JPS62212413A - Production of aqueous resin dispersion - Google Patents

Production of aqueous resin dispersion

Info

Publication number
JPS62212413A
JPS62212413A JP61056630A JP5663086A JPS62212413A JP S62212413 A JPS62212413 A JP S62212413A JP 61056630 A JP61056630 A JP 61056630A JP 5663086 A JP5663086 A JP 5663086A JP S62212413 A JPS62212413 A JP S62212413A
Authority
JP
Japan
Prior art keywords
resin
water
aqueous
viscosity
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61056630A
Other languages
Japanese (ja)
Other versions
JPH0674310B2 (en
Inventor
Hisao Ogawa
小川 久男
Takeshi Nakajima
健 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP61056630A priority Critical patent/JPH0674310B2/en
Publication of JPS62212413A publication Critical patent/JPS62212413A/en
Publication of JPH0674310B2 publication Critical patent/JPH0674310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE:To obtain an aqueous resin dispersion excellent in storage stability, by effecting intermolecular crosslinking between a water-soluble acrylic resin and a hydrophobic acrylic resin by adding a diisocyanate to a mixture of these resins and dispersing the produced resin in water by emulsification. CONSTITUTION:A diisocyanate compound is added to a mixture of the following resins (weight ratio of 20/80-90/10), and the intermolecular crosslinking between these resins is effected to such an extent that the viscosity as measured according to the following conditions of viscosity measurement may increase by 10-300%. The product is neutralized by adding thereto 40-100mol%, based on the total, carboxyl groups of the resin base and dispersed by emulsification by the addition of water to obtain the titled aqueous dispersion. Resin A: a water-soluble acrylic resin of an acid value of 20-100, a hydroxyl value of 40-150 and a number-average MW of 1,000-100,000, which is rendered water-soluble by neutralization with a base, Resin B: a hydrophobic acrylic resin of an acid value <20, a hydroxyl value of 40-150 and a number-average MW of 1,000-100,000, which is not rendered water-soluble even by neutralization with a base. Conditions of viscosity measurements: in a methyl isobutyl ketone solution of a resin content of 60% at 20 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水性塗料組成物に使用可能な樹脂水性分散体の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an aqueous resin dispersion that can be used in an aqueous coating composition.

〔従来の技術〕[Conventional technology]

アクリル系@脂を主成分とする塗料には、乳化重合反応
により合成される樹脂エマルジョンを用いたものが、常
温乾燥型塗料として建築用や家庭用等に広く普及してい
る。またアクリル系樹脂の他のタイプとして、コロイダ
ルディスパージョン型、水溶性型あるいはこれらの中間
に位置すると見られる各種のいわゆるハイブリッド型水
性塗料があり、工業用として常温乾燥並びに焼付塗装に
供されている。水溶性型の塗料は、造膜性、塗膜光沢、
貯蔵安定性に優れてはいるが、塗装作業性に劣るといわ
れ、たれ易く厚膜塗装に適さず、はけ塗りやローラー塗
り適性にも劣るという本質的欠点が指摘されるため、水
分散型樹脂を主体とする塗料に関心が移っている。
Paints containing acrylic resin as a main component, which use resin emulsions synthesized by emulsion polymerization reactions, are widely used in architectural and household applications as room temperature drying paints. Other types of acrylic resins include colloidal dispersion type, water-soluble type, and various so-called hybrid water-based paints that are considered to be in between these types, and are used for industrial purposes by drying at room temperature and by baking. . Water-soluble paints have film-forming properties, film gloss,
Water-dispersible type Interest is shifting to paints based mainly on resin.

水分散型塗料の1つに、水溶性アクリル樹脂を造膜成分
兼乳化剤として、疎水性アクリル樹脂を強制乳化させて
得られる樹脂水性分散体を主成分とするタイプの塗料が
研究されている。このものは水溶性型の特長である造膜
性、光沢の良さに加えて、塗装作業性、特に厚膜塗装適
性、はけ塗り、ローラー塗り適性、スプレー塗装での微
粒化の良さ、さらには乾燥が速いといった分散型塗料の
もつ長所を合せもつという特徴があり、酸化硬化型塗料
およびアミノプラスト樹脂やフェノール樹脂。
As one type of water-dispersed paint, a type of paint whose main component is an aqueous resin dispersion obtained by forcibly emulsifying a hydrophobic acrylic resin using a water-soluble acrylic resin as a film-forming component and emulsifier has been studied. In addition to the good film-forming properties and gloss that are the features of water-soluble types, this product has excellent coating workability, especially suitability for thick film coating, suitability for brush coating and roller coating, and good atomization for spray coating. It is characterized by having the advantages of dispersion type paints, such as quick drying, and oxidation-curing type paints, aminoplast resins, and phenolic resins.

ブロックイソシアネート化合物などと組合せ、焼付型塗
料として検討されている。酸化硬化型塗料として使用す
る場合、用いるアクリル樹脂はアクリル樹脂骨格の側鎖
部に、酸化重合性の基1例えば不飽和脂肪酸基、アリル
基、ジシクロペンテニル基などの不飽和アルキル基を導
入したものが使用対象となる。
It is being considered as a baking-type paint in combination with blocked isocyanate compounds. When used as an oxidation-curing paint, the acrylic resin used has an oxidation-polymerizable group 1, such as an unsaturated alkyl group such as an unsaturated fatty acid group, an allyl group, or a dicyclopentenyl group, introduced into the side chain of the acrylic resin skeleton. A thing becomes an object of use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述の2種類の樹脂を配合し乳化する樹
脂水性分散体には、長期にわたり懸濁安定性に優れる分
散体を得ることが難しく、貯蔵中に懸濁樹脂粒子が凝集
を起こして沈降したり、巨視的な樹脂相として析離する
傾向が強いという問題点があり、この樹脂水性分散体を
塗料用樹脂成分として使用すると、lll後後短期間は
外観や膜品質上に問題がないものの、長期間の貯蔵中に
は艶引け、ブツなどの塗膜欠陥を生じ、実用面で重大な
問題点を残こしている。
However, it is difficult to obtain a dispersion with excellent suspension stability over a long period of time when the aqueous resin dispersion is made by blending and emulsifying the two types of resins mentioned above, and the suspended resin particles tend to aggregate and settle during storage. However, when this aqueous resin dispersion is used as a resin component for paints, there are no problems with appearance or film quality for a short period of time after coating. During long-term storage, paint film defects such as fading and spots occur, which remains a serious problem in practical use.

本発明は上記問題点の解決を計るものであって。The present invention aims to solve the above problems.

本発明の第1の目的は、造膜性成分兼乳化剤としての水
溶性アクリル樹脂と1分散相樹脂としての疎水性アクリ
ル樹脂との樹脂水性分散体の製造において、貯蔵安定性
に優れた樹脂水性分散体を与える製造方法を提供するこ
とにある。
The first object of the present invention is to provide an aqueous resin dispersion with excellent storage stability in the production of an aqueous resin dispersion of a water-soluble acrylic resin as a film-forming component and emulsifier and a hydrophobic acrylic resin as one dispersed phase resin. The object of the present invention is to provide a manufacturing method that provides a dispersion.

また、第2の目的は、不飽和脂肪酸などの不飽和基を側
鎖に有する水溶性アクリル樹脂ならびに疎水性アクリル
樹脂から、酸化硬化型でしかも貯蔵安定性に優れた樹脂
水性分散体を与える製造方法を提供することにある。
The second objective is to produce an oxidation-curable resin aqueous dispersion with excellent storage stability from water-soluble acrylic resins and hydrophobic acrylic resins having unsaturated groups such as unsaturated fatty acids in their side chains. The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の樹脂水性分散体の製造方法である。 The present invention is the following method for producing an aqueous resin dispersion.

