JPS6221358Y2 - - Google Patents

Info

Publication number
JPS6221358Y2
JPS6221358Y2 JP1981149818U JP14981881U JPS6221358Y2 JP S6221358 Y2 JPS6221358 Y2 JP S6221358Y2 JP 1981149818 U JP1981149818 U JP 1981149818U JP 14981881 U JP14981881 U JP 14981881U JP S6221358 Y2 JPS6221358 Y2 JP S6221358Y2
Authority
JP
Japan
Prior art keywords
rotating disk
frequency
condition
water
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981149818U
Other languages
Japanese (ja)
Other versions
JPS5853298U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981149818U priority Critical patent/JPS5853298U/en
Publication of JPS5853298U publication Critical patent/JPS5853298U/en
Application granted granted Critical
Publication of JPS6221358Y2 publication Critical patent/JPS6221358Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は微生物による汚水処理装置における可
変速形回転円板水処理装置に関するものである。 従来、微生物による汚水処理においては回転円
板水処理装置などが用いられているが、回転円板
水処理装置を構成する回転円板装置における円板
の設定回転数は、考えられる汚水の最大汚濁負荷
量に合わせて固定設定されている。 しかしながら、汚水の条件(温度、水量、有機
物負荷量等)が最悪になる機会は非常に少なくま
た消費電力は回転数の2.8乗に比例することから
軽負荷時には回転円板は必要以上の回転による電
力の無駄使いをしていることになる。 そこで、軽負荷時には、適正回転数まで落して
消費電力を抑え省エネルギを計る必要がある。こ
の回転円板を可変速にすることにより、従来から
認められている省エネルギー方式の回転円板水処
理装置のメリツトをさらに発揮させることができ
る。 回転円板を可変速にする回転数制御方式には、
周波数変換方式の他に、モータ極数変換方式、駆
動側、被駆動側ギヤ比の変更等の方法がある。 本考案はこのような点に鑑み、周波数変換方式
による回転数制御方式を採用して回転数を連続可
調整とし回転円板を可変速にすることにより、従
来から認められている省エネルギー方式の回転円
板水処理装置のメリツトをさらに発揮させること
ができるようにした可変速形回転円板水処理装置
を提供しようとするもので、以下実施例を用いて
説明する。 第1図は本考案に係る可変速形回転円板水処理
装置の一実施例を示し、同図において1は商用周
波数の3相交流入力、2は周波数変換装置3とセ
ンサ入力変換装置4が組み込まれ、さらに図示し
ない原水ポンプ15の制御装置を含む制御盤、5
は原水が原水流入管6を通して流入される調整槽
であつて、この調整槽5の原水中に設けられた水
位センサ7、水温センサ8、有機物負荷量センサ
9により原水の条件信号をセンサ入力変換装置4
を介して周波数変換装置3に入力する。周波数変
換装置3においては、3相交流入力1の周波数を
センサ入力変換装置4の条件信号をもとに変換し
て得られる設定周波数出力10を回転円板駆動モ
ータ(インダクシヨン.モータ)11へ供給して
いる。12は動力伝達チエーン、13は回転円板
であつて、回転円板13は動力伝達チエーン12
を介して回転円板駆動モータ11に回転自在に巻
装されている。14は回転円板装置であつて、こ
の回転円板装置14内に回転円板13が配置され
ている。15は原水ポンプであり、水位センサ7
により一定水位を検出すると制御盤2より原水ポ
ンプ15のオン指令を出し、原水は回転円板装置
14へ汲み上げられる。16は処理水流出管であ
る。 このような構成の可変速形回転円板水処理装置
においては、原水(汚水)は原水流入管6より調
整槽5に流入し滞留して、水位センサ7により一
定水位を検出すると、センサ入力変換装置4を介
して周波数変換装置3に入力される。さらに制御
盤2より原水ポンプ15のオン(ON)指令を出
し、原水は調整槽5より回転円板装置14に汲み
上げられる。一方、回転円板駆動モータ11は周
波数変換装置3の設定周波数出力10にもとづき
駆動され回転円板13は回転円板駆動モータ11
により動力伝達チエーン12を介して所定の回転
数が与えられており、原水はこの回転円板13の
回転により生物処理を受けて処理水は処理水流出
管16より排出する。 以上は本考案の回転円板による処理フローであ
り、さらに本考案では次の如く回転円板の可変速
化を行なつて省エネルギーを計るものである。 第2図は本考案の要部の詳細を示し、特に第1
図における可変速回転円板の回転数切換回路の一
実施例を示している。 第2図において、第1図と同じものあるいは同
じ機能を有するものには同符号を用いている。 第2図において、センサ入力変換装置4の構成
についていえば、Xiおよびxi(i=1,2,
3,4)は夫々補助リレーのコイルおよび接点で
あり、VRi(i=1,2,3,4)、VRは可変抵
抗器であつて、条件に従つて初期回転数を設定し
たい場合は可変抵抗器VRi,VRのうち該当する
ものを各々回して入力設定を微調も含めて行なう
ことができる。SWは切替スイツチであつて、こ
の切替スイツチSWの切替えをAUTO(自動運
転)、MANUAL(手動運転)のいずれに切換え
ても変速可能としたものである。なお周波数変換
回路3はサイリスタ式、パワートランジスタ式の
いずれでもよい。またCSは盤外の条件設定部で
あつて、この条件設定部CSは切替スイツチSW1
〜SW5からなり、切替スイツチSW1は水位センサ
7のセンサ出力による原水の有無により該当する
接点に、即ち原水有のとき固定接点a側に、原水
無しのとき固定接点b側に切換わる。また切替ス
イツチSW2は有機物負荷量センサ9の出力による
有機物の多少(高低)により該当する接点に、即
ち有機物負荷量多し(“高”)のとき固定接点a側
に、有機物負荷量少し(“低”)のとき固定接点b
側に切換わる。また切替スイツチSW3〜SW5は連
動しており、これらの切替スイツチSW3〜SW5
水温センサ8の出力による水温の高低により該当
する接点に、即ち水温が“低”のとき固定接点a
側に、水温が“高”のとき固定接点b側に切換わ
る。11は回転円板駆動モータであつて、誘導電
動機(IMと略称)が用いられており、これら誘
導電動機11は周波数変換回路3の設定周波数出
力にもとづき複数台同時制御も可能である。な
お、周波数変換回路3の周波数fの設定(回転数
nの設定)は極数をpとするとn=120f/pなる式
に より設定回転数を求めるものである。第2図の例
をまとめると下表の如くなる。
