JPS62212240A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPS62212240A
JPS62212240A JP5379286A JP5379286A JPS62212240A JP S62212240 A JPS62212240 A JP S62212240A JP 5379286 A JP5379286 A JP 5379286A JP 5379286 A JP5379286 A JP 5379286A JP S62212240 A JPS62212240 A JP S62212240A
Authority
JP
Japan
Prior art keywords
core
preform
optical fiber
eccentricity
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5379286A
Other languages
Japanese (ja)
Inventor
Toshiaki Kuroba
黒羽 敏明
Tsugio Sato
継男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5379286A priority Critical patent/JPS62212240A/en
Publication of JPS62212240A publication Critical patent/JPS62212240A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01466Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain an optical fiber essentially free from core-eccentricity from a preform having core-eccentricity, by partially applying glass to or scraping glass off from the outer circumference of a preform having core-eccentricity to balance the thickness of glass at both sides of the core along the eccentric direction of the core and drawing the preform to an optical fiber. CONSTITUTION:An optical fiber is produced from an optical fiber preform in which core-eccentricity is detected by the measurement of core-eccentricity, by drawing the preform after balancing the amounts of glass (amount of clad and jacket, etc.) at both sides of the core along the eccentric direction of the core either by scraping the circumference at a part where the distance between the core center and the preform circumference is longer or by applying a glass layer to a circumference at a part where the above distance is shorter.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、コアの偏心があるプリフォームからコアの偏
心が実質的にない光ファイバを製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing an optical fiber having substantially no core eccentricity from a preform having core eccentricity.

〔従来技術とその問題点〕[Prior art and its problems]

光ファイバ用プリフォームにコアの偏心があると、それ
を線引してできる光ファイバもコアが偏心したものとな
る。このため光ファイバ用プリフォームはコアの偏心が
起きないように十分注意深く製造されているが、それで
もコアの偏心を皆無にすることは極めて困難であった。
If an optical fiber preform has an eccentric core, the optical fiber produced by drawing it will also have an eccentric core. For this reason, although optical fiber preforms are manufactured with sufficient care to prevent core eccentricity, it is still extremely difficult to completely eliminate core eccentricity.

従来、線引前の測定でコアの偏心が計測されたプリフォ
ームは不良品として処分されているが、プリフォームの
製造には多大のコストがかかっているため、きわめて不
経済であった。
Conventionally, preforms whose core eccentricity has been measured before drawing have been disposed of as defective products, but this has been extremely uneconomical due to the large cost involved in manufacturing the preforms.

〔問題点の解決手段とその作用〕[Means for solving problems and their effects]

本発明は、上記のような従来技術の間層1点に鑑み、コ
ア偏心のあるプリフォームから実質的にコア偏心のない
光ファイバを製造できる方法を提供するものである。
In view of the single intermediate layer of the prior art as described above, the present invention provides a method for manufacturing an optical fiber substantially free of core eccentricity from a preform with core eccentricity.

この目的を達成するため本発明は、光ファイバ用プリフ
ォームのコア偏心の測定によりコア偏心が計測されたプ
リフォームから光ファイバを製造するに際し、コア偏心
方向におけるコア中心からプリフォーム外周面までの距
離が長い方の外周面側を一部分削り取るか、短い方の外
周面側にガラス層を付着させるかして、コア偏心方向に
おけるコアの両側のガラス量(クラッドおよびジャケッ
トなどのりをバランスさせ、しかる後そのプリフォーム
を線引して光ファイバとすることを特徴とするものであ
る。
To achieve this objective, the present invention provides a method for manufacturing optical fibers from preforms whose core eccentricity has been measured by measuring the core eccentricity of an optical fiber preform. The amount of glass on both sides of the core (cladding, jacket, etc.) in the core eccentric direction can be balanced by cutting off a portion of the outer circumferential surface side of the longer distance, or attaching a glass layer to the shorter outer circumferential surface side. The preform is then drawn into an optical fiber.

