JPS62212276A - Alkali aggregate reaction control for concrete - Google Patents

Alkali aggregate reaction control for concrete

Info

Publication number
JPS62212276A
JPS62212276A JP5368686A JP5368686A JPS62212276A JP S62212276 A JPS62212276 A JP S62212276A JP 5368686 A JP5368686 A JP 5368686A JP 5368686 A JP5368686 A JP 5368686A JP S62212276 A JPS62212276 A JP S62212276A
Authority
JP
Japan
Prior art keywords
concrete
aggregate
alkali
aggregate reaction
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5368686A
Other languages
Japanese (ja)
Other versions
JPH0321506B2 (en
Inventor
小堀 光憲
片山 一
正貴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP5368686A priority Critical patent/JPS62212276A/en
Publication of JPS62212276A publication Critical patent/JPS62212276A/en
Publication of JPH0321506B2 publication Critical patent/JPH0321506B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンクリートのアルカリ骨材反応抑制方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for suppressing alkaline aggregate reaction in concrete.

(従来の技術) 近年、アルカリ骨材反応に起因するコンクリート構造物
の早期劣化の事例が数多く報告され、社会的に注目を集
めている。
(Prior Art) In recent years, many cases of early deterioration of concrete structures due to alkaline aggregate reactions have been reported and are attracting social attention.

これまでアルhり骨材反応を生じる三大要因としては、 A0反応性骨材 B、コンクリート中のアルカリ C0水分 が考えられており、従ってアルカリ骨材反応を抑制する
方法に関しても、これら三つの要因のうらの一つ若しく
はそれ以上を除去することが目標とされてきた。
Until now, the three major factors that cause the alkaline aggregate reaction have been considered to be A0 reactive aggregate B and alkali C0 moisture in concrete. The goal has been to eliminate one or more of the contributing factors.

具体的手段としては、以下のようなものが提案されてい
る。
The following specific measures have been proposed.

a、アルカリ反応性骨材の除去 1) 各種判定試験若しくはこれまでの実績から、アル
カリ骨材反応を生じる危険性のある骨材を選別して、以
後はその骨材をコンクリート用材料として用いない。
a. Removal of alkali-reactive aggregates 1) Based on various evaluation tests or past results, select aggregates that have a risk of causing an alkali-aggregate reaction, and no longer use those aggregates as concrete materials. .

b、コンクリート中のアルカリ除去 1) セメント中のアルカリ濃度(NazO当量、対セ
メントIl量比)が0.6%以下の低アルカリセメント
を用いる。
b. Removal of alkali from concrete 1) Use a low-alkali cement in which the alkali concentration in the cement (NazO equivalent, ratio of Il to cement) is 0.6% or less.

11)  フライアッシュ、シリカヒユームなどのポゾ
ランをセメントの一部代替として用いて、コンクリート
中のアルカリを3kO/■3以下とする。
11) Use pozzolans such as fly ash and silica hume as a partial substitute for cement to reduce the alkali content in concrete to 3 kO/■3 or less.

C0水分の除去 I) 外部からの水の浸透を防ぐため、AE剤を用いる
など密実で高品質のコンクリートを打設する。
Removal of C0 moisture I) To prevent water from penetrating from the outside, pour dense, high-quality concrete using an AE agent, etc.

11)  同様の目的で、コンクリートの表面に塗料な
どにより不透水層を成形する。
11) For the same purpose, an impermeable layer is formed on the surface of concrete using paint, etc.

(@−が解決しようとする問題点) しかしながら、上記の各方法には以下のような問題点が
ある。
(Problems that @- attempts to solve) However, each of the above methods has the following problems.