(1)下記樹脂Aと樹脂Bとの20/80〜90/10
 (重量比)の混合物にジイソシアネート化合物を加え
て、下記粘度測定条件による粘度が10〜300%増粘
するように分子間架橋を行わせ、続いて樹脂の全カルボ
キシル基の40〜100モル%の塩基を加えて中和し、
撹拌下に水を加えて乳化分散することを特徴とする樹脂
水性分散体の製造方法。
(1) 20/80 to 90/10 of resin A and resin B below
A diisocyanate compound is added to a mixture of Neutralize by adding a base,
A method for producing an aqueous resin dispersion, which comprises emulsifying and dispersing water by adding water while stirring.

樹脂A;塩基で中和することにより水可溶性となり得る
酸価20〜100、水酸基価40〜150、数平均分子
量1 、000〜100,000の水溶性アクリル樹脂
Resin A: A water-soluble acrylic resin having an acid value of 20 to 100, a hydroxyl value of 40 to 150, and a number average molecular weight of 1,000 to 100,000, which can become water soluble by neutralization with a base.

樹脂B;塩基で中和しても水不溶性である酸価20未満
、水酸基価40〜150、数平均分子量1,000〜1
00.000の疎水性アクリル樹脂。
Resin B; acid value less than 20, hydroxyl value 40-150, number average molecular weight 1,000-1, which is insoluble in water even when neutralized with a base
00.000 hydrophobic acrylic resin.

粘度測定条件;樹脂固形分60%のメチルイソブチルケ
トン溶液とし、温度20℃で測定する。
Viscosity measurement conditions: A methyl isobutyl ketone solution with a resin solid content of 60% is used and the viscosity is measured at a temperature of 20°C.

(2)下記樹脂Aと樹脂Bとの20/80〜90/10
 (重量比)の混合物にジイソシアネート化合物を加え
て、下記粘度測定条件による粘度が10〜300%増粘
するように分子間架橋を行わせ、続いて樹脂の全カルボ
キシル基の40〜100モル%の塩基を加えて中和し、
撹拌下に水を加えて乳化分散することを特徴とする樹脂
水性分散体の製造方法。
(2) 20/80 to 90/10 of resin A and resin B below
A diisocyanate compound is added to a mixture of Neutralize by adding a base,
A method for producing an aqueous resin dispersion, which comprises emulsifying and dispersing water by adding water while stirring.

樹脂A;樹脂骨格の側鎖部に不飽和アルキル基を全樹脂
中に5〜60重量%有し、かつ塩基で中和するとにより
水可溶性となり得る酸価20〜100、水酸基価40〜
150、数平均分子量t 、 ooo〜100,000
の水溶性アクリル樹脂。
Resin A: has 5 to 60% by weight of unsaturated alkyl groups in the side chains of the resin skeleton, and can become water-soluble by neutralization with a base, with an acid value of 20 to 100 and a hydroxyl value of 40 to 40.
150, number average molecular weight t, ooo~100,000
water-soluble acrylic resin.

樹脂B;樹脂骨格の側鎖部に不飽和アルキル基を全樹脂
中に5〜60重量%有し、かつ塩基で中和しても水不溶
性である酸価20未満、水酸基価40〜150、数平均
分子量1 、000〜too、oooの疎水性アクリル
樹脂。
Resin B; has an unsaturated alkyl group in the side chain portion of the resin skeleton in an amount of 5 to 60% by weight in the total resin, and is insoluble in water even when neutralized with a base, with an acid value of less than 20 and a hydroxyl value of 40 to 150; A hydrophobic acrylic resin having a number average molecular weight of 1,000 to too, ooo.

粘度測定条件;樹脂固形分60%のメチルイソブチルケ
トン溶液とし、温度20℃で測定する。
Viscosity measurement conditions: A methyl isobutyl ketone solution with a resin solid content of 60% is used and the viscosity is measured at a temperature of 20°C.

本発明の第1発明の樹脂水性分散体の製造方法に用いら
れる樹脂Aならびに樹脂Bは、α、βエチレン性単量体
を溶液重合、乳化重合、!!1濁重合、塊状重合など公
知の重合反応により製造される。
Resin A and resin B used in the method for producing an aqueous resin dispersion according to the first aspect of the present invention are obtained by polymerizing α and β ethylenic monomers by solution polymerization, emulsion polymerization, and! ! It is produced by known polymerization reactions such as mono-turbid polymerization and bulk polymerization.

用いるα、βエチレン性単量体としては、一般のアクリ
ル系樹脂の製造に使用される全ての単量体が使用対象で
あり、たとえばアクリル酸、メタクリル酸、イタコン酸
、クロトン酸、マレイン酸などに代表されるカルボキシ
ル基含有単量体、アクリル酸ヒドロキシエチル、メタク
リル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピ
ル、メタクリル酸ヒドロキシプロピル、N−メチロール
アクリルアミド、N−メチロールメタクリルアミドなど
に代表されるヒドロキシル基含有単量体、下記式(式中
、R1はHまたはCI、を示し、R2はcnH,n4p
z %但し、nは1≦n≦18の整数で示されるアルキ
ル基を示す。) で表わされるアクリル酸エステル、メタクリル酸エステ
ル類などがある。このほか、アクリロニトリル、メタク
リレートリル、アクリルアミド、メタクリルアミド、N
−メトキシアクリルアミド、 N−メトキシメタクリル
アミド、アリルアクリレート。
The α and β ethylenic monomers to be used include all monomers used in the production of general acrylic resins, such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, etc. Carboxyl group-containing monomers represented by hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, N-methylolacrylamide, N-methylolmethacrylamide, etc. mer, the following formula (wherein R1 represents H or CI, R2 is cnH, n4p
z % However, n represents an alkyl group represented by an integer of 1≦n≦18. ) There are acrylic esters, methacrylic esters, etc. In addition, acrylonitrile, methacrylaterile, acrylamide, methacrylamide, N
-Methoxyacrylamide, N-methoxymethacrylamide, allyl acrylate.

アリルメタクリレート、スチレン、ビニルトルエン、グ
リシジルメタクリレート、ジシクロペンテニルメタクリ
レートなどがあげられる。
Examples include allyl methacrylate, styrene, vinyltoluene, glycidyl methacrylate, and dicyclopentenyl methacrylate.

本発明の第2発明で用いられる樹脂Aならびに樹脂Bも
、上述の単量体類を重合して得られる樹脂骨格を有する
が、その骨格の側鎖部に酸化硬化性を有する不飽和アル
キル基が導入されている。
Resin A and resin B used in the second aspect of the present invention also have a resin skeleton obtained by polymerizing the above-mentioned monomers, but the side chain portion of the skeleton has an unsaturated alkyl group having oxidative curability. has been introduced.

不飽和アルキル基と骨格との結合形態は特に限定されな
いが、経済的かつ容易に製造可能なものとして次の(1
)〜(4)のものが例示できる。
The bonding form between the unsaturated alkyl group and the skeleton is not particularly limited, but the following (1
) to (4) are examples.

または または (式中、R8はHまたはCH,、R,は不飽和アルキル
基を示す、) 不飽和アルキル基としては、乾性油脂肪酸、半乾性油脂
肪酸、脱水ヒマシ油脂肪酸などの不飽和脂肪酸を起源と
する不飽和アルキル基、アリル基。
or or (in the formula, R8 represents H or CH, R represents an unsaturated alkyl group). Examples of the unsaturated alkyl group include unsaturated fatty acids such as drying oil fatty acids, semi-drying oil fatty acids, and dehydrated castor oil fatty acids. Origin of unsaturated alkyl group, allyl group.