The present invention relates to a variable speed rotating disk water treatment device in a microbial sewage treatment device. Conventionally, rotating disk water treatment devices have been used for sewage treatment using microorganisms, but the set rotation speed of the disk in the rotating disk device constituting the rotating disk water treatment device is determined by the maximum possible contamination of the sewage. It is fixedly set according to the load amount. However, there are very few chances that the wastewater conditions (temperature, water volume, amount of organic matter load, etc.) will become worst, and power consumption is proportional to the 2.8th power of the rotation speed, so when the load is light, the rotating disk will rotate more than necessary. You're wasting electricity. Therefore, when the load is light, it is necessary to lower the rotation speed to an appropriate level to reduce power consumption and save energy. By making the rotating disk variable speed, the advantages of the energy-saving rotating disk water treatment device, which has been recognized in the past, can be further exploited. The rotation speed control method that makes the rotating disk variable speed includes:
In addition to the frequency conversion method, there are methods such as a motor pole number conversion method, and changing the driving side and driven side gear ratios. In view of these points, the present invention adopts a rotation speed control method using a frequency conversion method to continuously adjust the rotation speed and make the rotating disk variable speed. The purpose of this invention is to provide a variable speed rotary disk water treatment device that can further exploit the advantages of a disk water treatment device, and will be described below using examples. FIG. 1 shows an embodiment of a variable speed rotary disk water treatment device according to the present invention, in which 1 is a commercial frequency three-phase AC input, 2 is a frequency converter 3 and a sensor input converter 4. A control panel 5 that is incorporated and includes a control device for the raw water pump 15 (not shown)
is an adjustment tank into which raw water flows in through a raw water inflow pipe 6, and a water level sensor 7, a water temperature sensor 8, and an organic matter load sensor 9 installed in the raw water of this adjustment tank 5 convert the condition signal of the raw water into sensor input. Device 4
The signal is input to the frequency conversion device 3 via the frequency converter 3. In the frequency conversion device 3, a set frequency output 10 obtained by converting the frequency of the three-phase AC input 1 based on the condition signal of the sensor input conversion device 4 is sent to a rotating disk drive motor (induction motor) 11. supplying. 12 is a power transmission chain, 13 is a rotating disk, and the rotating disk 13 is a power transmission chain 12.
It is rotatably wound around the rotary disk drive motor 11 via. 14 is a rotating disk device, and the rotating disk 13 is disposed within this rotating disk device 14. 15 is a raw water pump, and water level sensor 7
When a constant water level is detected, a command to turn on the raw water pump 15 is issued from the control panel 2, and the raw water is pumped to the rotating disk device 14. 16 is a treated water outflow pipe. In the variable speed rotary disk water treatment device with such a configuration, raw water (sewage) flows into the adjustment tank 5 from the raw water inflow pipe 6 and stays there, and when a constant water level is detected by the water level sensor 7, sensor input conversion is performed. It is input to the frequency conversion device 3 via the device 4 . Further, a command to turn on the raw water pump 15 is issued from the control panel 2, and the raw water is pumped from the adjustment tank 5 to the rotating disk device 14. On the other hand, the rotating disk drive motor 11 is driven based on the set frequency output 10 of the frequency converter 3, and the rotating disk 13 is driven by the rotating disk drive motor 11.
