JPS62213229A - Metallized film capacitor - Google Patents

Metallized film capacitor

Info

Publication number
JPS62213229A
JPS62213229A JP5722686A JP5722686A JPS62213229A JP S62213229 A JPS62213229 A JP S62213229A JP 5722686 A JP5722686 A JP 5722686A JP 5722686 A JP5722686 A JP 5722686A JP S62213229 A JPS62213229 A JP S62213229A
Authority
JP
Japan
Prior art keywords
film
metallized
capacitor
composite film
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5722686A
Other languages
Japanese (ja)
Inventor
西川 之康
杉浦 紀行
山村 重成
正志 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5722686A priority Critical patent/JPS62213229A/en
Publication of JPS62213229A publication Critical patent/JPS62213229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子機器、電気機器に用いられる金属化フィル
ムコンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to metallized film capacitors used in electronic and electrical equipment.

従来の技術 近年、電子機器、電気機器は多機能化、小型化の取組み
がさかんであり、これに用いる電子部品は軽薄短小にな
ってきている。その代表がチップ化である。したがって
回路を構成するプリント基板への部品実装方法も従来と
は異なる面実装工法が急速に進んできた。この工法は基
板片面、あるいは両面に部品を接着剤、もしくはクリー
ムはんだで固定し、はんだ浴槽内、高熱炉内を通過させ
ることにより、はんだ付けを行っている。したがって部
品本体が直接高温に晒され、部品本体に加わる温度は従
来のリード付き部品のリード線のみはんだ浴槽に浸漬さ
せるものに比べ非常に高くなる。例工ばフィルムコンデ
ンサの場合、従来のリード付きタイプでリード線のみは
んだ付けを行った時のコンデンサ内部温度は1oO〜1
30”Cであるのに対し、チップフィルムコンデンサの
内部温度は210〜240℃であシ、約100”Cも高
くなっている。さらに機器を小型化にするために機器内
の空間部を削減し基板構成密度を高くする方法を用いて
いることから、庚用に際しては能動電子部品(XG、)
ランシスター、ダイオード等)による発熱は機器内に籠
り、温度は上昇する。
2. Description of the Related Art In recent years, efforts have been made to make electronic and electrical equipment multi-functional and miniaturized, and the electronic components used therein are becoming lighter, thinner, shorter and smaller. A typical example is chip technology. Therefore, the surface mounting method, which is different from the conventional method for mounting components on printed circuit boards that constitute circuits, has rapidly progressed. In this method, parts are fixed to one or both sides of a board with adhesive or cream solder, and soldered by passing them through a solder bath or high-temperature furnace. Therefore, the component body is directly exposed to high temperatures, and the temperature applied to the component body is much higher than that of a conventional lead-equipped component in which only the lead wires are immersed in a solder bath. For example, in the case of a film capacitor, when only the lead wires are soldered using a conventional lead type, the internal temperature of the capacitor is 1oO to 1
30"C, whereas the internal temperature of a chip film capacitor is 210-240C, which is about 100"C higher. Furthermore, in order to miniaturize the equipment, we are using methods to reduce the space inside the equipment and increase the board configuration density, so active electronic components (XG,
The heat generated by the devices (runsisters, diodes, etc.) is trapped inside the device, causing the temperature to rise.

以上のようにテップ部品は、従来のリード付き部品に比
べ温度的に厳しくなっている。フィルムコンデンサは、
従来誘電体としてポリエチレンテレフタレート(以下P
ETと略す)、ポリプロピレン(以下PPと略す)等を
用いていたが、耐熱性の面で難があり新たな耐熱性に優
れたプラスチック材料が望まれていた。
As described above, tip parts are subject to harsher temperatures than conventional leaded parts. Film capacitor is
Conventionally, polyethylene terephthalate (hereinafter referred to as P) was used as a dielectric material.
ET), polypropylene (hereinafter abbreviated as PP), etc., but they had problems in terms of heat resistance, and a new plastic material with excellent heat resistance was desired.