のが含まれていてもよい。may be included.

上記(1)はアクリル酸またはメタクリル酸を含むアク
リル樹脂を製造後、これに不飽和脂肪酸のグリシジルエ
ステルを反応させるか、またはグリシジルアクリレート
もしくはグリシジルメタクリレートに不飽和脂肪酸を反
応させた単量体を予め合成し、これと他の共重合性単量
体とを重合させて容易に製造される。
In (1) above, after producing an acrylic resin containing acrylic acid or methacrylic acid, the resin is reacted with a glycidyl ester of an unsaturated fatty acid, or a monomer obtained by reacting glycidyl acrylate or glycidyl methacrylate with an unsaturated fatty acid is preliminarily prepared. It is easily produced by synthesizing this and polymerizing it with other copolymerizable monomers.

(2)は(1)の不飽和脂肪酸のグリシジルエステルに
代えて、不飽和アルコールのグリシジルエーテル類を用
い、(1)と同様の手法によって容易に製造し得る。
(2) can be easily produced by the same method as (1), using glycidyl ethers of unsaturated alcohols in place of the glycidyl esters of unsaturated fatty acids in (1).

(3)は不飽和脂肪酸とN−メチルモノエタノールアミ
ンとから得られる下記成分とカルボン酸含有アクリル樹
脂とから脱水エステル化反応により容易に製造すること
ができる。
(3) can be easily produced by a dehydration esterification reaction from the following component obtained from an unsaturated fatty acid and N-methylmonoethanolamine and a carboxylic acid-containing acrylic resin.

R3C00N (CH,) CH,CH,OH(式中、
R3は不飽和アルキル基を示す、)(4)は不飽和アル
コールのアクリル酸またはメタクリル酸エステル系単量
体と他の単量体との共重合により容易に製造される。
R3C00N (CH,) CH,CH,OH (in the formula,
(4) in which R3 represents an unsaturated alkyl group is easily produced by copolymerization of an acrylic acid or methacrylic acid ester monomer of an unsaturated alcohol and another monomer.

第1および第2発明において、樹脂Aは塩基により中和
することにより、水に安定に溶解する程度の極性を有し
、酸価が20〜100、水酸基価が40〜150、数平
均分子量が1,000〜100,000の範囲にあるも
のが対象となる。酸価20未満では水溶性に乏しく、樹
脂Bを安定に乳化することができず、また、100を越
える場合、塗料組成物としたとき塗膜の耐水性を損ない
好ましくない、樹脂A中の水酸基はジイソシアネート化
合物との反応点として不可欠なものであり、水a基価が
40未満では反応点として不足し、150を越えると塗
膜の耐水性に悪影響を与え好ましくない、樹脂Aの分子
量は数平均分子量で、1 、000未満では塗膜の耐久
性に不安があり、一方、100,000を越えると乳化
工程での樹脂粘度が過度に高まり、製造工程に負荷がか
かり現実的ではない。
In the first and second inventions, the resin A has such polarity that it can be stably dissolved in water by neutralization with a base, has an acid value of 20 to 100, a hydroxyl value of 40 to 150, and a number average molecular weight of Those in the range of 1,000 to 100,000 are eligible. If the acid value is less than 20, the water solubility is poor and resin B cannot be stably emulsified, and if it exceeds 100, the water resistance of the coating film will be impaired when used as a coating composition, which is undesirable. are essential as reaction points with diisocyanate compounds; if the water a value is less than 40, there will be insufficient reaction points, and if it exceeds 150, it will adversely affect the water resistance of the coating film, making it undesirable. If the average molecular weight is less than 1,000, there is concern about the durability of the coating film, while if it exceeds 100,000, the viscosity of the resin in the emulsification process will increase excessively, putting a burden on the manufacturing process, which is not practical.

第1および第2発明の樹脂Bは極性の低い疎水性アクリ
ル樹脂からなり、樹脂水性分散体中の分散相成分を構成
する。樹脂Bは酸価が20未満、水酸基価が40〜15
0、数平均分子量が1 、000〜10.0000の樹
脂が対象となる。酸価20以上では親水性が強く、分散
相を形成し難く好ましくない、水酸基価ならびに数平均
分子量は、前述の樹脂Aの場合と同じ理由により上記範
囲が重要となる。
Resin B of the first and second inventions is made of a hydrophobic acrylic resin with low polarity and constitutes a dispersed phase component in the aqueous resin dispersion. Resin B has an acid value of less than 20 and a hydroxyl value of 40 to 15.
0, and resins with a number average molecular weight of 1,000 to 10,0000 are targeted. An acid value of 20 or more is undesirable because it is highly hydrophilic and makes it difficult to form a dispersed phase. Regarding the hydroxyl value and number average molecular weight, the above ranges are important for the same reason as in the case of resin A described above.

なお、第2発明に用いる樹脂Aおよび樹脂Bは、前記第
1発明の樹脂Aおよび樹脂Bの条件に加えて、樹脂中に
占める不飽和アルキル基の重量比率が5〜60重量%の
範囲にあることが必須の条件である。
Furthermore, in addition to the conditions for resin A and resin B of the first invention, resin A and resin B used in the second invention are such that the weight ratio of unsaturated alkyl groups in the resin is in the range of 5 to 60% by weight. This is an essential condition.

不飽和アルキル基、アリル基またはジシクロペンテニル
基の重量比率が5重量%未満では酸化重合反応の反応点
が不足し、耐久性のある塗膜が得難く、また60重量%
を越えて導入されると、逆に過度な重合反応が進み塗膜
をもろくし好ましくな%N。
If the weight ratio of unsaturated alkyl groups, allyl groups or dicyclopentenyl groups is less than 5% by weight, there will be a shortage of reactive points for oxidative polymerization reaction, making it difficult to obtain a durable coating film;
If it is introduced in excess of %N, the polymerization reaction will proceed excessively and the coating film will become brittle.

樹脂水性分散体を構成する樹脂Aと樹脂Bの比率は重量
比で20/80〜90/10の範囲とすることが必要で
ある。樹脂Aが20重量%未満では、乳化剤としての量
的不足から微細で安定な懸濁体が得られず、また90重
量%を越える場合は製造上には何ら問題はないが、樹脂
A単独の水溶液に極めて近い性質の樹脂水性分散体とな
り、利用価値が乏しく意味をなさない。
The ratio of resin A and resin B constituting the resin aqueous dispersion needs to be in the range of 20/80 to 90/10 by weight. If Resin A is less than 20% by weight, a fine and stable suspension cannot be obtained due to insufficient quantity as an emulsifier, and if it exceeds 90% by weight, there will be no problem in production, but if Resin A alone This results in an aqueous resin dispersion with properties very similar to those of an aqueous solution, which has little utility value and is meaningless.

本発明の第1および第2発明の樹脂水性分散体の製造方
法では、上記の樹脂Aおよび樹脂Bの2種類の樹脂混合
物に少量のジイソシアネート化合物を反応させ、樹脂A
と樹脂Bの一部を化学的に架橋した構造を有する架橋成
分とし、その架橋成分と樹脂Aとの乳化力により、樹脂
Bを安定に乳化分散させる。
In the method for producing an aqueous resin dispersion according to the first and second aspects of the present invention, a small amount of a diisocyanate compound is reacted with a mixture of two types of resins, resin A and resin B, and resin A
A crosslinked component having a chemically crosslinked structure is made of a part of resin B, and the emulsifying power of the crosslinked component and resin A allows resin B to be stably emulsified and dispersed.