A predetermined rotational speed is applied to the rotary disc 13 via the power transmission chain 12, and the raw water undergoes biological treatment by the rotation of the rotating disc 13, and the treated water is discharged from the treated water outlet pipe 16. The above is the processing flow using the rotating disk of the present invention, and the present invention also aims to save energy by making the speed of the rotating disk variable as follows. Figure 2 shows details of the main parts of the present invention, especially the first part.
An example of the rotation speed switching circuit of the variable speed rotating disk in the figure is shown. In FIG. 2, the same reference numerals are used for the same components as in FIG. 1 or those having the same functions. In FIG. 2, regarding the configuration of the sensor input conversion device 4, X i and x i (i=1, 2,
3 and 4) are the coil and contact of the auxiliary relay, VR i (i = 1, 2, 3, 4), VR is a variable resistor, and if you want to set the initial rotation speed according to the conditions, Input settings, including fine adjustments, can be made by turning the appropriate one of the variable resistors VR i and VR. SW is a changeover switch, and the speed can be changed by switching the changeover switch SW to either AUTO (automatic operation) or MANUAL (manual operation). Note that the frequency conversion circuit 3 may be of either a thyristor type or a power transistor type. Also, CS is a condition setting section outside the panel, and this condition setting section CS is a changeover switch SW 1.
- SW 5 , and the changeover switch SW 1 is switched to the corresponding contact depending on the presence or absence of raw water based on the sensor output of the water level sensor 7, that is, when raw water is present, it is switched to the fixed contact A side, and when there is no raw water, it is switched to the fixed contact B side. In addition, the changeover switch SW 2 is set to the corresponding contact depending on the amount (high or low) of organic matter output from the organic matter load amount sensor 9, that is, when the amount of organic matter load is high (“high”), the switch SW 2 is set to the fixed contact a side when the amount of organic matter load is small (“high”). “Low”) Fixed contact b
Switch to the side. In addition, the changeover switches SW 3 to SW 5 are interlocked, and these changeover switches SW 3 to SW 5 change the corresponding contact depending on the level of water temperature determined by the output of the water temperature sensor 8, that is, when the water temperature is "low", the fixed contact a is
When the water temperature is high, the fixed contact switches to the b side. Reference numeral 11 denotes a rotary disk drive motor, and an induction motor (abbreviated as IM) is used. A plurality of these induction motors 11 can be controlled simultaneously based on the set frequency output of the frequency conversion circuit 3. The setting of the frequency f (setting of the number of rotations n) of the frequency conversion circuit 3 is to obtain the set number of rotations using the formula n=120f/p, where p is the number of poles. The example shown in FIG. 2 can be summarized as shown in the table below.