昨今、耐熱性誘電体材料としてポリフェニレンサルファ
イド(以下PPSと略す)及びポリフェニレンオキサイ
ド(以下PPOと略す)が開発さレタ。pps及びPP
Oは、PICT 、PPK比べ耐熱性が優れ、しかもフ
ィルムコンデンサの大きな特徴の1つである電気特性に
も優れている。
Recently, polyphenylene sulfide (hereinafter abbreviated as PPS) and polyphenylene oxide (hereinafter abbreviated as PPO) have been developed as heat-resistant dielectric materials. pps and PP
O has superior heat resistance compared to PICT and PPK, and also has superior electrical properties, which is one of the major characteristics of film capacitors.

発明が解決しようとする問題点 しかし、従来の両面金属化PPSフィルムの少なくとも
片面に220層を形成した複合フィルム全周いたチップ
形フィルムコンデンサにおいては、前記複合フィルムの
熱収縮率が不均一なため、はんだ付は時に以下に述べる
問題点があった。
Problems to be Solved by the Invention However, in chip-type film capacitors in which a conventional double-sided metallized PPS film has a composite film formed with 220 layers on at least one side, the heat shrinkage rate of the composite film is uneven. However, soldering sometimes has the following problems.

(1)はんだ付は時の熱により、前記複合フィルムが熱
変形を起こし、第1図で示した電極対向幅4及び素子長
さ6が熱によシ収縮または伸張し、電極面積が変化する
。したがって、コンデンサの静電容量が変化してしまう
(1) During soldering, the composite film undergoes thermal deformation due to the heat generated, and the electrode facing width 4 and element length 6 shown in Figure 1 shrink or expand due to the heat, and the electrode area changes. . Therefore, the capacitance of the capacitor changes.

(1)  同じく、はんだ付は時の熱により、前記複合
フィルムが熱変形を起こし、例えば収縮した時には、そ
の収縮により、前記複合フィルムにしわができる。第6
図にはんだ付は後の素子の構成図を示した。もとの素子
幅10が縮み分11のため、図の様にしわになり、電極
間距離12を広げる。
(1) Similarly, when the composite film undergoes thermal deformation due to the heat during soldering and, for example, shrinks, wrinkles are formed in the composite film due to the shrinkage. 6th
The diagram shows the configuration of the element after soldering. Because the original element width 10 is shrunk 11, it becomes wrinkled as shown in the figure, and the distance 12 between the electrodes increases.

したがってコンデンサの容量が低下している。なお、1
は両面金属化PPSフィルムの両面に220層2を形成
した複合フィルム、3はメタリコン電極、7は外装樹脂
である。
Therefore, the capacitance of the capacitor is reduced. In addition, 1
2 is a composite film in which 220 layers 2 are formed on both sides of a double-sided metallized PPS film, 3 is a metallic electrode, and 7 is an exterior resin.

また伸張した時には、伸張した前記複合フィルム1は、
外装樹脂γに囲まれた内で広がろうとするため、外装樹
脂7より反作用の力を受け、ついには前記複合フィルム
1にしわができる。第7図にはんだ付は後の素子の構成
図を示した。素子幅10は、外装樹脂7によって固定し
た値である。
Furthermore, when stretched, the stretched composite film 1
Since it tries to spread while surrounded by the exterior resin γ, it receives a reaction force from the exterior resin 7, and eventually wrinkles are formed in the composite film 1. FIG. 7 shows a configuration diagram of the element after soldering. The element width 10 is a value fixed by the exterior resin 7.

この内で前記複合フィルムが広がろうとすると、その広
がろうとする力と等しい力が外装樹脂7よりの反作用力
となυ、前記複合フィルム1を逆に縮めようとする力と
なり、ついには、図の様なしわになり、電極間距離12
を広げる。したがってコンデンサの静電容量が低下する
When the composite film tries to spread, a force equal to the spreading force becomes a reaction force υ from the exterior resin 7, which becomes a force that tries to shrink the composite film 1, and finally, It becomes wrinkled as shown in the figure, and the distance between the electrodes is 12
Expand. Therefore, the capacitance of the capacitor decreases.