ジイソシアネート化合物は、その使用量が少量であり、
かつ2つの樹脂を架橋する働きだけであるため、特に構
造を限定する必要はない、ジイソシアネート化合物とし
て市販され、容易に使用し得る代表的なものとしては、
トリレンジイソシアネート、ジフェニルメタンジイソシ
アネート、ナフチレンジイソシアネート、ヘキサメチレ
ンジイソシアネート、イソホロンジイソシアネート、2
゜2.4−トリメチルへキサメチレンジイソシアネート
、キシリレンジイソシアネート、ジシクロヘキシルメタ
ジイソシアネート、リジンジイソシアネートなどが例示
される。勿論上記例示以外のものであっても1分子中に
2個のイソシアネート基を有するものは全て使用可能で
あり、また2個以上のイソシアネート基を有するものも
これらに組み合せて用いることが可能である。
The amount of diisocyanate compound used is small;
Since it only functions to crosslink two resins, there is no need to particularly limit the structure. Typical diisocyanate compounds that are commercially available and can be easily used include:
Tolylene diisocyanate, diphenylmethane diisocyanate, naphthylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2
Examples include 2.4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, dicyclohexylmethadiisocyanate, and lysine diisocyanate. Of course, even if it is not the above-mentioned examples, all those having two isocyanate groups in one molecule can be used, and those having two or more isocyanate groups can also be used in combination with these. .

参      シイ′シアネート化合物の使用量は・シ
イ″′アネート化合物反応後の下記粘度測定条件下で測
定された樹脂粘度が、反応前の樹脂混合物の同測定条件
下での樹脂粘度に比べて10〜300%高くなるような
量とする。
The amount of the cyanate compound to be used is - The resin viscosity measured under the following viscosity measurement conditions after the reaction with the anate compound is 10 to 10% higher than the resin viscosity of the resin mixture before reaction under the same measurement conditions. The amount will be 300% higher.

粘度測定条件 樹脂をメチルイソブチルケトンに溶解して固形分60%
の溶液とし、20℃にてB型粘度計で測定する。
Viscosity measurement conditions Resin is dissolved in methyl isobutyl ketone and solids content is 60%.
Measure the solution using a B-type viscometer at 20°C.

増粘率が10%未満では、ジイソシアネート処理のない
従来の樹脂水性分散体と大差なくて貯蔵安定性改善効果
に乏しく、300%を越えて増粘させると反応中にゲル
化を起こすなど、製造上の問題を生じ易く適当ではない
If the viscosity increase is less than 10%, it will not be much different from a conventional aqueous resin dispersion without diisocyanate treatment, and the effect of improving storage stability will be poor.If the viscosity is increased to more than 300%, gelation will occur during the reaction, etc. This is not appropriate as it tends to cause the above problem.

ジイソシアネート化合物の反応は、まず樹脂Aおよび樹
脂Bを均一に混合し、温度を室温〜150℃、望ましく
は50〜120℃に加熱し、攪拌しながらジイソシアネ
ート化合物を滴下し、滴下後1〜6時間程度、同一温度
で攪拌を続けることにより行われる。樹脂Aおよび樹脂
Bはいずれも一般にその分子量から相当粘度の高いもの
であり、無溶剤で上記の混合ならびに反応を進めること
は難しく1通常インシアネート化合物と反応性のない有
機溶剤に溶解し、樹脂溶液として取扱うが、ジイソシア
ネート化合物についても必要により、ジイソシアネート
と反応性のない有機溶剤に溶解して反応に用いてもよい
、この目的に用いる溶剤としては、一般に活性水素を持
たない溶剤、例えばエーテル類、ケトン類、エステル類
、炭化水素類などが適している。水溶性のない溶剤を使
用する場合は、反応後減圧ないし凍結乾燥等により、樹
脂の乳化を阻害しない程度まで脱溶剤する必要がある。
In the reaction of the diisocyanate compound, first, resin A and resin B are mixed uniformly, the temperature is heated to room temperature to 150°C, preferably 50 to 120°C, and the diisocyanate compound is added dropwise while stirring, and the reaction time is 1 to 6 hours after the dropwise addition. This is done by continuing stirring at the same temperature. Both Resin A and Resin B generally have a fairly high viscosity due to their molecular weights, and it is difficult to proceed with the above mixing and reaction without a solvent. Although the diisocyanate compound is treated as a solution, if necessary, the diisocyanate compound may be dissolved in an organic solvent that is not reactive with the diisocyanate and used for the reaction.Solvents used for this purpose generally include solvents that do not have active hydrogen, such as ethers. , ketones, esters, hydrocarbons, etc. are suitable. When using a non-water-soluble solvent, it is necessary to remove the solvent after the reaction by reducing pressure or freeze-drying to an extent that does not inhibit emulsification of the resin.

脱溶剤後、粘度を下げて取扱いを容易にするために、改
めて親水性の有機溶剤を加えてもよい。
After removing the solvent, a hydrophilic organic solvent may be added again in order to lower the viscosity and make handling easier.

しかし水性塗料組成物としての本来の意味から、可能な
限り溶剤量を制限することが望ましく、通常最終樹脂1
00部に対して60〜70部がその上限である。
However, from the original meaning of a water-based coating composition, it is desirable to limit the amount of solvent as much as possible, and usually the final resin 1
The upper limit is 60 to 70 parts per 00 parts.

上記のようにして製造された樹脂混合物に対し、そのカ
ルボキシル基の40〜100モル%に相当する塩基を加
えて中和し、しかるのち充分に攪拌しながら水を徐々に
加えて樹脂水性分散体とする。塩基としては、塗料業界
で一般に使用されるアルキルアミン類、アルカノールア
ミン類、アンモニアなどが適している。中和率が40モ
ル%未満では樹脂の親水性が不足し、充分な乳化力が期
待できない。また100モル%を越えて用いてもそれに
よる利点はない、!M脂混合物の粘度が高い場合には、
乳化に当り加温して系の温度を25℃から約90℃に上
げ乳化することも可能である。さらにオートクレーブ等
の耐圧密閉容器を使用すれば、乳化温度をさらに高くす
ることができる。
The resin mixture produced as described above is neutralized by adding a base corresponding to 40 to 100 mol% of the carboxyl groups, and then water is gradually added with sufficient stirring to obtain an aqueous resin dispersion. shall be. Suitable bases include alkylamines, alkanolamines, and ammonia commonly used in the paint industry. If the neutralization rate is less than 40 mol%, the hydrophilicity of the resin will be insufficient and sufficient emulsifying power cannot be expected. Also, there is no advantage even if it is used in excess of 100 mol%! If the viscosity of the M fat mixture is high,
It is also possible to emulsify by heating the system to raise the temperature from 25°C to about 90°C. Furthermore, if a pressure-resistant sealed container such as an autoclave is used, the emulsification temperature can be further increased.

本発明の第1発明の製造方法で得られる樹脂水性分散体
は水性塗料組成物またはその成分として使用される。こ
の樹脂水性分散体を塗料組成物として使用するには、そ
のままで、またはこれに硬化剤1例えばアミノプラスト
樹脂、フェノール樹脂、ブロックイソシアネート化合物
等を配合した形で用いられる。この場合、塗料形態しと
ては。
The aqueous resin dispersion obtained by the production method of the first aspect of the present invention is used as an aqueous coating composition or a component thereof. In order to use this aqueous resin dispersion as a coating composition, it is used as it is or in a form in which a curing agent 1 such as an aminoplast resin, a phenol resin, a blocked isocyanate compound, etc. is blended therein. In this case, it is in the form of paint.

クリヤー塗料として、また顔料を配合したエナメル塗料
として使用できる。
It can be used as a clear paint or as an enamel paint containing pigments.