まず、アルカリ反応性骨材の除去に関しては、骨材の有
害性判定試験には専門的な技術と長期間を要すること、
ひとつの容積の中でも、また1i&1所の骨材採取場で
も採取する部位によって、それぞれそのアルカリ反応性
が與なることなどの問題点がある。さらに、骨材も有限
な資源であり、アルカリ反応性の疑いのある骨材でもこ
れを有効に利用することが望まれる。
First, regarding the removal of alkali-reactive aggregates, testing to determine the toxicity of aggregates requires specialized techniques and a long period of time.
There are problems such as the fact that the alkali reactivity varies depending on the part of the aggregate collected within one volume or at the 1i & 1 aggregate collection site. Furthermore, aggregate is also a limited resource, and it is desirable to utilize it effectively even if the aggregate is suspected of being alkali-reactive.

低アルカリセメントについては、現在JIS化されつつ
あるが、コストが割高になることは避けられない問題点
がある。また、構造物の種類、環境条件などによってポ
ゾラン、^炉スラグが利用できないケースも考えられる
Low-alkali cement is currently being standardized in the JIS standard, but there is an unavoidable problem in that it is relatively expensive. Additionally, there may be cases where pozzolan or furnace slag cannot be used depending on the type of structure, environmental conditions, etc.

最後に、塗料による防水に関しては、コストが発生する
こと、大型構造物や擁壁なとでは防水処理することによ
りかえって部材内部の水分を閉じこめ骨材反応を助長さ
せてしまう恐れがあることなどの問題点がある。
Finally, waterproofing with paint is expensive, and in the case of large structures and retaining walls, waterproofing may trap moisture inside the components and encourage aggregate reaction. There is a problem.

本発明の目的は、骨材の種類やセメントの種類に影響さ
れずにアルカリ骨材反応を抑制できるコンクリートのア
ルカリ骨材反応抑制方法を提供することにある。
An object of the present invention is to provide a method for suppressing an alkali aggregate reaction in concrete, which can suppress an alkali aggregate reaction without being influenced by the type of aggregate or the type of cement.

(問題点を解決するための手段) 上記の目的を達成するための本発明の詳細な説明すると
、本発明はコンクリートの打設後、本養生を行なう前に
、初期乾燥させることを特徴とする。
(Means for Solving the Problems) To explain in detail the present invention for achieving the above object, the present invention is characterized by performing initial drying after pouring concrete and before performing main curing. .

(作用) このようにコンクリート打設後に初期乾燥を行うと、ア
ルカリ骨材反応が抑制できることが実験により確認され
た。
(Function) It has been confirmed through experiments that by performing initial drying after pouring concrete in this way, the alkaline aggregate reaction can be suppressed.

(実施例) 以下、本発明の実施例を図面を参照して説明する。第1
図は本発明に係るコンクリートのアルカリ骨材反応抑制
方法のフローチャート図を示したものである。図示のよ
うにステップ1でコンクリートの打設を行い、ステップ
2でコンクリートの締め固めを行い、ステップaでコン
クリートの脱型を行い、ステップ4でコンクリートの初
期乾燥を行う。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure shows a flowchart of the method for suppressing alkaline aggregate reaction in concrete according to the present invention. As shown in the figure, concrete is placed in step 1, concrete is compacted in step 2, concrete is demolded in step a, and concrete is initially dried in step 4.

初期乾燥は、例えばコンクリート−品を乾燥養生室に入
れて製品中の水分をχ%蒸発させることにより行う。χ
の値については、用いる骨材のアルカリ反応性に応じて
予備実験により設定する。
Initial drying is carried out, for example, by placing the concrete product in a drying curing chamber and evaporating χ% of the moisture in the product. χ
The value of is set through preliminary experiments depending on the alkali reactivity of the aggregate used.

初期乾燥は、材令が1M!@程度のうちに行う、初期乾
[1,ステップ5でコンクリートの本養生を行う0次に
、ステップ6で供用する。
The initial drying time is 1M! Initial drying is carried out within about 10 minutes [1, main curing of the concrete is performed in step 5] Next, it is put into service in step 6.

本発明によるアルカリ骨材反応抑制方法の特徴は“初期
乾燥”の工程にある。コンクリート中の配合水層のうち
、30%程度を脱型後に乾燥養生(−例:25℃、40
%R,H,)することにより蒸発させ、後の供用時の骨
材反応による膨張を抑制しようとするものである。初期
乾燥を行う必要上、適用対象としては、特にコンクリー
トもしくはモルタルの小型プレキャスト部材が適してし
)るものと考える。しかし、場所打ちコンクリートにつ
いてもヒーター等で表面を乾燥させるなどの方法で対応
できる可能性がある。
The feature of the method for suppressing alkali aggregate reaction according to the present invention lies in the "initial drying" step. Approximately 30% of the mixed water layer in the concrete is removed from the mold and then dried and cured (e.g., 25°C, 40°C).
%R, H,) to evaporate and suppress expansion due to aggregate reaction during later use. Due to the need for initial drying, we believe that small precast members made of concrete or mortar are particularly suitable for application. However, it may be possible to deal with cast-in-place concrete by drying the surface with a heater or the like.

次に、本発明の方法によるアルカリ骨材反応抑制効果に
ついて、実験結果をもとに以下述べる。
Next, the effect of suppressing alkali aggregate reaction by the method of the present invention will be described below based on experimental results.

骨材反応を生じる骨材としては、ASTMにも規定され
ているパイレックスガラス#7740を用いた。供試体
寸法、骨材粒度なとはASTMC227(モルタルバー
法)に準じて1lfll測定試験を実施した。モルタル
供試“体1本あたり(■−184,4013)の配合を
表−1に示す。
Pyrex glass #7740, which is also specified by ASTM, was used as the aggregate that caused the aggregate reaction. A 1lfll measurement test was conducted for the specimen dimensions and aggregate particle size in accordance with ASTM C227 (mortar bar method). Table 1 shows the composition of each mortar sample (■-184,4013).

表−1モルタル供試体配合表 (供試体1本あたり) セメントの保有アルカリ量:Q、636%(N820当
惑)水分減少率(W、L、−脱型後に乾燥により減少さ
せた水l/供試体中の水量)を定義し、表−1の配合中
の水分のうち、W、L、−0〜49%に相当する水分を
減少させた後、37.8℃、100%R,H,のアルカ
リ骨材反応を生じやすい条件のもとで養生した。
Table-1 Mortar specimen composition table (per specimen) Amount of alkali retained in cement: Q, 636% (N820) Moisture reduction rate (W, L, - Water reduced by drying after demolding/supply) 37.8°C, 100% R, H, The materials were cured under conditions that tend to cause alkaline aggregate reactions.

実験ケースの一覧を表−2にまとめる。A list of experimental cases is summarized in Table 2.

表−2実験ケース一覧表 W、L、−0〜49%のケースの膨張量と材令の関係を
第2図に示す。表−2のように初期乾燥W、L、−0〜
49%のケースの膨張量と材令の関係を第2図に示す。
Table 2 List of Experimental Cases The relationship between the expansion amount and material age for cases W, L, -0 to 49% is shown in FIG. Initial drying W, L, -0 ~ as shown in Table-2
Figure 2 shows the relationship between the amount of expansion and the age of the material in the 49% case.

表−2のように初期乾燥養生条件が異なっているにもか
かわらず、第2図から明らかなように、水分減少率W、
L、が大きくなるとともに膨張量は小さくなる。特に、
W。
Although the initial drying curing conditions are different as shown in Table 2, as is clear from Figure 2, the moisture reduction rate W,
As L becomes larger, the amount of expansion becomes smaller. especially,
W.

L、が36%と49%のケースにおいては、供試体は逆
に収縮しているうえにその値も安定しており、IIII
l側に転する傾向もない。W、L、が0%のケースでは
材令8遍で0.265%と極めて大きい膨張量を示して
いるのに対して、初期乾燥による骨材反応抑制効果は明
らかである。
In the cases where L is 36% and 49%, the specimen is not only shrinking, but its value is also stable, and III
There is no tendency to turn to the l side. In the case where W and L are 0%, the expansion amount is extremely large at 0.265% at 8 years of material age, whereas the effect of suppressing the aggregate reaction due to initial drying is clear.

なお、ASTM  C227(モルタルバー法)でアル
カリ骨材反応を生じる危険性ありと判定されるのは、材
令6ケ月(26週)で0.1%、3ヶ月(13週)で0
.05%の膨張量を示したときである。
In addition, according to ASTM C227 (mortar bar method), the risk of causing an alkaline aggregate reaction is determined to be 0.1% at 6 months (26 weeks) and 0 at 3 months (13 weeks).
.. This is when the amount of expansion is 0.05%.

第2図中、W、L、−49%のケースにおいては、乾燥
後の養生とし80℃、100%R,H。
In the case of W, L, -49% in Fig. 2, the curing after drying is 80°C, 100% R, H.

および20℃、水中の場合という非常に厳しい条件のも
とでも実験を行ったが、やはりi1#Iは生じなかった
Experiments were also conducted under very severe conditions such as at 20° C. and in water, but i1#I did not occur.

最終的な判断には継続的な測定結果が必要であるが、今
回の実験によるとW、L、を30%程度に設定すること
により、アルカリ骨材反応を抑制できることが判明した
Continuous measurement results are required for final judgment, but this experiment revealed that the alkali aggregate reaction can be suppressed by setting W and L to about 30%.

逆に、使用する骨材のアルカリ反応性の大きざにあわせ
てW、L、を設定することにより、他のケースにも対応
Cぎる。
On the other hand, by setting W and L according to the size of the alkali reactivity of the aggregate used, other cases can also be accommodated.

本発明の方法はコンクリート一般に適用できるが、特に
現在でもアルカリ骨材反応による被害事例の多い縁石ブ
ロック、コンクリートまくら木、インターロッキングブ
ロックなどの小型プレキャスト部材への利用が適してい
るものと思われる。
Although the method of the present invention can be applied to concrete in general, it is thought to be particularly suitable for use in small precast members such as curb blocks, concrete sleepers, and interlocking blocks, which are still frequently damaged by alkaline aggregate reactions.

(試験結果) 従来の標準的な養生を施した供試体と、これと同じ配合
であって、本発明の上記実施例による初期乾燥を施した
供試体とを作製し、骨材とセメントペースト固形物との
境界部分の状況を走査電子顕微鋏で観察したところ、従
来法による供試体では上記境界部分に15〜20μの反
応生成物が見られだが本発明による供試体では反応生成
物は見られなかった。
(Test results) A specimen subjected to conventional standard curing and a specimen with the same composition but subjected to initial drying according to the above embodiment of the present invention were prepared. When observing the situation at the boundary with the object using scanning electron microscope scissors, it was found that a reaction product of 15 to 20 μm was observed at the boundary in the conventional specimen, but no reaction product was observed in the specimen according to the present invention. There wasn't.

本発明における初期乾燥による骨材反応抑13作用は次
のように考えられる。
The aggregate reaction inhibition effect due to initial drying in the present invention can be considered as follows.

イ)アルカリ骨材反応による反応生成物(膨張劣化の原
因となるもの)の生成は、コンクリート打設から数日間
の内部の水分量に大きく影響される。初期に乾燥を受け
たものは反応生成物の生成量が少な(、その後、水分を
供給しても反応生成物の発生、進行をみない。
b) The generation of reaction products (which cause expansion and deterioration) due to alkaline aggregate reactions is greatly influenced by the amount of moisture inside concrete for several days after it is placed. If the product is initially dried, the amount of reaction products produced is small (afterwards, even if moisture is supplied, no reaction products are generated or progressed).

0)初期乾燥により生じた内部の微小空隙が反応生成物
の膨張を吸収する。
0) The internal micropores created by the initial drying absorb the expansion of the reaction product.

上記イ)、O)の相乗効果により骨材反応が抑制される
と判断されるが、主にイ)による効果が大きいと考えら
れる。
Although it is judged that the aggregate reaction is suppressed by the synergistic effect of the above a) and O), it is thought that the effect of a) is mainly large.

(発明の効果) 以上説明したように本発明に係る初期乾燥を行うという
本発明のコンクリートのアルカリ骨材反応防止方法によ
れば、下記のような効果を得ることができる。
(Effects of the Invention) As explained above, according to the method for preventing alkaline aggregate reaction in concrete of the present invention, which involves performing initial drying according to the present invention, the following effects can be obtained.

(イ)アルカリ骨材反応を生じる危険性のある容積でも
これをコンクリート用骨材として用いることができる。
(a) It can be used as aggregate for concrete even in volumes where there is a risk of an alkaline aggregate reaction.

(ロ)これまでのプレキャスト部材製作の流れの中にわ
ずか一工程(乾燥工)を追加するのみでよい。
(b) Only one process (drying process) needs to be added to the existing flow of precast member production.

(ハ)水分減少率W、L、を適切に設定することにより
、骨材が替わってそのアルカリ反応性が異る場合にも対
応できる。
(c) By appropriately setting the water reduction rates W and L, it is possible to cope with the case where the alkali reactivity of the aggregate changes.

(ニ)1度予備実験を実施して目標水分減少率を満足す
る乾燥養生条件を決定しておけば、以後は機械的に乾燥
養生を繰り返すだけでよい。
(d) Once a preliminary experiment is conducted to determine the drying curing conditions that satisfy the target moisture reduction rate, it is sufficient to repeat the drying curing mechanically thereafter.

(ホ)初期乾燥を行うだけで、以後どのようなアルカリ
骨材反応を生じやすい条件にざらされても(例:37.
8℃、100%R,H,・80℃、100%R,H,・
20℃、水中)、骨材反応抑制効果が持続する。
(e) By simply performing initial drying, no matter what kind of conditions are likely to cause an alkaline aggregate reaction thereafter (e.g. 37.
8℃, 100%R,H,・80℃, 100%R,H,・
(20°C, in water), the aggregate reaction suppression effect persists.

(へ)初期乾燥養生については水分減少率W、L。(f) For initial dry curing, moisture reduction rate W, L.

の値が問題となるだけで、水分を減少させるための養生
条件(WA度、湿度)は自由に設定できる。
The curing conditions (WA degree, humidity) for reducing moisture can be set freely, with only the value of .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る方法の実施ステップの一例を示す
フローチャート図、第2図は初期乾燥による水分減少率
に係る材令と膨@量の関係からなるアルカリ骨材反応抑
制効果の比較図である。 特 許 出 願 人  五洋建設株式会社代  理  
人  弁理士   佐  々  木     功フ第2
Fig. 1 is a flowchart diagram showing an example of the implementation steps of the method according to the present invention, and Fig. 2 is a comparison diagram of the alkaline aggregate reaction suppression effect consisting of the relationship between the age of the material and the volume of swelling related to the moisture loss rate due to initial drying. It is. Patent applicant: Pentayo Construction Co., Ltd. Agent
Patent Attorney Isao Sasaki 2nd
figure

Claims (1)

【特許請求の範囲】[Claims] コンクリートの打設後に該コンクリート本養生を行なう
前に、該コンクリートを初期乾燥させることを特徴とす
るコンクリートのアルカリ骨材反応抑制方法。
1. A method for suppressing alkaline aggregate reaction in concrete, which comprises initially drying the concrete after pouring the concrete and before curing the concrete.
JP5368686A 1986-03-13 1986-03-13 Alkali aggregate reaction control for concrete Granted JPS62212276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5368686A JPS62212276A (en) 1986-03-13 1986-03-13 Alkali aggregate reaction control for concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5368686A JPS62212276A (en) 1986-03-13 1986-03-13 Alkali aggregate reaction control for concrete

Publications (2)

Publication Number Publication Date
JPS62212276A true JPS62212276A (en) 1987-09-18
JPH0321506B2 JPH0321506B2 (en) 1991-03-22

Family

ID=12949698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5368686A Granted JPS62212276A (en) 1986-03-13 1986-03-13 Alkali aggregate reaction control for concrete

Country Status (1)

Country Link
JP (1) JPS62212276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100082A (en) * 1986-10-16 1988-05-02 住友大阪セメント株式会社 Degradation prevention for concrete by alkali aggregate reaction
JP2016084258A (en) * 2014-10-28 2016-05-19 デンカ株式会社 Cement concrete cured body and manufacturing method therefor
JP2020051089A (en) * 2018-09-26 2020-04-02 公立大学法人 富山県立大学 Method for suppressing deterioration of concrete structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155624A (en) * 1976-06-21 1977-12-24 Kanebo Ltd Method of manufacturing fiber glass reinforced cement products
JPS5585484A (en) * 1978-12-18 1980-06-27 Taiyuu Douro Kensetsu Kk Method of curing setting composition
JPS56149394A (en) * 1980-04-15 1981-11-19 Matsushita Electric Works Ltd Method of curing precure-painted cement molding
JPS60176978A (en) * 1984-02-22 1985-09-11 株式会社イナックス Manufacture of high strength cement product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155624A (en) * 1976-06-21 1977-12-24 Kanebo Ltd Method of manufacturing fiber glass reinforced cement products
JPS5585484A (en) * 1978-12-18 1980-06-27 Taiyuu Douro Kensetsu Kk Method of curing setting composition
JPS56149394A (en) * 1980-04-15 1981-11-19 Matsushita Electric Works Ltd Method of curing precure-painted cement molding
JPS60176978A (en) * 1984-02-22 1985-09-11 株式会社イナックス Manufacture of high strength cement product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100082A (en) * 1986-10-16 1988-05-02 住友大阪セメント株式会社 Degradation prevention for concrete by alkali aggregate reaction
JP2016084258A (en) * 2014-10-28 2016-05-19 デンカ株式会社 Cement concrete cured body and manufacturing method therefor
JP2020051089A (en) * 2018-09-26 2020-04-02 公立大学法人 富山県立大学 Method for suppressing deterioration of concrete structure

Also Published As

Publication number Publication date
JPH0321506B2 (en) 1991-03-22

Similar Documents

Publication Publication Date Title
Ho et al. Strength development of cement-treated soils: Effects of water content, carbonation, and pozzolanic reaction under drying curing condition
Djerbi Effect of recycled coarse aggregate on the new interfacial transition zone concrete
Gonzalez-Corominas et al. Effects of using recycled concrete aggregates on the shrinkage of high performance concrete
US8333837B2 (en) Jute fiber-reinforced composition for concrete repair
BR0212350B1 (en) process for manufacturing cementitious particles.
JP2004508257A (en) Non-whitening cementitious body
Shayan et al. Effectiveness of fly ash in preventing deleterious expansion due to alkali-aggregate reaction in normal and steam-cured concrete
Etxeberria et al. The assessment of ceramic and mixed recycled aggregates for high strength and low shrinkage concretes
CN111620584A (en) Method for modifying recycled aggregate
JPS61122146A (en) Hydraulic cement composition and manufacture of cement moldings
Jahandari et al. Integral waterproof concrete: A comprehensive review
CN112194433A (en) Construction waste recycled concrete
JPH05238789A (en) Dry castable concrete composition, its preparation, and dry casting method
Bui et al. Effect of internal alkali activation on pozzolanic reaction of low-calcium fly ash cement paste
JP2000281467A (en) Curing of concrete
JPS62212276A (en) Alkali aggregate reaction control for concrete
JP2847749B2 (en) Method for preventing deterioration of hardened cementitious materials
CA2308237A1 (en) Compositions and methods for curing concrete
JP3953469B2 (en) Acid resistant concrete
Zain et al. Influence of different curing conditions on strength and durability of high-performance concrete
KR102164561B1 (en) Cement composition and anti-washout mortar for repairing concrete and repair method of concrete structure using the same
US2374562A (en) Treatment of hydraulic cement compositions
Vandhiyan et al. Microstructural characterisation and durability enhancement of concrete with nano silica
US2354876A (en) Method of treating cementitious objects
CN112194398A (en) Preparation method of waste brick aggregate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term