プリフォームの外周面を一部分削り取ったり、外周面に
ガラス層を付着させたりすると、プリフォームの断面は
真円ではなくなるが、プリフォームは線引の際に加熱さ
れ溶融するため、このときの表面張力により断面は再び
真円にもどる。したがって線引の前に、コアの偏心方向
におけるコアの両側のクラッドおよびジャケット量をバ
ランスさセておけば、偏心のない光ファイバを製造する
ことができる。
If a part of the outer peripheral surface of the preform is scraped off or a glass layer is attached to the outer peripheral surface, the cross section of the preform will no longer be a perfect circle, but since the preform is heated and melted during wire drawing, the surface at this time The tension causes the cross section to return to a perfect circle. Therefore, by balancing the amount of cladding and jacket on both sides of the core in the eccentric direction of the core before drawing, it is possible to manufacture an optical fiber without eccentricity.

〔実施例〕〔Example〕

実施例1 VAD法により製作したシングルモード光ファイバ用プ
リフォームの断面を測定したところ、第1図に示すよう
に、プリフォームlの外径が4抛−、コア2の外径が2
.8−m、コア2の偏心が右方向に0.2naea (
rI=20.2w+tm、 rt =19.8mm)で
あった。
Example 1 When the cross section of a single mode optical fiber preform manufactured by the VAD method was measured, as shown in FIG.
.. 8-m, the eccentricity of core 2 is 0.2 naea (
rI=20.2w+tm, rt=19.8mm).

このプリフォームの左端(つまりコア2の偏心方向にお
けるコア中心からプリフォーム外周面までの距離が長い
方の外周面側)を斜線のように深さ1.511N削り取
った。
The left end of this preform (that is, the outer circumferential surface side with the longer distance from the core center to the preform outer circumferential surface in the eccentric direction of the core 2) was shaved off to a depth of 1.511N as indicated by diagonal lines.

これを常法により 125μ−の光ファイバに線引した
結果、得られた光ファイバはコア偏心が検出されなかっ
た(偏心0.1μ−以下)、なお上記の切削を行わない
場合に想定される光ファイバのコア偏心は1.25μ−
である。
As a result of drawing this into a 125μ- optical fiber using a conventional method, no core eccentricity was detected in the obtained optical fiber (eccentricity of 0.1μ- or less), which would be expected if the above cutting was not performed. The core eccentricity of the optical fiber is 1.25μ-
It is.

上記の削り取り深さは次のようにして求められる。The above scraping depth is determined as follows.

第2図に示すように、プリフォームの半径をr、コアの
偏心をX、削り取り深さをyとすると、偏心による面積
の偏りは S −2r x−(1)削り取り面積は 2
S=4rx・−・(2) ・となる。
As shown in Figure 2, if the radius of the preform is r, the eccentricity of the core is X, and the depth of scraping is y, then the deviation in area due to eccentricity is S -2r x- (1) The area to be scraped is 2
S=4rx・−・(2)・.

扇形OABの面積T−πr2・2θ/2π冨r2θ −
(3) 三角形OABの面積U −<rcosθ)0(rsinθ) ・−・(4) したがって削り取り面積は、 (2)式と(5)式より、 故に、θ″m 5 x / r −471したがって例
えばプリフォーム半径10mm、偏心0.5anの場合
は、 θ’−6Xo、5/10日0.3 θ=0.669 rad −38,4 y!r−rcO1lθ−r(1−cosθ) −481
であるから、 ! −10X (1−cos38.4) −10X (
1−0,784)−2,16鋼− トナリ、潔さ2.16@−削り取ればよい。
Area of fan-shaped OAB T-πr2・2θ/2πr2θ −
(3) Area of triangle OAB U -< r cos θ) 0 (rsin θ) -- (4) Therefore, the scraped area is: From equations (2) and (5), therefore, θ''m 5 x / r -471 Therefore, For example, if the preform radius is 10 mm and the eccentricity is 0.5 an, θ'-6Xo, 0.3 on 5/10 θ=0.669 rad -38,4 y!r-rcO1lθ-r(1-cosθ) -481
Because it is! -10X (1-cos38.4) -10X (
1-0,784)-2,16 steel- Tonari, purity 2.16@- Just scrape it off.