また第2発明で得られる樹脂水性分散体は不飽和基を有
するため、酸化硬化型塗料組成物として使用できる。こ
の場合一般の硬化剤は不要で、上記成分に加えて、さら
に酸化重合を促進するための、いわゆるドライヤーと呼
ばれる各種の金属塩、金属錯体等を組合せて使用し、前
記と同様にクリヤー塗料またはエナメル塗料として使用
できる。
Further, since the aqueous resin dispersion obtained in the second invention has an unsaturated group, it can be used as an oxidation-curing coating composition. In this case, a general curing agent is not necessary, and in addition to the above components, a combination of various metal salts, metal complexes, etc., called dryers, are used to further promote oxidative polymerization, and in the same way as above, clear paint or Can be used as enamel paint.

〔発明の効果〕〔Effect of the invention〕

本発明の第1発明によれば、水溶性アクリル樹脂と疎水
性アクリル樹脂とから樹脂水性分散体を製造するに当り
、両横脂分子の一部をジイソシアネート化合物により架
橋するという新規な処理を加えることにより、これまで
実現の困難であった貯蔵安定性に優れる樹脂水性分散体
の製造が可能である。
According to the first aspect of the present invention, when producing an aqueous resin dispersion from a water-soluble acrylic resin and a hydrophobic acrylic resin, a novel process is added in which a part of both side fat molecules is cross-linked with a diisocyanate compound. This makes it possible to produce an aqueous resin dispersion with excellent storage stability, which has been difficult to achieve up to now.

また第2発明によれば、上記水溶性アクリル樹脂および
疎水性アクリル樹脂として不飽和基を有する樹脂を使用
することにより、酸化硬化性を有し、かつ貯蔵安定性に
優れ、長期貯蔵や加温下での貯蔵において安定で、光沢
、外観性、塗装作業1      性などに優れる水性
塗料組成物として使用可能な樹脂水性分散体が得られる
Further, according to the second invention, by using a resin having an unsaturated group as the water-soluble acrylic resin and the hydrophobic acrylic resin, it has oxidative curability and has excellent storage stability, and can be stored for a long time or heated. An aqueous resin dispersion is obtained which is stable when stored under water and can be used as an aqueous coating composition having excellent gloss, appearance, and coating workability.

〔実施例〕〔Example〕

以下実施例をもって本発明の内容をさらに詳述する。な
お、各例中%および部は1重量%および重量部を示す。
The content of the present invention will be explained in further detail with reference to Examples below. In each example, % and parts represent 1% by weight and parts by weight.

(1)樹脂Aの製造 温度計、還流冷却器、窒素ガス導入管、攪拌機を装備し
たガラス製フラスコに、第1表のA(1)に示す配合比
に従い、反応剤としてメチルイソブチルケトン36.6
部を入れ、窒素ガスを通気しながら、115〜120℃
に加熱した。撹拌下に、アクリル酸4.3部、2−ヒド
ロキシエチルメタクリレート12.0部、n−ブチルア
クリレート18.0部、2−エチルへキシルアクリレー
ト13.7部、スチレン12.0部、t−ブチルペルオ
キシ−2−エチルヘキサノエート1.2部の混合溶液を
、約2時間を要して添加した。約1時間攪拌後、t−ブ
チルペルオキシ−2−エチルヘキサノエート0.2部、
メチルイソブチルケトン2.0部からなる溶液を約5分
を要して滴下した0滴下後さらに約3時間攪拌を続け、
最終的に固形分60%、酸価57、水酸基価86、数平
均分子量23 X 10’の水溶液アクリル樹脂A(1
)を得た。樹脂特性値を第1表に示す。
(1) Production of Resin A In a glass flask equipped with a thermometer, reflux condenser, nitrogen gas inlet tube, and stirrer, 36% of methyl isobutyl ketone was used as a reactant according to the compounding ratio shown in A(1) of Table 1. 6
and heated to 115-120℃ while blowing nitrogen gas.
heated to. While stirring, add 4.3 parts of acrylic acid, 12.0 parts of 2-hydroxyethyl methacrylate, 18.0 parts of n-butyl acrylate, 13.7 parts of 2-ethylhexyl acrylate, 12.0 parts of styrene, and t-butyl. A mixed solution of 1.2 parts of peroxy-2-ethylhexanoate was added over about 2 hours. After stirring for about 1 hour, 0.2 part of t-butylperoxy-2-ethylhexanoate,
A solution consisting of 2.0 parts of methyl isobutyl ketone was added dropwise over a period of about 5 minutes. After 0 drops, stirring was continued for about 3 hours.
Finally, aqueous solution acrylic resin A (1
) was obtained. Resin characteristic values are shown in Table 1.

同様にして第1表に示す配合に基づき、樹脂A(2)を
製造した。樹脂特性値を第1表に示す。
Similarly, resin A (2) was produced based on the formulation shown in Table 1. Resin characteristic values are shown in Table 1.

第1表 (2)不飽和アルキル基を有する樹脂Aの製造前項(1
)記載の合成装置、合成方法にて、第2表の原料(1)
のA(3)の配合に基づき、A(3)の高酸価アクリル
樹脂を合成し、続いて2段目の反応として、このアクリ
ル樹脂溶液に第2表の原料(2)に示す脱水ヒマシ油脂
肪酸グリシジルエステルおよび反応触媒としてトリエチ
ルアミンを加え、120〜130℃の反応温度にて攪拌
しながら3時間反応させ、側鎖に不飽和アルキル基を有
する樹脂A(3)を得た。樹脂特性値を第2表に示す。
Table 1 (2) Item (1) before the production of resin A having an unsaturated alkyl group
) Using the synthesis equipment and synthesis method described in Table 2, raw material (1)
Based on the formulation of A(3), the high acid value acrylic resin of A(3) is synthesized, and then as a second reaction, dehydrated castor shown in raw material (2) in Table 2 is added to this acrylic resin solution. Oil fatty acid glycidyl ester and triethylamine as a reaction catalyst were added and reacted for 3 hours with stirring at a reaction temperature of 120 to 130°C to obtain resin A (3) having an unsaturated alkyl group in the side chain. Resin property values are shown in Table 2.

同様にして第2表に示すA(4)、 A(5)の配合に
基づき、それぞれの高酸価アクリル樹脂を合成し、さら
にそれぞれの不飽和脂肪酸グリシジルエステルを反応さ
せて側鎖に不飽和アルキル基を有する水溶性アクリル樹
脂A(4)、A(5)を得た。
Similarly, based on the formulations of A(4) and A(5) shown in Table 2, each high acid value acrylic resin was synthesized, and the respective unsaturated fatty acid glycidyl esters were further reacted to add unsaturation to the side chain. Water-soluble acrylic resins A(4) and A(5) having an alkyl group were obtained.

また、第2表の原料(1)のA(6)の配合に基づき、
反応溶剤としてエチレングリコールジメチルエーテルを
用いた他は上記と同様の合成方法により高酸価アクリル
樹脂を合成し、次に第2表の原料(2)のA(6)に記
載のメチルモノエタノールアミンとサフラワー油脂肪酸
とのアミド化物を混合し、135〜150℃で約5時間
、脱水エステル化反応を行い、不飽和アルキル基を側鎖
に有する水溶性アクリル樹脂A(6)を得た。
Also, based on the formulation of A(6) of raw material (1) in Table 2,
A high acid value acrylic resin was synthesized by the same synthesis method as above except that ethylene glycol dimethyl ether was used as the reaction solvent, and then methyl monoethanolamine described in A (6) of raw material (2) in Table 2 was synthesized. The amidated product with safflower oil fatty acid was mixed and subjected to a dehydration esterification reaction at 135 to 150°C for about 5 hours to obtain water-soluble acrylic resin A (6) having an unsaturated alkyl group in the side chain.

