adhesion to polyarylene sulfide resins. However, as in the present invention, if the low melting point polyamide resin and/or epoxy compound is in the range of 0.1 to 15% by weight, when combined with the polyarylene sulfide resin of the present invention, these adhesives will not be present at all in the composition. It was found that the adhesion between carbon fiber and polyarylene sulfide resin was improved without adversely affecting the heat resistance, strength, and moldability of carbon fiber. In particular, the low melting point polyamide resin was effective in uniformly dispersing carbon fibers in the polyarylene sulfide resin. The carbon fibers used in the present invention can be of various types, such as flame-resistant, carbonaceous, and graphite, which are generally calcined from cellulose fibers, acrylic fibers, lignin fibers, petroleum-based special pitches, etc. The composition contains 3 to 60% by weight, preferably 5 to 50% by weight. If the carbon fiber content is less than 3% by weight, the reinforcing effect of the carbon fibers will be small, and if it exceeds 60% by weight, fluidity during molding will be poor, which is not preferred. The length of carbon fibers is preferably 0.3 to 10 mm. By using carbon fibers of this length, the resulting composition can contain carbon fibers with a length of 0.1 to 0.8 mm, resulting in higher mechanical strength. can be obtained.
Further, the diameter of the carbon fibers is suitably about 5 to about 15 μm, and it is usually convenient to use a bundle of 100 to 1000 carbon fibers. The polyarylene sulfide resin used is a homopolymer or copolymer with a melting point or softening point of 250°C or higher, which is based on ASTM D1238-52T.
Melt indexer (orifice diameter
2.0955φmm×8.0mm), 300℃, 2160g
The melt flow rate (hereinafter all under the same conditions) must be 5 or more under a load of 8 or more, particularly preferably 8 or more. In ordinary glass fiber reinforced polyarylene sulfide resin, the melt flow rate is 1.
However, in the present invention, when the melt flow rate is less than 5, the melt viscosity of the polyarylene sulfide resin becomes high and the composition has sufficient mechanical strength and moldability. The adhesion of the resin and/or epoxy compound to the carbon fibers to which they are attached is insufficient, and the dispersion of the carbon fibers in the matrix is poor. It turned out that it wouldn't. Further, the composition of the present invention may contain 50% by weight or less of glass fiber. Addition of glass fiber is effective in improving the impact resistance of the carbon fiber reinforced polyarylene sulfide resin composition. The glass fibers that can be used are those with a length of 0.03 to 10 mm.
Various lengths can be selected depending on the amount of carbon fiber added, and the glass fiber length in the resulting composition is preferably 0.03 to 1.0 mm. Glass fibers treated with various silane coupling agents can also be used. In order to prepare the composition of the present invention, each component may be uniformly mixed by ordinary heating and kneading means. Generally, the composition of the present invention is made into pellets using various types of extruders such as a single-screw extruder and a twin-screw extruder as heating and kneading means, but in some cases, an injection molding machine may be used. It is also possible to directly make a molded product using . A suitable heating temperature is 280 to 400°C. The composition of the present invention also includes polysulfone, polyethersulfone, polyarylsulfone, polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polyarylate,
Thermoplastic polymers such as polystyrene, polyamide, and polyamideimide, glass beads, known fillers, mold release agents, lubricants, stabilizers such as antioxidants and ultraviolet absorbers, and foaming agents may be included as appropriate. Next, the present invention will be explained in detail with reference to Examples. Example 1 70 parts by weight of polyarylene sulfide resins having various melt flow rates (manufactured by Phillips Petroleum, trade name Ryton P-4) and 3% by weight of methoxymethylated nylon based on carbon fibers. 30 parts by weight of 6 mm long carbon fibers (thickness 5 microns) whose surface was coated in Step 6 were mixed in advance, and then kneaded in a φ65 mm single-screw extruder (350°C) to form pellets with a diameter of 3 mm and a length of 6 mm. A composition was produced. This pellet is injection molded at 340℃ and has a thickness of 3mm.
I created a sample piece measuring 20cm long x 20cm wide. The tensile strength and impact strength (notched isot) of this sample piece were measured. The results are shown in the table below.

【表】 実施例 2 メルトフローレイト10.5のポリアリーレンスル
フイド樹脂(ライトンP―4)70重量部に、種々
の付着剤の付着した6mm長の炭素繊維(太さ5ミ
クロン)30重量部を予備混合し、以下実施例1と
同様にサンプルピースを作成し、その物性を調べ
た。この結果を第2表に示す。
[Table] Example 2 30 parts by weight of 6 mm long carbon fibers (thickness 5 microns) coated with various adhesives were added to 70 parts by weight of polyarylene sulfide resin (Ryton P-4) with a melt flow rate of 10.5. After premixing, sample pieces were prepared in the same manner as in Example 1, and their physical properties were investigated. The results are shown in Table 2.

【表】 実施例 3 各種のメルトフローレイトを有するポリアリー
レンスルフイド樹脂(ライトンP―4)に所定量
の炭素繊維(長さ6mm、太さ5ミクロン)及びガ
ラス繊維(長さ6mm、太さ13ミクロン)を配合
し、以下実施例1と同様にサンプルピースを作成
し、その物性を調べた。 この結果を次表に示す。
[Table] Example 3 A predetermined amount of carbon fiber (length 6 mm, thickness 5 microns) and glass fiber (length 6 mm, thickness Sample pieces were prepared in the same manner as in Example 1, and their physical properties were investigated. The results are shown in the table below.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 炭素繊維3〜60重量%、ガラス繊維0〜50重
量%及びポリアリーレンスルフイド樹脂97〜40重
量%からなり、該炭素繊維には炭素繊維を基準に
して0.1〜15重量%の低融点ポリアミド樹脂及
び/又は液状もしくは固状エポキシ化合物が付着
しており、しかも該ポリアリーレンスルフイド樹
脂はASTM D1238―70Tで定めるメルトインデク
サーにて300℃、2160gの荷重下で5以上のメル
トフローレイトを有することを特徴とする炭素繊
維強化樹脂組成物。
1 Consists of 3 to 60% by weight of carbon fiber, 0 to 50% by weight of glass fiber, and 97 to 40% by weight of polyarylene sulfide resin, and the carbon fiber has a low melting point of 0.1 to 15% by weight based on the carbon fiber. A polyamide resin and/or a liquid or solid epoxy compound is attached, and the polyarylene sulfide resin has a melt flow rate of 5 or more at 300℃ under a load of 2160g using a melt indexer specified by ASTM D1238-70T. A carbon fiber reinforced resin composition characterized by having a
JP13994379A 1979-10-31 1979-10-31 Carbon fiber-reinforced resin composition Granted JPS5665044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13994379A JPS5665044A (en) 1979-10-31 1979-10-31 Carbon fiber-reinforced resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13994379A JPS5665044A (en) 1979-10-31 1979-10-31 Carbon fiber-reinforced resin composition

Publications (2)

Publication Number Publication Date
JPS5665044A JPS5665044A (en) 1981-06-02
JPS6221382B2 true JPS6221382B2 (en) 1987-05-12

Family

ID=15257281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13994379A Granted JPS5665044A (en) 1979-10-31 1979-10-31 Carbon fiber-reinforced resin composition

Country Status (1)

Country Link
JP (1) JPS5665044A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823827A (en) * 1981-07-10 1983-02-12 シ−メンス・アクチエンゲゼルシヤフト Method of reducing waste gas containing sulfur in polyphenylene sulfide
JPS6166616A (en) * 1984-09-10 1986-04-05 Asahi Chem Ind Co Ltd Short carbon fiber chip
JP2550088B2 (en) * 1987-08-06 1996-10-30 エヌティエヌ株式会社 Polyphenylene sulfide resin-based sliding material

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717620A (en) * 1971-07-20 1973-02-20 Phillips Petroleum Co Arylene sulfide resin oxidative curing process
JPS4986452A (en) * 1972-12-22 1974-08-19
JPS5059589A (en) * 1973-10-01 1975-05-22
JPS5111844A (en) * 1974-07-22 1976-01-30 Mitsui Petrochemical Ind
JPS5128145A (en) * 1974-09-04 1976-03-09 Hodogaya Chemical Co Ltd HORIFUENIRE NSARUFUAIDOJUSHISOSEIBUTSU
JPS51144495A (en) * 1975-05-27 1976-12-11 Phillips Petroleum Co Process for polymerizing allylene and sulfide
JPS5211341A (en) * 1975-07-16 1977-01-28 Sawafuji Electric Co Ltd Ignition circuit used for internal combustion engine
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS5252958A (en) * 1975-10-23 1977-04-28 Mitsubishi Rayon Co Ltd Glass-fiber reinforced polyphenylene sulfide resin compositions
US4080735A (en) * 1976-10-14 1978-03-28 Phillips Fibers Corporation Scraper blade
JPS5369255A (en) * 1976-12-03 1978-06-20 Hodogaya Chem Co Ltd Polyphenylene sulfide resin composition
JPS53106752A (en) * 1977-03-02 1978-09-18 Toho Rayon Co Ltd Reinforcing material and its composition for molding product
JPS548719A (en) * 1977-06-14 1979-01-23 American Home Prod Immune composition
JPS5839449A (en) * 1981-09-02 1983-03-08 株式会社ブリヂストン Manufacture of composite body consisting of metal and polyamide resin

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717620A (en) * 1971-07-20 1973-02-20 Phillips Petroleum Co Arylene sulfide resin oxidative curing process
JPS4986452A (en) * 1972-12-22 1974-08-19
JPS5059589A (en) * 1973-10-01 1975-05-22
JPS5111844A (en) * 1974-07-22 1976-01-30 Mitsui Petrochemical Ind
JPS5128145A (en) * 1974-09-04 1976-03-09 Hodogaya Chemical Co Ltd HORIFUENIRE NSARUFUAIDOJUSHISOSEIBUTSU
JPS51144495A (en) * 1975-05-27 1976-12-11 Phillips Petroleum Co Process for polymerizing allylene and sulfide
JPS5211341A (en) * 1975-07-16 1977-01-28 Sawafuji Electric Co Ltd Ignition circuit used for internal combustion engine
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS5252958A (en) * 1975-10-23 1977-04-28 Mitsubishi Rayon Co Ltd Glass-fiber reinforced polyphenylene sulfide resin compositions
US4080735A (en) * 1976-10-14 1978-03-28 Phillips Fibers Corporation Scraper blade
JPS5369255A (en) * 1976-12-03 1978-06-20 Hodogaya Chem Co Ltd Polyphenylene sulfide resin composition
JPS53106752A (en) * 1977-03-02 1978-09-18 Toho Rayon Co Ltd Reinforcing material and its composition for molding product
JPS548719A (en) * 1977-06-14 1979-01-23 American Home Prod Immune composition
JPS5839449A (en) * 1981-09-02 1983-03-08 株式会社ブリヂストン Manufacture of composite body consisting of metal and polyamide resin

Also Published As

Publication number Publication date
JPS5665044A (en) 1981-06-02

Similar Documents

Publication Publication Date Title
CN109651814B (en) High-reinforcement toughening type polyphenylene sulfide composite material and preparation method thereof
CN102453277B (en) Enhanced polyolefin rotational moulding composition and preparation method thereof
US3853808A (en) Reinforced polypropylene composition
CN109897347B (en) Military electric connector insulator and preparation method thereof
CN110655708A (en) Low-density polypropylene composite material with excellent comprehensive performance and preparation method thereof
KR0127637B1 (en) Polykeotne polymer composition
JPS6221382B2 (en)
KR100387648B1 (en) Composition of polypropylene resin
IE48681B1 (en) Mouldable compositions based on a thermoplastic polymer,glass fibres and a bis-maleimide
US3773705A (en) Thermoplastic moulding compositions reinforced with a mixture of glass and asbestos fibers
JPS59152953A (en) Polyarylene sulfide resin composition
JPH01167370A (en) Thermoplastic resin composition
JPS6166615A (en) Bundled short carbon fiber chip
KR20150067471A (en) Glass fiber reinforced light weight polypropylene resin composition, and molded product
JPH1180507A (en) Epoxy resin composition
JPH01254766A (en) Electrically conductive polyaylene sulfide resin composition
JPS60248775A (en) Resin composition
JPS63254158A (en) Stabilized glass reinforced polyacetal composition
CN113897044B (en) PC/EVA composition and preparation method thereof
CN112457591B (en) Long glass fiber reinforced polypropylene composite material with good air tightness and capable of being welded by laser and preparation method thereof
JPS6119662A (en) Composite resin molding material for extrusion
JPH05239353A (en) Polyphenylene sulfide resin composition
JP4910506B2 (en) Manufacturing method of long fiber reinforced resin molding
WO2021187218A1 (en) Vibration damping molded article and method for producing resin composition for vibration damping molded article
KR930008196B1 (en) Polyphenylene sulfide resin composition