また例えばプリフォーム半径1(1mm、偏心0.1m
mの場合は、 θ’−6Xo、1/10富0,06 θ”0.39 rad y  = 10 x (1−0,924)−0,76−
蒙となり、深さ0.76mm削り取ればよい。
For example, preform radius 1 (1 mm, eccentricity 0.1 m
In the case of m, θ'-6Xo, 1/10 wealth 0,06 θ''0.39 rad y = 10 x (1-0,924)-0,76-
All you have to do is scrape it off to a depth of 0.76mm.

実施例2 VAD法により製作したシングルモード光ファイバ用プ
リフォームの断面を測定したところ、第3図に示すよう
に、プリフォームlの外径が40m#、コア2の外径が
2.8mm、コア2の偏心が右方向に0.1mm (r
t =20.ll1m、rt =19.9mm)であっ
た。
Example 2 When the cross section of a single mode optical fiber preform manufactured by the VAD method was measured, as shown in FIG. 3, the outer diameter of the preform 1 was 40 m#, the outer diameter of the core 2 was 2.8 mm, The eccentricity of core 2 is 0.1 mm to the right (r
t=20. ll1m, rt = 19.9mm).

このプリフォームの右端(つまりコア2の偏心方向にお
けるコア中心からプリフォーム外周面までの距離が短い
方の外周面側)に外付は法によりプリフォーム長さlO
a+−当たり0.176 HのSin、を付着させ、ガ
ラス化した。3は付着したガラス層である。
The right end of this preform (that is, the outer peripheral surface side that is shorter in distance from the core center to the preform outer peripheral surface in the eccentric direction of core 2) is externally attached to the preform length lO by law.
0.176 H of Sin per a+- was deposited and vitrified. 3 is the attached glass layer.

これを常法により125μ−の光ファイバに線引した結
果、得られた光ファイバはコア偏心が検出されなかった
(偏心0.1μ−以下)、なお上記の切削を行わない場
合に想定される光ファイバのコア偏心は0.625μm
である。
As a result of drawing this into a 125μ- optical fiber using a conventional method, no core eccentricity was detected in the obtained optical fiber (eccentricity of 0.1μ- or less), which would be expected if the above cutting was not performed. The core eccentricity of the optical fiber is 0.625μm
It is.

ガラス層の付着量は次のようにして求められる。The adhesion amount of the glass layer is determined as follows.

第4図に示すように、プリフォームの半径をr、コアの
偏心をXとし、単位長さを10m+mとすると、ガラス
層3としては、偏心による偏り面積Sの2倍に相当する
量を付着させればよい。
As shown in Fig. 4, if the radius of the preform is r, the eccentricity of the core is Just let it happen.

S−2rxであるから、ガラス層の密度を2.2μ1g
/111m3とすれば、単位長さ当たりの付着量y(重
量)は、 ? −2r x X 2 X2.2 XIQ−88r 
x−・・((1)となる。実施例2では、「−20、x
=0.1であるから、 y−88X20X0.1−176mg となる。
Since it is S-2rx, the density of the glass layer is 2.2μ1g
/111m3, the amount of adhesion y (weight) per unit length is ? -2r x X 2 X2.2 XIQ-88r
x-...((1). In Example 2, "-20, x
=0.1, so y-88X20X0.1-176mg.

実施例3 外径1−でコアがシングルモード条件を満足する大径シ
ングルモード光ファイバを試作した。この場合、通常の
シングルモード光ファイバ用のプリフォームにオーバー
ジャケットを3回繰り返してプリフォームを製作した。
Example 3 A large-diameter single-mode optical fiber whose core satisfies the single-mode condition with an outer diameter of 1 was prototyped. In this case, a preform was manufactured by repeating overjacketing three times on a normal single-mode optical fiber preform.

出来上がったプリフォームの断面を測定した結果、外径
50ma+、コア径0.44mm、偏心0.4mm (
r 、 =25.4mm、r、 =24.6擢−)であ
った。
As a result of measuring the cross section of the completed preform, the outer diameter was 50 ma+, the core diameter was 0.44 mm, and the eccentricity was 0.4 mm (
r, = 25.4 mm, r, = 24.6 mm).