なお、第2表中A(6)の固形分値が80%となってい
るのは、脱水エステル化に際し、反応水と同時にエチレ
ングリコールジメチルエーテルの一部が溜出するため1
反応終了後に固形分を80%に再調整したためである。
The solid content value of A(6) in Table 2 is 80% because a part of ethylene glycol dimethyl ether is distilled out at the same time as the reaction water during dehydration and esterification.
This is because the solid content was readjusted to 80% after the reaction was completed.

113  エポキシ当址 355 (3)樹脂Bの製造 前項(1)記載の合成装置、合成方法により、第3表に
示す配合に基づき、第3表に示す樹脂特性値を有する樹
脂B(1)、B(2)を得た。
113 Epoxy site 355 (3) Production of resin B Resin B (1) having the resin characteristic values shown in Table 3 based on the formulation shown in Table 3 using the synthesis apparatus and synthesis method described in the previous section (1), B(2) was obtained.

(4)不飽和アルキル基を有する樹脂Bの製造前項(2
)のA(3)〜A(5)と同様にして、第4表の原料(
1)に示す配合に基づきアクリル樹脂を合成し、続いて
原料(2)を加えて2段目の反応を行い、不飽和アルキ
ル基を有する樹脂B(3)、 B(5)を得た。
(4) Production of resin B having an unsaturated alkyl group (2)
) in the same way as A(3) to A(5) of Table 4.
An acrylic resin was synthesized based on the formulation shown in 1), and then raw material (2) was added to carry out a second reaction to obtain resins B(3) and B(5) having unsaturated alkyl groups.

また、原料(1)のアクリルモノマーとしてグリシジル
メタクリレートを用い、2段目の反応に不飽和脂肪酸を
用いた他は合成条件はB(3)、B(5)と全く同一の
方法で不飽和アルキル基を有する樹脂B(4)を得た。
In addition, the synthesis conditions were exactly the same as those for B(3) and B(5) except that glycidyl methacrylate was used as the acrylic monomer of raw material (1) and unsaturated fatty acids were used in the second reaction. Resin B (4) having groups was obtained.

さらに、反応溶剤をメチルイソブチルケトンに代えてエ
チレングリコールジメチルエーテルを用いた他は前項(
1)と同様にして樹脂B(6)を得た。
In addition, the reaction solvent described in the previous section was changed to ethylene glycol dimethyl ether instead of methyl isobutyl ketone.
Resin B (6) was obtained in the same manner as in 1).

第3表 実施例1 前記(1)の樹脂Aの製造と同一の樹脂合成装置を用い
、樹脂A(1)60部、樹脂B (1)40部をフラス
コに取り、90〜110℃に加温攪拌しながら、これに
トリレンジイソシアネート0.36部とメチルイソブチ
ルケトン3.6部からなるジイソシアネート溶液を約5
分間を要して滴下し1滴下後1時間同温度に保った0反
応終了後、固形分を60%に調整し。
Table 3 Example 1 Using the same resin synthesis apparatus as used for producing resin A in (1) above, 60 parts of resin A (1) and 40 parts of resin B (1) were placed in a flask and heated to 90 to 110°C. While stirring warmly, add about 5 parts of a diisocyanate solution consisting of 0.36 parts of tolylene diisocyanate and 3.6 parts of methyl isobutyl ketone.
After the reaction was completed, the solid content was adjusted to 60%.

反応開始前の樹脂混合物の粘度と比較したところ、温度
20℃での粘度が1060センチボイズから1840セ
ンチポイズに上昇した。
When compared with the viscosity of the resin mixture before the start of the reaction, the viscosity at a temperature of 20°C increased from 1060 centipoise to 1840 centipoise.

反応物を80〜90℃に保ち、減圧操作によりメチルイ
ソブチルケトンのほぼ全量を系外に抜き取り。
The reactant was maintained at 80 to 90°C, and almost the entire amount of methyl isobutyl ketone was extracted from the system by reducing the pressure.

新たに希釈溶剤として3−メチル−3−メトキシブタノ
ール1O05部を加え、固形公約85%の樹脂を得た。
1005 parts of 3-methyl-3-methoxybutanol was newly added as a diluting solvent to obtain a resin with a solid content of approximately 85%.

次にこの樹脂に40℃でトリエチルアミン3.0部を加
え、均一に混合した後1強力な卓上攪拌機を用いて攪拌
しながら脱イオン水84.2部を徐々に加え、固形分3
8%で透明感のある乳白色樹脂水性分散体を得た。
Next, 3.0 parts of triethylamine was added to this resin at 40°C, and after uniformly mixing, 84.2 parts of deionized water was gradually added while stirring using a powerful tabletop stirrer, and the solid content was 3.0 parts.
A milky white aqueous resin dispersion with a transparent feel was obtained at 8%.

上記樹脂水性分散体を室温で6ケ月貯蔵したが、樹脂の
凝集や沈降物の発生等が認められず、貯蔵安定性に優れ
ていた。また、加温下での貯蔵安定性を評価するため4
0℃で1ケ月間貯蔵したが、凝集や沈降物の発生を認め
ず、安定性に富むことが確認された。ジイソシアネート
添加反応前後の粘度、増粘の度合、樹脂水性分散体の固
形分、外観、貯蔵安定性の結果を第5表に示す。
The aqueous resin dispersion was stored at room temperature for 6 months, but no resin aggregation or sedimentation was observed, and it had excellent storage stability. In addition, in order to evaluate the storage stability under heating,
Although it was stored at 0°C for one month, no aggregation or sediment was observed, confirming that it is highly stable. Table 5 shows the results of the viscosity, degree of thickening, solid content of the aqueous resin dispersion, appearance, and storage stability before and after the diisocyanate addition reaction.

実施例2〜5 第5表に示される実施例2〜5のそれぞれの配合に基づ
き、実施例1と全く同じ方法で、実施例2〜6の樹脂水
性分散体を得た。ジイソシアネート添加反応前後の粘度
、増粘の度合、樹脂水性分散体の固形分、外観、貯蔵安
定性評価の結果を第5表に示す、いずれの樹脂水性分散
体も貯蔵安定性に優れるものであった。
Examples 2 to 5 Based on the respective formulations of Examples 2 to 5 shown in Table 5, aqueous resin dispersions of Examples 2 to 6 were obtained in exactly the same manner as in Example 1. The viscosity before and after the diisocyanate addition reaction, the degree of thickening, the solid content of the resin aqueous dispersion, the appearance, and the results of the storage stability evaluation are shown in Table 5. All the resin aqueous dispersions had excellent storage stability. Ta.

実施例6 前記(1)の水溶性アクリル樹脂の製造で用いたのと同
一の樹脂合成装置を用い、樹脂A(6)65部。
Example 6 Using the same resin synthesis apparatus as used in the production of the water-soluble acrylic resin in (1) above, 65 parts of resin A (6) was added.

樹脂B(6)35部を用い、イソホロンジイソシアネー
ト0.67部とエチレングリコールジメチルエーテル5
.0部のジイソシアネート溶液を用いた他は実施例1と
同様に反応させてジイソシアネート反応物を作り、脱溶
剤工程をすることなく、トリエチルアミン6.0部と脱
イオン水143.8部を用いて実施例1と同様に中和し
、水分散化を行い、実施例6の樹脂水性分散体を得た。
Using 35 parts of resin B (6), 0.67 parts of isophorone diisocyanate and 5 parts of ethylene glycol dimethyl ether
.. A diisocyanate reaction product was prepared by reacting in the same manner as in Example 1, except that 0 parts of diisocyanate solution was used, and the reaction was carried out using 6.0 parts of triethylamine and 143.8 parts of deionized water without performing a solvent removal step. The resin aqueous dispersion of Example 6 was obtained by neutralization and water dispersion in the same manner as in Example 1.