【表】 なお17は条件設定用電源線である。さらに第
2図に図示していないが、各操作表示、設定周波
数表示、制御回路のオン、オフ操作回路などは全
て組み込み操作の簡便さが計られている。 このような構成のもとに、水位センサ7、水温
センサ8、有機物負荷量センサ9よりの信号は条
件設定部CSの切替スイツチSW1〜SW5を切換え
て、その接点信号、即ち条件設定部CSからの組
み合わされた条件信号がセンサ入力変換装置4に
与えられる。センサ入力変換装置4内では条件設
定部CSの条件信号出力により該当する補助リレ
ーを動作させて周波数設定入力を周波数変換回路
3に供給してモータ11への設定周波数(回転
数)出力を自動的に変化させることができる。た
とえば水位センサ7により原水が有り、有機物負
荷量センサ9により有機物多し(“高”)、水温セ
ンサ8により水温が低い場合には、図示の如く切
替スイチSW1〜SW5が切換わり、補助リレーコイ
ルX4が付勢されその接点x4が閉成される。切替
スイツチSWをAUTO側(自動運転側)に切換え
ておけば可変抵抗器VR4で検出された電圧信号が
周波数設定入力として周波数変換回路3に供給さ
れ、この入力を条件として3相交流入力を周波数
変換して回転円板駆動モータ11へ設定周波数出
力を送出する。そして回転円板駆動モータ11の
回転数を適正な回転数に可変速制御される。これ
により無駄な消費電力を自動的に抑えることがで
きる。 このように水位センサ7、水温センサ8、有機
物負荷量センサ9により、原水の条件を、センサ
入力変換装置4に取り入れ、このセンサ入力変換
装置4の出力を、周波数変換回路3により3相交
流入力を周波数変換するときの条件信号として周
波数変換回路3に与える。周波数変換回路3の設
定周波数出力により回転円板駆動モータ11の回
転数を適正な回転数に可変速制御することができ
る。そして回転円板13を原水の条件により可変
速制御することにより、適正な回転数による汚水
(原水)処理を行なうことができ、無駄な消費電
力を自動的に抑えることができ省エネルギーを計
ることができる。 また水位センサ7による原水の有無、有機物負
荷量センサ9による有機物の多少(高低)、水温
センサ8による水温の高低の各条件を組み合わせ
れば、日間変動から年間変動まで網羅した省エネ
ルギ形回転円板装置となる。 なお本実施例においては、センサの条件を3種
(条件設定部CSの入力)、4頃目(条件設定部CS
の出力)の例で示しているが、回転数制御のため
に他の要素があれば何項目にしてもよく限定され
るものではない。従つて条件項目の数によつて補
助リレー(Xiとxi)の数も変化することはいう
までもない。 上述した本考案を用いれば、次のような種々の
効果を奏する。 (1) 回転円板の駆動源であるモータ(誘導電動
機)への周波数入力を変化させて、前記モータ
を可変速とし、適正な回転数による汚水処理を
行なうことにより、従来の回転円板装置に比較
して大きな省エネルギー効果が得られる。 (2) 現場の汚水の条件に合せて、回転円板の任意
の最適回転数の初期設定あるいは再設定が簡便
にできる。 (3) 可変速回転円板方式において、1台の周波数
変換装置で複数台の回転円板装置を制御可能と
し、スケールメリツトを引き出すことができ
る。即ち周波数変換方式による回転数制御方式
を採用したことにより、原水(汚水)の条件の
数の如何に係らず任意に回転数変化条件を作る
こととができる。
[Table] Note that 17 is a power supply line for setting conditions. Furthermore, although not shown in FIG. 2, each operation display, setting frequency display, control circuit ON/OFF operation circuit, etc. are all designed to be easy to incorporate and operate. Based on this configuration, the signals from the water level sensor 7, water temperature sensor 8, and organic matter load amount sensor 9 are transmitted by switching the changeover switches SW 1 to SW 5 of the condition setting section CS, and the contact signals, that is, the signals from the condition setting section The combined condition signals from the CS are provided to the sensor input conversion device 4. In the sensor input conversion device 4, the condition signal output from the condition setting section CS operates the corresponding auxiliary relay, and the frequency setting input is supplied to the frequency conversion circuit 3, thereby automatically outputting the setting frequency (rotation speed) to the motor 11. can be changed to For example, when the water level sensor 7 indicates that there is raw water, the organic matter load sensor 9 indicates that there are a lot of organic matter (high), and the water temperature sensor 8 indicates that the water temperature is low, the changeover switches SW 1 to SW 5 are switched as shown in the figure, and the auxiliary Relay coil X 4 is energized and its contacts x 4 are closed. If the changeover switch SW is switched to the AUTO side (automatic operation side), the voltage signal detected by the variable resistor VR 4 will be supplied to the frequency conversion circuit 3 as a frequency setting input, and with this input as a condition, the 3-phase AC input will be activated. The frequency is converted and a set frequency output is sent to the rotating disk drive motor 11. The rotational speed of the rotary disk drive motor 11 is then variable-speed controlled to an appropriate rotational speed. This automatically reduces wasteful power consumption. In this way, the water level sensor 7, water temperature sensor 8, and organic matter load sensor 9 input the raw water conditions into the sensor input conversion device 4, and the output of this sensor input conversion device 4 is input into the three-phase AC input by the frequency conversion circuit 3. is given to the frequency conversion circuit 3 as a condition signal when converting the frequency. The rotational speed of the rotary disk drive motor 11 can be controlled to a suitable rotational speed by the set frequency output of the frequency conversion circuit 3. By controlling the rotating disk 13 at variable speed depending on the raw water conditions, wastewater (raw water) can be treated at an appropriate rotation speed, and unnecessary power consumption can be automatically suppressed, resulting in energy savings. can. In addition, by combining the following conditions: the presence or absence of raw water as determined by the water level sensor 7, the amount of organic matter (high or low) as determined by the organic matter load amount sensor 9, and the level of water temperature as determined by the water temperature sensor 8, an energy-saving rotating circle that covers daily to annual fluctuations can be created. It becomes a board device. In this example, there are three types of sensor conditions (inputs in the condition setting section CS), and a fourth condition (inputs in the condition setting section CS).
(output), but there is no limitation to any number of items as long as there are other elements for rotational speed control. Therefore, it goes without saying that the number of auxiliary relays (X i and x i ) changes depending on the number of condition items. By using the present invention described above, the following various effects can be achieved. (1) By changing the frequency input to the motor (induction motor) that is the drive source of the rotating disk, the motor is made variable speed, and wastewater treatment is performed at an appropriate rotation speed. A large energy saving effect can be obtained compared to (2) The optimum rotation speed of the rotating disk can be easily initialized or reset according to the sewage conditions at the site. (3) In the variable speed rotating disk system, it is possible to control multiple rotating disk devices with one frequency converter, thereby achieving economies of scale. That is, by adopting the rotation speed control method using the frequency conversion method, it is possible to arbitrarily create rotation speed change conditions regardless of the number of raw water (sewage water) conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る可変速形回転円板水処理
装置の一実施例を示す概略構成図、第2図は本考
案の要部を示し第1図の可変速回転円板の回転数
切換え回路の一実施例を示す回路図であつて、図
中1は3相交流入力、3は周波数変換装置(周波
数変換回路)、4はセンサ入力変換装置、5は調
整槽、6は原水流入管、7は水位センサ、8は水
温センサ、9は有機物負荷量センサ、10は設定
周波数出力、11は回転円板駆動モータ、12は
動力伝達チエーン、13は回転円板、14は回転
円板装置、15は原水ポンプ、16は処理水流出
管、CSは条件設定部を示す。
Fig. 1 is a schematic configuration diagram showing an embodiment of the variable speed rotating disk water treatment device according to the present invention, and Fig. 2 shows the main parts of the present invention, and the rotation speed of the variable speed rotating disk shown in Fig. 1. This is a circuit diagram showing an example of a switching circuit, in which 1 is a three-phase AC input, 3 is a frequency converter (frequency converter circuit), 4 is a sensor input converter, 5 is an adjustment tank, and 6 is raw water inflow. 7 is a water level sensor, 8 is a water temperature sensor, 9 is an organic matter load amount sensor, 10 is a set frequency output, 11 is a rotating disk drive motor, 12 is a power transmission chain, 13 is a rotating disk, 14 is a rotating disk 15 is a raw water pump, 16 is a treated water outflow pipe, and CS is a condition setting section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 槽内の原水の各条件を検出する水位、水温及び
有機物負荷量センサ群と、これらセンサ群出力に
もとづく条件信号を送出する条件設定部と、この
条件設定部の条件信号出力に対応して周波数設定
信号を送出するセンサ入力変換装置と、このセン
サ入力変換装置の入力条件信号にもとづき設定周
波数出力を送出する周波数変換装置と、この周波
数変換装置の出力にもとづき速度制御される回転
円板駆動モータと、この回転円板駆動モータによ
り駆動される回転円板と、この回転円板が原水中
に配置された回転円板装置とを備えたことを特徴
とする可変速形回転円板水処理装置。
A group of water level, water temperature, and organic matter load sensors that detect each condition of the raw water in the tank, a condition setting section that sends out condition signals based on the outputs of these sensor groups, and a frequency setting section corresponding to the condition signal output of this condition setting section. A sensor input conversion device that sends out a setting signal, a frequency conversion device that sends out a setting frequency output based on the input condition signal of this sensor input conversion device, and a rotating disk drive motor whose speed is controlled based on the output of this frequency conversion device. A variable speed rotating disk water treatment device comprising: a rotating disk driven by the rotating disk drive motor; and a rotating disk device in which the rotating disk is placed in raw water. .
JP1981149818U 1981-10-08 1981-10-08 Variable speed rotating disc water treatment equipment Granted JPS5853298U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981149818U JPS5853298U (en) 1981-10-08 1981-10-08 Variable speed rotating disc water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981149818U JPS5853298U (en) 1981-10-08 1981-10-08 Variable speed rotating disc water treatment equipment

Publications (2)

Publication Number Publication Date
JPS5853298U JPS5853298U (en) 1983-04-11
JPS6221358Y2 true JPS6221358Y2 (en) 1987-05-29

Family

ID=29942574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981149818U Granted JPS5853298U (en) 1981-10-08 1981-10-08 Variable speed rotating disc water treatment equipment

Country Status (1)

Country Link
JP (1) JPS5853298U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771828B2 (en) * 1989-01-28 1998-07-02 ランデス株式会社 L-shaped waterway block with fish nest

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681187A (en) * 1979-12-04 1981-07-02 Ebara Infilco Co Ltd Sewage decontamination process using rotary disc
JPS5931357U (en) * 1982-08-25 1984-02-27 株式会社日立製作所 vacuum cleaner mouthpiece

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681187A (en) * 1979-12-04 1981-07-02 Ebara Infilco Co Ltd Sewage decontamination process using rotary disc
JPS5931357U (en) * 1982-08-25 1984-02-27 株式会社日立製作所 vacuum cleaner mouthpiece

Also Published As

Publication number Publication date
JPS5853298U (en) 1983-04-11

Similar Documents

Publication Publication Date Title
JPH0158357B2 (en)
JPS6221358Y2 (en)
CN208883576U (en) A kind of energy-saving frequency conversion artificial swamp water treatment system
CN203362480U (en) Direct-cooling cycle-type variable-frequency speed control system
CN205076883U (en) Intelligence aeration systems
CA1137195A (en) Swimming pool filtering system
SE9902959D0 (en) Electronic control unit for a gear unit at a multi-speed shaft
JPH08109894A (en) Variable speed flow rate regulating submerged pump device
CN2422359Y (en) Speed-regulating variable flow drainage device
CN202358957U (en) Automatic control device for sequencing batch processing process in non-DO state
CN218879622U (en) Sewage treatment system and control device thereof
JPH09160654A (en) Method and device for water level control
JP3755942B2 (en) Inverter unit for pump
JP2004308555A (en) Submergible motor pump
CN1291684A (en) Frequency-changing pressure stabilizing system for air compressor
CN2249479Y (en) Electric-heating temp. controller
CN214571072U (en) Water outlet control system
CN214075904U (en) Industrial waste gas desulfurization cylinder
CN219997496U (en) Sewage treatment 5G control system and control cabinet
CN219907222U (en) Automatic control system of decanter and push rod type rotary decanter comprising same
CN2934223Y (en) Speed regulating device of water treatment plant oxidation ditch meter aerator
CN203464444U (en) Energy-saving fan coil assembly and air-conditioning system
CN205160877U (en) Dimming system based on sampling of singlechip AD and PWM
CN101873099A (en) Method and control circuit for realizing multistep speed regulation of single-phase alternating current motors
SE539908C2 (en) Method for controlling a treatment apparatus arrangement, a treatment apparatus arrangement for a treatment plant as well as a treatment plant