このように、はんだ付は前後の静電容量変化が大きく、
シかもばらつきが生じる欠点を有していた。
In this way, soldering has a large change in capacitance before and after.
However, it had the disadvantage of causing variations in the quality.

特に積層形フィルムコンデンサにおいては、前記複合フ
ィルムの熱による変化は、たて方向・横方向ともに変化
するため、この変化率はいちじるしかった。
Particularly in laminated film capacitors, the composite film changes in both the vertical and lateral directions due to heat, so this rate of change was remarkable.

本発明は、上記欠点に鑑み、はんだ付は前後の静電容量
変化の少ない特性の安定した金属化フィルムコンデンサ
を提供するものである。
In view of the above-mentioned drawbacks, the present invention provides a metallized film capacitor having stable characteristics with little change in capacitance before and after soldering.

問題点を解決するための手段 この目的を達成するために、本発明の金属化フィルムコ
ンデンサは、230℃における熱収縮率が幅方向・長さ
方向ともに一7〜7%である両面金属化PPSフィルム
の少なくとも片面に220層を形成した複合フィルムを
用いたものである。
Means for Solving the Problems In order to achieve this object, the metallized film capacitor of the present invention is made of double-sided metallized PPS having a heat shrinkage rate of 7% to 7% in both the width and length directions at 230°C. A composite film in which 220 layers are formed on at least one side of the film is used.

前記熱収縮率とするためには、例えば熱エージング等が
ある。
In order to obtain the above-mentioned heat shrinkage rate, for example, heat aging or the like can be used.

作用 この構成により、両面金属化PPSフィルムの少なくと
も片面にppo層を形成した複合フィルムは、はんだ付
は時の熱による熱変形が少なく、(1)金属化フィルム
コンデンサの電極対向面積の変化が少なくなシ、コンデ
ンサの静電容量変化が安定する。
Effect: With this structure, a composite film in which a PPO layer is formed on at least one side of a double-sided metallized PPS film has less thermal deformation due to heat during soldering, and (1) less change in the area facing the electrodes of the metallized film capacitor. However, the change in capacitance of the capacitor becomes stable.

(1)  前記複合フィルムが収縮したり、伸張したり
した時生じるしわが減少し、フィルムコンデンサの電極
間距離の変化がわずかになり、コンデンサの静電容量変
化が安定する。
(1) Wrinkles that occur when the composite film contracts or expands are reduced, the distance between the electrodes of the film capacitor changes slightly, and the capacitance change of the capacitor becomes stable.

という作用が得られる。This effect can be obtained.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。第1図に本発明の一実施例における金属化フィル
ムコンデンサの素子構造を示す。
EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 1 shows the element structure of a metallized film capacitor in one embodiment of the present invention.

230’Cの熱収縮率が一7〜+7%の両面金属化PP
Sフィルムの両面に220層2を形成した複合フィルム
1を複数枚積層し、端部に金属溶射によシ、メタリコン
電極3を設けている。ここで1−1は金属化電極、4は
電極対向幅、6は素子長さを示す。
Double-sided metallized PP with heat shrinkage rate of 17 to +7% at 230'C
A plurality of composite films 1 each having 220 layers 2 formed on both sides of an S film are laminated, and metal electrodes 3 are provided at the ends by metal spraying. Here, 1-1 indicates the metallized electrode, 4 indicates the electrode facing width, and 6 indicates the element length.