ジイソシアネート添加前後の粘度、増粘の度合、樹脂水
性分散体の固形分、外観、貯蔵安定性評価の結果を第5
表に示す。
The results of the viscosity before and after addition of diisocyanate, degree of thickening, solid content of the resin aqueous dispersion, appearance, and storage stability evaluation were evaluated in the fifth section.
Shown in the table.

このものも実施例1〜5と同様に貯蔵安定性に優れたも
のであった。
This product also had excellent storage stability like Examples 1 to 5.

なお、実施例6は反応溶剤としてエチレングリコールジ
メチルエーテルを用いているので、粘度の測定は初期混
合物、ならびに最終反応物のそれぞれを100〜120
℃で減圧脱溶剤し、メチルイソブチルケトンにて固形分
60%に希釈して測定した。
In addition, since Example 6 uses ethylene glycol dimethyl ether as the reaction solvent, the viscosity was measured at 100-120% for each of the initial mixture and the final reactant.
The solvent was removed under reduced pressure at °C, diluted with methyl isobutyl ketone to a solid content of 60%, and the measurement was performed.

実施例7 実施例3の樹脂水性分散体の固形分100部に対し、ル
チル型酸化チタン80部、ナフテン酸コバルトをコバル
ト金属量として0.05部、ナフテン酸マンガンを金属
菫として0.1部、さらにレベリング剤として信越シリ
コーンX−24−3005(商品名、信越化学工業(株
)製)0.5部を加え、サンドミルにより顔料分散した
。顔料分散後、トリエチルアミン0.3部を加え、脱イ
オン水により約1800センチボイズに粘度を調整して
酸化硬化型臼エナメルを得た。
Example 7 For 100 parts of the solid content of the aqueous resin dispersion of Example 3, 80 parts of rutile titanium oxide, 0.05 parts of cobalt naphthenate as cobalt metal, and 0.1 part of manganese naphthenate as metal violet. Further, 0.5 part of Shin-Etsu Silicone X-24-3005 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was added as a leveling agent, and the pigment was dispersed using a sand mill. After dispersing the pigment, 0.3 part of triethylamine was added and the viscosity was adjusted to about 1800 centivoise with deionized water to obtain an oxidation-hardening mortar enamel.

製造直後および25℃の恒温室に6ケ月間貯蔵後の白エ
ナメルをリン酸亜鉛処理鉄板上にはけ塗りし、塗膜性能
試験を行った。試験結果を第6表に示す。塗膜性能は貯
蔵による影響は全く無く、貯蔵安定性に優れていた。
Immediately after production and after being stored in a constant temperature room at 25° C. for 6 months, the white enamel was brushed onto a zinc phosphate-treated iron plate, and a coating film performance test was conducted. The test results are shown in Table 6. The coating film performance was not affected by storage at all and had excellent storage stability.

実施例8〜10 実施例7と同様の固形分組成となる白エナメルを実施例
4,5.6の樹脂水性分散体を用いて実施例7と同様に
して製造し、それぞれ実施例8゜9.10とした。ただ
し、実施例9に限り、白エナメルの中和用には、トリエ
チルアミンに代えてジメチルアミノエタノール0.2部
を使用した0次に実施例7と同様にそれぞれリン酸亜鉛
処理鉄板上にはけ塗りし、@膜性能試験を行った。試験
結果を第6表に示す。
Examples 8 to 10 White enamels having the same solid content composition as in Example 7 were produced in the same manner as in Example 7 using the resin aqueous dispersions of Examples 4 and 5.6. .10. However, only in Example 9, for neutralizing white enamel, 0.2 parts of dimethylaminoethanol was used instead of triethylamine. It was coated and a membrane performance test was conducted. The test results are shown in Table 6.

上記実施例8〜10のいずれの場合も貯蔵による塗膜性
能の変化は無く、貯蔵安定性に優れるものであった。
In any of Examples 8 to 10, there was no change in coating film performance due to storage, and the storage stability was excellent.

比較例1,2 実施例1および3において、水溶性樹脂と疎水性樹脂の
混合物とジイソシアネートとの架橋反応のみを省略し、
それ以外の工程ならびに成分量を同じくして実施例1,
3に対応する樹脂水性分散体を製造し、比較例1,2と
した。比較例1,2の樹脂特性値を第7表に示す。
Comparative Examples 1 and 2 In Examples 1 and 3, only the crosslinking reaction between the mixture of water-soluble resin and hydrophobic resin and diisocyanate was omitted,
Example 1, with the other steps and ingredient amounts being the same.
A resin aqueous dispersion corresponding to No. 3 was produced and designated as Comparative Examples 1 and 2. Table 7 shows the resin characteristic values of Comparative Examples 1 and 2.

比較例3 比較例2で得られた固形分38%の樹脂水性分散体を用
い、実施例7と全く同じ方法で、同じ固形分比率の白エ
ナメルを製造し、比較例3とした。
Comparative Example 3 Using the resin aqueous dispersion with a solid content of 38% obtained in Comparative Example 2, a white enamel with the same solid content ratio was produced in exactly the same manner as in Example 7, and a white enamel was prepared as Comparative Example 3.

比較例3についての塗膜性能試験結果を第7表に示す。The coating film performance test results for Comparative Example 3 are shown in Table 7.

第7表に示すごとく、ジイソシアネートによる処理を施
さない比較例1,2の樹脂水性分散体は。
As shown in Table 7, the aqueous resin dispersions of Comparative Examples 1 and 2 were not treated with diisocyanate.

貯蔵中に樹脂の沈降分離を起こし貯蔵安定性に問題があ
った。また、この樹脂水性分散体を用いて製造された比
較例3のエナメルは、貯蔵中に塗膜光沢の著しい低下や
、塗面に凝集物に起因する突起状欠陥、いわゆるブッを
多発し安定性に問題があった。
There was a problem with storage stability due to sedimentation and separation of the resin during storage. In addition, the enamel of Comparative Example 3 produced using this aqueous resin dispersion showed a significant decrease in coating film gloss during storage and a large number of protruding defects caused by aggregates, so-called "bubbles" on the coating surface, resulting in poor stability. There was a problem.

Claims (5)