削り取り深さは次のとおりである。The scraping depth is as follows.

θ”= 6 Xo、4/25寓0.096θ−0,45
8rad =26.3 )’ −2sx (1−cos26.3)−25X (
1−0,896)=2.6 as このプリフォームの第1図斜線相当部分を2.6mm削
り取り、これを常法により外径1msの光ファイバに線
引した結果、コアの偏心はL0以下であった。なお切削
を行わない場合に想定される光ファイバのコア偏心は1
6μmである。
θ"= 6 Xo, 4/25 0.096θ-0,45
8rad = 26.3 )' -2sx (1-cos26.3) -25X (
1-0,896) = 2.6 as This preform was shaved off by 2.6 mm from the area corresponding to the shaded area in Figure 1, and this was drawn into an optical fiber with an outer diameter of 1 ms using a conventional method. As a result, the eccentricity of the core was less than L0. Met. Note that the core eccentricity of the optical fiber is assumed to be 1 when no cutting is performed.
It is 6 μm.

上記のようにして製造されたシングルモード光ファイバ
は外径が1mmと太いので、いわばシングルモード光ロ
ツドとも言うべきもので、短く切断して、光部品を形成
するのに通している。
Since the single mode optical fiber manufactured as described above has a thick outer diameter of 1 mm, it can be called a single mode optical rod, and is cut into short lengths and passed through to form optical components.

実施例4 プリフォーム製作の段階で故意にねじりを加え、第5図
に示すように、偏心したコア2がらせん状になったプリ
フォームlを製作した。プリフォームアナライザでらせ
ん状態を測定した後、そのらせん状態に合わせて、実施
例2のように外付は法によりガラス層3を付着させた。
Example 4 By intentionally twisting the preform at the preform manufacturing stage, a preform l having an eccentric core 2 in a spiral shape as shown in FIG. 5 was manufactured. After measuring the helical state using a preform analyzer, a glass layer 3 was attached according to the helical state by the external attachment method as in Example 2.

その後、このプリフォームを線引して光ファイバを製造
した結果、全長にわたり著しい偏心の改善が見られた。
After that, this preform was drawn to produce an optical fiber, and as a result, a significant improvement in eccentricity was observed over the entire length.

なお本発明の方法ではコアの変形が懸念されるが、シン
グルモード光ファイバではコア径が小さいので問題には
ならない、またコアを純Singまたはそれに近いもの
とし、合成りラッドをフッ素ドープ材とすると、フッ素
ドープ層は若干変形してもコアは全く変形しないので、
コアとクラッドのガラス組成を選定することによっても
コアの変形を抑制することができる。
In the method of the present invention, there is a concern that the core may be deformed, but since the core diameter is small in single-mode optical fibers, this is not a problem.Also, if the core is made of pure Sing or something close to it, and the synthetic rad is made of a fluorine-doped material, , even if the fluorine-doped layer deforms slightly, the core does not deform at all, so
Deformation of the core can also be suppressed by selecting the glass compositions of the core and cladding.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、従来不良品とされ
ていたコア偏心のあるプリフォームからコア偏心のない
光ファイバを製造することができるので、歩留りが格段
に向上する利点がある。
As explained above, according to the present invention, it is possible to manufacture an optical fiber without core eccentricity from a preform with core eccentricity, which was conventionally considered to be a defective product, so that there is an advantage that the yield is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるプリフォームの断面
図、第2図はプリフォームの削り取り深さを説明するた
めの断面図、第3図は本発明の他の実施例におけるプリ
フォームの断面図、第4図はプリフォームへのガラス層
の付着量を説明するための断面図、第5図は本発明のさ
らに他の実施例におけるプリフォームの側面図である。 1〜プリフオーム、2〜コア、3〜ガラス層。
Fig. 1 is a sectional view of a preform in one embodiment of the present invention, Fig. 2 is a sectional view for explaining the depth of scraping of the preform, and Fig. 3 is a sectional view of a preform in another embodiment of the invention. FIG. 4 is a cross-sectional view for explaining the amount of glass layer adhered to the preform, and FIG. 5 is a side view of the preform in still another embodiment of the present invention. 1 - preform, 2 - core, 3 - glass layer.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバ用プリフォームのコア偏心の測定によりコア
偏心が計測されたプリフォームから光ファイバを製造す
る方法において、コア偏心方向におけるコア中心からプ
リフォーム外周面までの距離が長い方の外周面側を一部
分削り取るか、短い方の外周面側にガラス層を付着させ
るかして、コア偏心方向におけるコアの両側のガラス量
をバランスさせ、しかる後そのプリフォームを線引して
光ファイバとすることを特徴とする光ファイバの製造方
法。
In a method of manufacturing an optical fiber from a preform whose core eccentricity has been measured by measuring the core eccentricity of an optical fiber preform, The amount of glass on both sides of the core in the direction of core eccentricity is balanced by cutting off a portion or attaching a glass layer to the shorter outer peripheral surface, and then drawing the preform to form an optical fiber. Characteristic optical fiber manufacturing method.
JP5379286A 1986-03-13 1986-03-13 Production of optical fiber Pending JPS62212240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5379286A JPS62212240A (en) 1986-03-13 1986-03-13 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5379286A JPS62212240A (en) 1986-03-13 1986-03-13 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPS62212240A true JPS62212240A (en) 1987-09-18

Family

ID=12952664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5379286A Pending JPS62212240A (en) 1986-03-13 1986-03-13 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPS62212240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878449A1 (en) * 1997-05-13 1998-11-18 Shin-Etsu Chemical Company, Ltd. Method for making a preform for optical fibers by drawing a sintered preform boule
EP0976689A1 (en) * 1998-07-29 2000-02-02 Shin-Etsu Chemical Co., Ltd. Process of producing a preform for an optical fibre and product produced by the process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878449A1 (en) * 1997-05-13 1998-11-18 Shin-Etsu Chemical Company, Ltd. Method for making a preform for optical fibers by drawing a sintered preform boule
US6131414A (en) * 1997-05-13 2000-10-17 Shin-Etsu Chemical Co., Ltd. Method for making a preform for optical fibers by drawing a mother ingot
EP0976689A1 (en) * 1998-07-29 2000-02-02 Shin-Etsu Chemical Co., Ltd. Process of producing a preform for an optical fibre and product produced by the process
US6467310B2 (en) 1998-07-29 2002-10-22 Shin Etsu Chemical Co., Ltd. Method for producing optical fiber base material ingot by grinding while core portion central axis is brought into line with rotational axis of grinding machine

Similar Documents

Publication Publication Date Title
US4427717A (en) Process for producing an object with a chiralic structure obtained from a shapeable material source
FR2428265A1 (en) METHOD FOR MANUFACTURING SINGLE MODE LOW LOSS OPTICAL FIBER
CN1892268A (en) Polarization-maintaining optical fiber and optical fiber gyro
DE69031607T2 (en) Fiber optic bundle for image transmission and its manufacturing process
JPH01244408A (en) Mixer for optical fiber
JPS62212240A (en) Production of optical fiber
US7412118B1 (en) Micro fiber optical sensor
CN213398986U (en) All-purpose optical cable for communication and sensing
JPS6144818B2 (en)
JPS60154215A (en) Fiber type directional coupler
JP3639119B2 (en) Optical fiber bundle and manufacturing method thereof
CN205449322U (en) Optical fiber grating sensor
DE3005647C2 (en)
JPS61223812A (en) Manufacture of optical fiber cable
JPS6153612A (en) Manufacture of spacer type optical cable
JPS597914A (en) Optical connector
JPS63380B2 (en)
JP3798149B2 (en) Optical fiber bundle and manufacturing method thereof
JPH0517222Y2 (en)
JPS58156904A (en) Polarization sustaining fiber
JPS61176904A (en) Production of optical fiber cable
JPS58161933A (en) Manufacture of base material for single-polarization optical fiber
JPS61249008A (en) Optical fiber
JPS636501B2 (en)
DE3534737A1 (en) Method for producing a fibre-optic polariser