第2図に、第1図の素子を樹脂外装し、完成した斜視図
を示す。6はコンデンサ素子、7は外装樹脂、8は外部
電極である。以上の様にして得た金属化フィルムコンデ
ンサを実装時にディップ方式のはんだ付けで260″C
の溶融した半田に6〜10秒間浸漬しはんだ付けを行な
った。この時にコンデンサ素子6の受ける熱は、約21
0〜m4゜℃であった。
FIG. 2 shows a completed perspective view of the element shown in FIG. 1 covered with resin. 6 is a capacitor element, 7 is an exterior resin, and 8 is an external electrode. The metallized film capacitor obtained in the above manner was soldered at 26"C using the dip method during mounting.
Soldering was performed by immersing it in molten solder for 6 to 10 seconds. At this time, the heat received by the capacitor element 6 is approximately 21
The temperature was 0 to 4°C.

両面金属化ppsフィルムの両面に220層を形成した
複合フィルムのこの温度での熱収縮率を測定したものを
第3図に示す(測定方法はJIS−C−23186j、
5 に準拠し、恒湿種箱温度を変化させた)。ここで、
約230″C付近で熱収縮率が大きく変化しているのが
解る。このように、金属化フィルムコンデンサにおいて
は、この230℃での前記複合フィルムの熱収縮率が非
常に重要な特性を示している。
Figure 3 shows the measured thermal shrinkage rate at this temperature of a composite film with 220 layers formed on both sides of a double-sided metallized pps film (the measurement method is JIS-C-23186j,
5), the temperature of the constant-humidity seed box was changed. here,
It can be seen that the heat shrinkage rate changes significantly around 230"C. As seen above, the heat shrinkage rate of the composite film at 230"C is a very important characteristic for metallized film capacitors. ing.

次にこの230℃の熱収縮率が下記の表の様に異なる7
種類の両面金属化PPSフィルムの両面に220層を形
成した複合フィルムを用いてチップ型金属化フィルムコ
ンデンサを作成し、260℃に溶融したはんだに10秒
間浸漬した時の前後の容量変化率を第4図に示す。
Next, the heat shrinkage rate at 230℃ is different as shown in the table below.
A chip-type metallized film capacitor was created using a composite film with 220 layers formed on both sides of a type of double-sided metallized PPS film. Shown in Figure 4.

横軸にそれぞれの試料を示し、縦軸にはんだ浸漬前の静
電容量と浸漬後の静電容量との変化率を示した。第4図
に示す結果のように、230′cの熱収縮率が一7%未
満の前記複合フィルムを用いて作成した金属化フィルム
コンデンサ(試料ム・試料B)は、はんだ浸漬前後の静
電容量変化率が、負の方に大きくしかもばらつきを持っ
ていた。すなわち、熱収縮率が一7%未満では前記複合
フィルムは熱により伸張する。ところが周囲を樹脂で囲
まれているため、広がることができず、この広がる力は
樹脂に加わり、反対にこの力は前記複合フィルムを縮め
ようとする反作用力として働くため、ついには前記複合
フィルムはしわとなり、金属化フィルムコンデンサの電
極間を広げ静電容量変化が大きく、負の方向に変化し、
しかもばらつきを持っている。また熱収縮率が+7%よ
り大きい前記複合フィルムを用いて作成した金属化フィ
ルムコンデンサ(試料F・試料G)は、はんだ浸漬前後
の静電容量変化率が、負の方に大きくしかもばらつきを
持っていた。すなわち熱収縮率が+7%よシ大きい前記
複合フィルムは熱により収縮し、前記複合フィルムにし
わを生じ金属化フィルムコンデンサの電極間を広げたた
め静電容量変化が大きく負の方向に変化し、しかもばら
つきを持っている。230℃の熱収縮率が一7〜7%の
範囲にある前記複合フィルムを用いて作成した本発明の
金属化フィルムコンデンサ試料C・試料D・試料2では
、はんだ浸漬後も安定した容量変化となっていた。
The horizontal axis represents each sample, and the vertical axis represents the rate of change between the capacitance before and after immersion in the solder. As shown in the results shown in Figure 4, the metallized film capacitors (Sample M and Sample B) made using the composite film with a heat shrinkage rate of less than 17% at 230' The rate of capacitance change was large in the negative direction and had variations. That is, when the thermal shrinkage rate is less than 17%, the composite film is stretched by heat. However, since it is surrounded by resin, it cannot spread, and this spreading force is applied to the resin, and on the contrary, this force acts as a reaction force that tries to shrink the composite film, so that the composite film eventually shrinks. This causes wrinkles and widens the distance between the electrodes of the metallized film capacitor, resulting in a large change in capacitance, which changes in the negative direction.
Moreover, there is variation. In addition, the metallized film capacitors (Sample F and Sample G) made using the above-mentioned composite films with a heat shrinkage rate of more than +7% have a large negative capacitance change rate before and after solder immersion, and also have variations. was. In other words, the composite film, which has a heat shrinkage rate of +7%, shrinks due to heat, causing wrinkles in the composite film and widening the distance between the electrodes of the metallized film capacitor, resulting in a large change in capacitance in the negative direction. It has variations. The metallized film capacitors Sample C, Sample D, and Sample 2 of the present invention, which were made using the composite film having a heat shrinkage rate of 17% to 7% at 230°C, showed stable capacitance changes even after being immersed in solder. It had become.

以上のように、本実施例によれば、230℃の熱収縮率
が幅方向・長さ方向ともに一7〜7%である両面金属化
ppsフィルムの両面にppo層を形成した複合フィル
ムを用いた積層形の金属化フィルムコンデンサとすれば
、はんだ浸漬後も安定した静電容量特性が得られる。
As described above, according to this example, a composite film is used in which PPO layers are formed on both sides of a double-sided metallized PPS film whose heat shrinkage rate at 230°C is 17 to 7% in both the width and length directions. If a laminated metallized film capacitor is used, stable capacitance characteristics can be obtained even after immersion in solder.

なお、本実施例では、両面金属化フィルムの両面に22
0層を形成した複合フィルムを複数枚積層した構成とし
たが、これに限るものではなく、第6図に示すような両
面金属化ppsフィルムの片面に220層2を形成した
複合フィルム9を複数枚積層した構成としても良いこと
は言うまでもない。
In this example, 22 mm was applied to both sides of the double-sided metalized film.
Although the structure is made by laminating a plurality of composite films each having a 0 layer, the present invention is not limited to this, but a plurality of composite films 9 each having a 220 layer 2 formed on one side of a double-sided metallized pps film as shown in FIG. 6 may be used. It goes without saying that a laminated structure may also be used.

発明の効果 以上のように本発明のフィルムコンデンサは、230℃
の熱収縮率が幅方向・長さ方向ともに一7〜7%である
両面金属化PPSフィルムの少なくとも片面に220層
を形成した複合フィルムを用いた積層形の金属化フィル
ムコンデンサであるので、はんだ付は時の熱を受けても
、安定した静電容量特性を得ることができ、その産業界
に与える効果は、まことに大なるものがある。
As described above, the film capacitor of the present invention has a temperature of 230°C.
This is a laminated metallized film capacitor using a composite film with 220 layers formed on at least one side of a double-sided metallized PPS film with a heat shrinkage rate of 17% to 7% in both the width and length directions, so it cannot be soldered. Even when exposed to the heat of time, it is possible to obtain stable capacitance characteristics, and its effects on industry are truly significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における両面金属化フィルム
コンデンサの素子構造を示す斜視図、第2図は本発明の
一実施例における金属化フィルムコンデンサの完成品の
斜視図、第3図は金属化PPSフィルムの熱収縮率を示
す特性図、第4図は本発明の詳細な説明するだめの特性
図、第6図は本発明の他の実施例における金属化フィル
ムコンデンサの素子構造を示す斜視図、第6図、第7図
は従来の技術を説明するだめのコンデンサ素子の断面図
である。 1・・・・・・両面金属化PPSフィルムの両面にpp
。 層を形成した複合フィルム、2・・・・・・ppo層、
6・・・・・・コンデンサ素子、9・・・・・・両面金
属化PPSフィルムの片面に220層を形成した複合フ
ィルム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−両面圭属化F’rS 7AルAの両面1;FPO眉
1竿り戊した8+ フィルム Z−FPOli 第1図 第2図 第3図 温度 じC) 第4図 八    BCDEF(q 第5図 第6図 第7図
FIG. 1 is a perspective view showing the element structure of a double-sided metalized film capacitor according to an embodiment of the present invention, FIG. 2 is a perspective view of a completed product of a metalized film capacitor according to an embodiment of the present invention, and FIG. A characteristic diagram showing the thermal shrinkage rate of a metallized PPS film, FIG. 4 is a characteristic diagram for explaining the present invention in detail, and FIG. 6 shows an element structure of a metalized film capacitor in another embodiment of the present invention. The perspective view, FIG. 6, and FIG. 7 are cross-sectional views of a capacitor element for explaining the conventional technology. 1...pp on both sides of double-sided metallized PPS film
. Composite film with layers formed, 2...ppo layer,
6...Capacitor element, 9...Composite film with 220 layers formed on one side of a double-sided metallized PPS film. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Double-sided Kei belonging F'rS 7A Both sides 1; FPO eyebrow 1 8+ film Z-FPOli Figure 1 Figure 2 Figure 3 Temperature Ji Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)両面金属化ポリフェニレンサルファイドフィルム
の少なくとも片面にラッカード層を形成して複合フィル
ムとし、その複合フィルムの230℃における熱収縮率
が幅方向および長さ方向ともに−7〜7%であることを
特徴とする金属化フィルムコンデンサ。
(1) Form a lacquer layer on at least one side of a double-sided metallized polyphenylene sulfide film to make a composite film, and confirm that the heat shrinkage rate of the composite film at 230°C is -7 to 7% in both the width and length directions. Features of metallized film capacitors.
(2)ラッカード層がポリフェニレンオキサイドからな
る特許請求の範囲第1項に記載の金属化フィルムコンデ
ンサ。
(2) A metallized film capacitor according to claim 1, wherein the lacquer layer comprises polyphenylene oxide.
JP5722686A 1986-03-14 1986-03-14 Metallized film capacitor Pending JPS62213229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5722686A JPS62213229A (en) 1986-03-14 1986-03-14 Metallized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5722686A JPS62213229A (en) 1986-03-14 1986-03-14 Metallized film capacitor

Publications (1)

Publication Number Publication Date
JPS62213229A true JPS62213229A (en) 1987-09-19

Family

ID=13049613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5722686A Pending JPS62213229A (en) 1986-03-14 1986-03-14 Metallized film capacitor

Country Status (1)

Country Link
JP (1) JPS62213229A (en)

Similar Documents

Publication Publication Date Title
JPS62213229A (en) Metallized film capacitor
JPS62213230A (en) Metallized film capacitor
JPS59127828A (en) Chip film capacitor
JPS62203315A (en) Capacitor
JPH0458164B2 (en)
JPS62203319A (en) Capacitor
JPH05283280A (en) Chip-shaped laminated ceramic capacitor
JPS61102021A (en) Capacitor
JPH0770426B2 (en) Capacitor
JPS62226612A (en) Capacitor
JPS62203314A (en) Capacitor
JPH01500866A (en) Trimming of passive components embedded in multilayer structures
JPH04302116A (en) Chip type electronic parts with base stand
JPS61234519A (en) Electronic component
JPS62172709A (en) Capacitor
JPH0450727B2 (en)
JPS62203317A (en) Capacitor
JPS62203316A (en) Capacitor
JPH04152614A (en) Manufacture of chip film capacitor
JPH0430502A (en) Square chip component
JPS63249312A (en) Film capacitor
JPH0719717B2 (en) Capacitor
JPS61102020A (en) Capacitor
JPS61119024A (en) Laminated capacitor
JPS61105825A (en) Laminated ceramic capacitor