【特許請求の範囲】[Claims] (1)下記樹脂Aと樹脂Bとの20/80〜90/10
(重量比)の混合物にジイソシアネート化合物を加えて
、下記粘度測定条件による粘度が10〜300%増粘す
るように分子間架橋を行わせ、続いて樹脂の全カルボキ
シル基の40〜100モル%の塩基を加えて中和し、撹
拌下に水を加えて乳化分散することを特徴とする樹脂水
性分散体の製造方法。 樹脂A;塩基で中和することにより水可溶性となり得る
酸価20〜100、水酸基価40〜150、数平均分子
量1,000〜100,000の水溶性アクリル樹脂。 樹脂B;塩基で中和しても水不溶性である酸価20未満
、水酸基価40〜150、数平均分子量1,000〜1
00,000の疎水性アクリル樹脂。 粘度測定条件;樹脂固形分60%のメチルイソブチルケ
トン溶液とし、温度20℃で測定する。
(1) 20/80 to 90/10 of resin A and resin B below
A diisocyanate compound is added to a mixture of A method for producing an aqueous resin dispersion, which comprises neutralizing by adding a base and emulsifying and dispersing by adding water while stirring. Resin A: A water-soluble acrylic resin having an acid value of 20 to 100, a hydroxyl value of 40 to 150, and a number average molecular weight of 1,000 to 100,000, which can become water soluble by neutralization with a base. Resin B; acid value less than 20, hydroxyl value 40-150, number average molecular weight 1,000-1, which is insoluble in water even when neutralized with a base
00,000 hydrophobic acrylic resin. Viscosity measurement conditions: A methyl isobutyl ketone solution with a resin solid content of 60% is used and the viscosity is measured at a temperature of 20°C.
(2)樹脂Aと樹脂Bとの混合物にジイソシアネート化
合物を加えた配合物の分子間架橋は、温度50〜120
℃で行うものである特許請求の範囲第1項記載の樹脂水
性分散体の製造方法。
(2) Intermolecular crosslinking of a mixture of resin A and resin B with a diisocyanate compound is carried out at a temperature of 50 to 120.
A method for producing an aqueous resin dispersion according to claim 1, which is carried out at a temperature of .degree.
(3)下記樹脂Aと樹脂Bとの20/80〜90/10
0(重量比)の混合物にジイソシアネート化合物を加え
て、下記粘度測定条件による粘度が10〜300%増粘
するように分子間架橋を行わせ、続いて樹脂の全カルボ
キシル基の40〜100モル%の塩基を加えて中和し、
撹拌下に水を加えて乳化分散することを特徴とする樹脂
水性分散体の製造方法。 樹脂A;樹脂骨格の側鎖部に不飽和アルキル基を全樹脂
中に5〜60重量%有し、かつ塩基で中和するとにより
水可溶性となり得る酸価20〜100、水酸基価40〜
150、数平均分子量1,000〜100,000の水
溶性アクリル樹脂。 樹脂B;樹脂骨格の側鎖部に不飽和アルキル基を全樹脂
中に5〜60重量%有し、かつ塩基で中和しても水不溶
性である酸価20未満、水酸基価40〜150、数平均
分子量1,000〜100,000の疎水性アクリル樹
脂。 粘度測定条件;樹脂固形分60%のメチルイソブチルケ
トン溶液とし、温度20℃で測定する。
(3) 20/80 to 90/10 of resin A and resin B below
A diisocyanate compound is added to a mixture of 0 (weight ratio) to perform intermolecular crosslinking so that the viscosity increases by 10 to 300% according to the viscosity measurement conditions below, and then 40 to 100 mol% of the total carboxyl groups of the resin. Neutralize by adding a base of
A method for producing an aqueous resin dispersion, which comprises emulsifying and dispersing water by adding water while stirring. Resin A: has 5 to 60% by weight of unsaturated alkyl groups in the side chains of the resin skeleton, and can become water-soluble by neutralization with a base, with an acid value of 20 to 100 and a hydroxyl value of 40 to 40.
150, a water-soluble acrylic resin with a number average molecular weight of 1,000 to 100,000. Resin B; has an unsaturated alkyl group in the side chain portion of the resin skeleton in an amount of 5 to 60% by weight in the total resin, and is insoluble in water even when neutralized with a base, with an acid value of less than 20 and a hydroxyl value of 40 to 150; A hydrophobic acrylic resin with a number average molecular weight of 1,000 to 100,000. Viscosity measurement conditions: A methyl isobutyl ketone solution with a resin solid content of 60% is used and the viscosity is measured at a temperature of 20°C.
(4)樹脂Aと樹脂Bとの混合物にジイソシアネート化
合物を加えた配合物の分子間架橋は、温度50〜120
℃で行うものである特許請求の範囲第3項記載の樹脂水
性分散体の製造方法。
(4) Intermolecular crosslinking of a mixture of resin A and resin B with a diisocyanate compound is carried out at a temperature of 50 to 120.
The method for producing an aqueous resin dispersion according to claim 3, which is carried out at a temperature of .degree.
(5)樹脂Aおよび樹脂Bの不飽和アルキル基が乾性油
もしくは半乾性油の脂肪酸または脱水ヒマシ油脂肪酸を
起源とする不飽和アルキル基、アリル基およびジシクロ
ペンテニル基から選ばれる1種以上のものである特許請
求の範囲第3項または第4項記載の樹脂水性分散体の製
造方法。
(5) The unsaturated alkyl groups of Resin A and Resin B are one or more types selected from unsaturated alkyl groups, allyl groups, and dicyclopentenyl groups originating from fatty acids of drying oils or semi-drying oils or dehydrated castor oil fatty acids. A method for producing an aqueous resin dispersion according to claim 3 or 4.
JP61056630A 1986-03-14 1986-03-14 Method for producing resin aqueous dispersion Expired - Fee Related JPH0674310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61056630A JPH0674310B2 (en) 1986-03-14 1986-03-14 Method for producing resin aqueous dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056630A JPH0674310B2 (en) 1986-03-14 1986-03-14 Method for producing resin aqueous dispersion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6057830A Division JP2531124B2 (en) 1994-03-28 1994-03-28 Method for producing resin aqueous dispersion

Publications (2)

Publication Number Publication Date
JPS62212413A true JPS62212413A (en) 1987-09-18
JPH0674310B2 JPH0674310B2 (en) 1994-09-21

Family

ID=13032626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056630A Expired - Fee Related JPH0674310B2 (en) 1986-03-14 1986-03-14 Method for producing resin aqueous dispersion

Country Status (1)

Country Link
JP (1) JPH0674310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239947A (en) * 2004-02-27 2005-09-08 Dainippon Ink & Chem Inc Aqueous ink for inkjet recording

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239947A (en) * 2004-02-27 2005-09-08 Dainippon Ink & Chem Inc Aqueous ink for inkjet recording
JP4608909B2 (en) * 2004-02-27 2011-01-12 Dic株式会社 Water-based ink for inkjet recording

Also Published As

Publication number Publication date
JPH0674310B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US4151143A (en) Surfactant-free polymer emulsion coating composition and method for preparing same
US9127107B2 (en) Aqueous amphiphilic copolymer emulsions having controlled viscosity and methods for making the same
RU2677334C1 (en) Aqueous coating composition and production of multilayer paint systems using said coating composition
CN101652397A (en) waterborne polymeric dispersions
JP2531124B2 (en) Method for producing resin aqueous dispersion
US4296014A (en) Aqueous dispersion type thermosetting coating composition
CN109134248B (en) Hydrophilic monomer and aqueous acrylic acid dispersion prepared from same
CN112759720B (en) Boiling-resistant phosphorus-containing waterborne acrylic modified polyester dispersion resin and preparation method and application thereof
JPS62212413A (en) Production of aqueous resin dispersion
JP3482701B2 (en) Water-dispersible acrylic graft copolymer, production method and water-based paint
CN113646397B (en) Organic resins bearing tertiary amine and carboxylic acid groups for two-component crosslinkable compositions and aqueous dispersions containing the same
US20070142591A1 (en) High temperature polymerization process for making caprolactone-modified branched acrylic polymers
JPS60110765A (en) Room temperature curing aqueous coating composition
JPS6038427B2 (en) Aqueous coating composition
GB1598935A (en) Air-curable ester-amide polymers
CN111285953A (en) Acrylic emulsion and preparation method thereof
CN103242491B (en) The graft copolymer of copolymerization arm with grafting, it is prepared and purposes
JPH0578434A (en) Aqueous resin composition and its production
CA3148107C (en) Coating composition for stain resistant coatings
JPS5825386B2 (en) Water-dispersed thermosetting coating composition
JPS5852366A (en) Water-dispersed thermosetting coating composition
JPS62129360A (en) Production of solventless water-based binder
JPS5844099B2 (en) Water-dispersed thermosetting coating composition
JPS5936954B2 (en) Vehicle for water-based baking paints
JPH0479392B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees