JPS62212115A - Plastic molding method - Google Patents

Plastic molding method

Info

Publication number
JPS62212115A
JPS62212115A JP5637986A JP5637986A JPS62212115A JP S62212115 A JPS62212115 A JP S62212115A JP 5637986 A JP5637986 A JP 5637986A JP 5637986 A JP5637986 A JP 5637986A JP S62212115 A JPS62212115 A JP S62212115A
Authority
JP
Japan
Prior art keywords
mold
resin composition
resin
molding method
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5637986A
Other languages
Japanese (ja)
Inventor
Takao Sakakibara
榊原 隆男
Tsunehiko Toyoda
豊田 常彦
Yoshihisa Nagashima
長島 義久
Toshikazu Ito
伊藤 俊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Tokai Kogyo Co Ltd
Original Assignee
Dai Nippon Toryo KK
Tokai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Tokai Kogyo Co Ltd filed Critical Dai Nippon Toryo KK
Priority to JP5637986A priority Critical patent/JPS62212115A/en
Publication of JPS62212115A publication Critical patent/JPS62212115A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To realize the uniform coating of an antistatic film having a specified resistance without scattering of powder and adhering of powder outside a mold by a method wherein the amount of fine electrically-conductive powder contained in powdered resin composition lies within a specified range. CONSTITUTION:Powdered resin composition containing 1-95wt% of fine electrically-conductive powder is electrically charged and then spread on the interior of a mold. After that, plastic material is filled into the mold and molded under the respective predetermined temperature and/or pressure. Thus, the powdered resin composition in the mold is anchoringly and tightly bonded with the surface of a molded plastic by the heat of plastic material and/or molding heat and the like, thus obtaining a plastic molded body with uniform electrically- conductive film on its surface and antistatic property, the surface resistance of which is larger than 10<13>ohm/square and not more than 10<11>ohm/square. When electrically-conductive carbon is used as fine electrically-conductive pow der, its preferable content lies within the range of 1-50wt%. When fine electrically-conductive powder other than the above-mentioned carbon is used, its preferable content lies within the range of 30-95wt%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラスチック成形体表面に帯電防止被膜を形
成させるプラスチック成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a plastic molding method for forming an antistatic coating on the surface of a plastic molded article.

詳しくは、静電除去、帯電防止、コロナ放電防止等の目
的をもったプラスチック成形体を得る方法に関するもの
である。
Specifically, the present invention relates to a method for obtaining a plastic molded body having the purpose of removing static electricity, preventing static electricity, preventing corona discharge, etc.

(従来技術) 近年、半導体素子を使用した電子機器の誤動作があらゆ
る方面で問題となっている。
(Prior Art) In recent years, malfunctions of electronic devices using semiconductor devices have become a problem in various fields.

これらの原因は、電磁波はもとより、表題の摩擦により
人体に帯電した静電気が電気的導体を通して放電する時
に流れる電撃電流が、テレビ等高電圧のかかっている箇
所の近辺に存在する絶縁性物質に静電気が帯電し、これ
が臨界電圧以上に達し放電する時に一時的に流れる過大
な電流や、放電と同時に発生する電磁波等が原因となっ
て半導体素子を誤動作させたり、破壊したりするのであ
る。
These causes include not only electromagnetic waves, but also electric shock current that flows when static electricity charged on the human body due to friction is discharged through an electrical conductor, which can cause static electricity to build up on insulating materials near high-voltage areas such as televisions. is charged, and when it reaches a critical voltage or higher and discharges, an excessive current flows temporarily and electromagnetic waves are generated at the same time as the discharge, causing the semiconductor device to malfunction or be destroyed.

従って、電子機器等の誤動作を防止するためには、自己
防衛上プラスチック製ハウジング等に帯電する静電気を
除去する必要がある。
Therefore, in order to prevent malfunctions of electronic devices and the like, it is necessary to remove static electricity that accumulates on plastic housings and the like for self-defense.

現在これら帯電現象を除去する方法の一つとして、例え
ば、プラスチックに導電性粉末を混練後、成形し、プラ
スチック成形体そのものに帯電防止機能を付与する方法
(例えば特公昭35−9643号)が知られている。し
かしながら、該方法は作業が簡便であるという利点があ
る反面、電気良導体を得るには導電性粉末を多量に含有
させる必要があり、その結果成形後のプラスチックの物
理的強度の低下、重量の増加、成形上の問題点等の如き
、その他の各種欠点が生じるためあまり実用化されてい
ない。
Currently, one known method for eliminating these charging phenomena is to knead conductive powder into plastic and then mold it to give the plastic molded body itself an antistatic function (for example, Japanese Patent Publication No. 35-9643). It is being However, while this method has the advantage of being easy to work with, it requires the inclusion of a large amount of conductive powder in order to obtain a good electrical conductor, which results in a decrease in the physical strength of the plastic after molding and an increase in weight. , problems in molding, and other various drawbacks, so it is not put into practical use much.

帯電防止方法の他の方法としては、電子機器ハウジング
内面に溶剤可溶型導電性塗料を刷毛あるいはスプレー等
で塗装する方法が知られている。
Another known antistatic method is to apply a solvent-soluble conductive paint to the inner surface of an electronic device housing with a brush or spray.

該方法においては、導電性塗料中に含まれる有機溶剤に
よるプラスチックの形状破損、変色等の対策、塗膜密着
強度向上や塗膜剥離防止のための下塗り対策等が必要で
あるとともに、大気中への有機溶剤連敗による臭気、人
体に対する悪影響、火災等の危険性等の問題点があった
In this method, it is necessary to take measures such as damage to the plastic shape and discoloration caused by the organic solvents contained in the conductive paint, as well as measures against undercoating to improve the adhesion strength of the paint film and prevent paint film peeling. There were problems such as odor due to continuous failure of organic solvents, negative effects on the human body, and dangers such as fire.

最近では、電子機器ハウジング用成形金型内に溶剤可溶
型導電性塗料を刷毛又はスプレーガンで塗装した後、金
型内でプラスチックを成形し、プラスチック成形体と導
電性皮膜を一体化する方法も提案されている(例えば特
公昭48−25061号)。該方法によれば、成型金型
内にグリース状の組成物を塗布し、その上に黒鉛等の導
電性粉末を吹付けた後、液状合成樹脂を注入して硬化さ
せ、所定の個所を導電性とする絶縁性成形体を得る方法
が提案されている。しかしながら該方法では導電性粉末
はグリース状組成物との接触点以外では付着力が弱いと
いう基本的な問題があるため、樹脂注入に際し、細心の
注意力が必要であり、加えてその注入速度も極めて遅い
ものとならざるをt′yPないという作業上の問題点等
があった。
Recently, a method has been developed in which a solvent-soluble conductive paint is applied with a brush or a spray gun into a mold for electronic device housings, and then the plastic is molded within the mold to integrate the plastic molded body and the conductive film. has also been proposed (for example, Japanese Patent Publication No. 48-25061). According to this method, a grease-like composition is applied inside a mold, a conductive powder such as graphite is sprayed on top of the composition, and then a liquid synthetic resin is injected and cured to make predetermined areas conductive. A method has been proposed for obtaining an insulating molded body with high properties. However, this method has the fundamental problem that the conductive powder has weak adhesion at points other than the points of contact with the grease-like composition, so careful attention is required when injecting the resin, and in addition, the injection speed is also limited. There were operational problems such as the fact that it was extremely slow.

それ故、この方法は射出成形方法の如き高速成形方法に
適用することは不可能である。
Therefore, this method cannot be applied to high-speed molding methods such as injection molding methods.

また、前記公知例中には前記導電性粉末の付着力を強め
る目的で、更に合成樹脂接着剤を樹脂注入前に使用する
方法も併記されているが、この方法を採用すると、前述
した溶剤可溶型導電性塗料を成形後塗布する場合の問題
点は何一つ解決されないものであった。
In addition, the above-mentioned known example also describes a method of using a synthetic resin adhesive before resin injection in order to strengthen the adhesion of the conductive powder, but if this method is adopted, the aforementioned solvent can be removed. None of the problems associated with applying a melt-molded conductive paint after molding have been solved.

一般に、溶剤可溶型塗料のもつ前記各種問題点を解決す
る手段として、例えば溶剤を全く含有しない粉体塗料の
使用が考えられる。
In general, as a means to solve the above-mentioned problems of solvent-soluble paints, it is conceivable to use, for example, powder paints that do not contain any solvent at all.

事実、成形の分野においても通常の着色顔料を少量含有
する粉体塗料を加熱、加圧成形用金型内面に流動床ある
いはスプレーによりあらかじめ付着させた後、SMCや
BMCを用いて圧縮成形し、FRP表面に保護又は着色
被膜を形成させる方法が知られている(例えば、特公昭
58−44459号、特開昭57−181823号、特
開昭58−124610号)。
In fact, in the field of molding as well, powder coatings containing a small amount of ordinary colored pigments are heated and applied to the inner surface of a pressure mold in advance by a fluidized bed or spray, and then compression molded using SMC or BMC. A method of forming a protective or colored film on the surface of FRP is known (for example, Japanese Patent Publication Nos. 44459/1982, 181823/1982, and 124610/1982).

しかして、これらの方法によっても、粉末の飛散、金型
外への付着、膜厚の不均一等の問題点があった。
However, even with these methods, there are problems such as powder scattering, adhesion to the outside of the mold, and uneven film thickness.

(発明が解決しようとする問題点) 本発明は、有機溶剤揮散による安全、衛生上の問題点や
、粉末の飛散、金型外への付着や膜厚の不均一さ等の問
題点を解決し、導電性微粉末を含有する粉末状樹脂組成
物を効率良く、かつ均一にプラスチック表面に付着せし
め、表面抵抗値が103オーム/□より大きく、101
′オーム/□以下の帯電防止性を有するプラスチック成
形品の成形方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention solves safety and hygiene problems caused by organic solvent volatilization, as well as problems such as powder scattering, adhesion to the outside of the mold, and uneven film thickness. The powdered resin composition containing the conductive fine powder is efficiently and uniformly adhered to the plastic surface, and the surface resistance value is greater than 103 ohms/□.
The object of the present invention is to provide a method for molding plastic molded products having antistatic properties of less than 'ohm/□.

即ち、本発明は、導電性微粉末を含有する粉末状樹脂組
成物を、静電塗装により金型内に塗布した後、プラスチ
ックを成形し、帯電防止被膜をプラスチック成形体表面
に密着形成させるプラスチックの成形方法に関するもの
である。
That is, the present invention provides a plastic composition in which a powdered resin composition containing conductive fine powder is applied into a mold by electrostatic coating, and then the plastic is molded to form an antistatic coating on the surface of the plastic molded body. This relates to a molding method.

(問題点を解決するための手段) 本発明の方法に使用される粉末状樹脂組成物とは、導電
性微粉末を1〜95重量%の濃度で含有する熱硬化性又
は熱可塑性樹脂組成物である。
(Means for Solving the Problems) The powdered resin composition used in the method of the present invention is a thermosetting or thermoplastic resin composition containing conductive fine powder at a concentration of 1 to 95% by weight. It is.

前記導電性微粉末とは、導電性酸化亜鉛、酸化錫、酸化
アンチモン、酸化インジウム等の導電性を示す金属酸化
物;前記酸化物を少くとも1種類以上含む混合物及び/
又は固溶体;着色顔料と前記導電性酸化物との混合物;
前記導電性酸化物で表面被覆された着色顔料等の化合物
;あるいはグラファイトカーボンの如き結晶性炭素、ア
セチレンブラック、ケッチェンブラック等の非結晶性炭
素粉末等の導電性カーボンの如き電気的良導電性の微粉
末で、平均粒子径は100μ以下、好ましくは0.05
〜50μ程度のものである。該粉末は1種もしくは2種
以上の組合せで使用することが可能である。
The conductive fine powder includes conductive metal oxides such as conductive zinc oxide, tin oxide, antimony oxide, and indium oxide; mixtures containing at least one of the above oxides; and/or
or a solid solution; a mixture of a colored pigment and the conductive oxide;
Compounds such as colored pigments whose surface is coated with the conductive oxide; or electrically conductive carbon such as crystalline carbon such as graphite carbon, or conductive carbon such as amorphous carbon powder such as acetylene black or Ketjen black. fine powder with an average particle size of 100μ or less, preferably 0.05
It is about ~50μ. These powders can be used alone or in combination of two or more.

本発明の方法において、前記導電性微粉末は、粉末状樹
脂組成物中に1〜95重量%の範囲で含有される。
In the method of the present invention, the conductive fine powder is contained in the powdered resin composition in an amount of 1 to 95% by weight.

特に、本発明においては導電性微粉末として導電性カー
ボンを使用する場合、その含有量は1〜50重量%の範
囲であり、その他の導電性微粉末を使用する場合にはそ
の含有量は30〜95重量%の範囲にあることが好まし
い。
In particular, in the present invention, when conductive carbon is used as the conductive fine powder, its content is in the range of 1 to 50% by weight, and when other conductive fine powders are used, the content is 30% by weight. It is preferably in the range of ~95% by weight.

尚、本発明において導電性微粉末含有粉末状樹脂組成物
とは、個々の樹脂粉末の中に導電性微粉末を内包された
組成物と、大部分の導電性微粉末を内包した樹脂粉末と
少部分の導電性微粉末の混合物(但し、導電性微粉末の
総量は前記範囲内にある)とを意味するものであも。後
者の場合、粉末状態で電気抵抗が静電塗装可能な程度に
高いことが必要であるのは当然である。
In the present invention, the powdered resin composition containing conductive fine powder includes a composition in which conductive fine powder is encapsulated in each individual resin powder, and a resin powder in which most of the conductive fine powder is encapsulated. It also means a mixture of a small amount of conductive fine powder (provided that the total amount of conductive fine powder is within the above range). In the latter case, it is natural that the electrical resistance in the powder state must be high enough to allow electrostatic coating.

粉末状樹脂組成物中の導電性微粉末の遣が70重量%に
みたない場合には、プラスチック成形体表面に良好な帯
電防止被膜を形成せしめることが出来ず、一方95重量
%をこえる場合には、効率良く静電塗装することが困難
となるため、いずれも好ましくない。
If the content of the conductive fine powder in the powdered resin composition is less than 70% by weight, it will not be possible to form a good antistatic coating on the surface of the plastic molded product, while if it exceeds 95% by weight, Both are unfavorable because they make it difficult to perform electrostatic coating efficiently.

尚、導電性カーボンを使用する場合、その遣が50重量
%以上になると、吸油量の関係で粉末状樹脂組成物中に
分散し難くなる傾向となるため、あまり好ましくない。
In addition, when using conductive carbon, if its content exceeds 50% by weight, it tends to become difficult to disperse in the powdered resin composition due to oil absorption, which is not very preferable.

本発明の粉末状樹脂組成物に使用される展色剤としての
樹脂は、通常粉末状プラスチックや粉体塗料等に使用さ
れる熱硬化性あるいは熱可塑性樹脂が全て使用可能であ
る。
As the resin used as a color vehicle in the powdered resin composition of the present invention, any thermosetting or thermoplastic resin commonly used in powdered plastics, powder coatings, etc. can be used.

前記熱硬化性樹脂としては、アクリル樹脂、ポリエステ
ル樹脂、エポキシ樹脂、アルキド樹脂、ウレタン樹脂、
エポキシ変性ポリエステル樹脂、アクリル変性ポリエス
テル樹脂等が一例として挙げられる。特に、貯蔵安定性
や塗膜の導電性等から、アクリル樹脂、ポリエステル樹
脂、エポキシ樹脂が好ましい。
Examples of the thermosetting resin include acrylic resin, polyester resin, epoxy resin, alkyd resin, urethane resin,
Examples include epoxy modified polyester resin and acrylic modified polyester resin. In particular, acrylic resins, polyester resins, and epoxy resins are preferred from the viewpoint of storage stability and conductivity of the coating film.

前記熱硬化性樹脂は、自己硬化型、硬化剤く架橋剤)硬
化型等の種々の型のものが使用し得る。
The thermosetting resin may be of various types, such as a self-curing type, a hardening agent/crosslinking agent hardening type, and the like.

前記熱硬化性樹脂の硬化剤としては、ジシアンジアミド
、酸無水物、イミダゾール誘導体、芳香族ジアミン、三
フッ化ホウ素アミン錯化合物、ヒドラジド類、デカメチ
レンジカルボン酸、ブロックイソシアネート化合物、ア
ミノ樹脂等の如き、通常熱硬化性粉体塗料等に用いられ
るものが使用可能である。
Examples of curing agents for the thermosetting resin include dicyandiamide, acid anhydrides, imidazole derivatives, aromatic diamines, boron trifluoride amine complexes, hydrazides, decamethylene dicarboxylic acid, blocked isocyanate compounds, amino resins, etc. Those normally used for thermosetting powder coatings can be used.

また、前記熱可塑性樹脂としては、ポリエステル樹脂、
アクリル樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリ
プロピレン樹脂、スチレン重合体、塩化ビニル重合体、
ポリアミド樹脂、ブチラール樹脂、繊維素樹脂、石油樹
脂等公知のものが挙げられる。
Further, as the thermoplastic resin, polyester resin,
Acrylic resin, epoxy resin, polyethylene resin, polypropylene resin, styrene polymer, vinyl chloride polymer,
Known resins include polyamide resin, butyral resin, cellulose resin, and petroleum resin.

前記熱硬化性樹脂及び熱可塑性樹脂は各々単独もしくは
混合物として、あるいは必要に応じて熱硬化性樹脂と熱
可塑性樹脂とを組合せて使用することが可能である。
The thermosetting resin and the thermoplastic resin can be used individually or as a mixture, or if necessary, the thermosetting resin and the thermoplastic resin can be used in combination.

前記粉末状樹脂組成物には9、必要により前記成分以外
にダレ防止剤、硬化促進剤、酸化防止剤、顔料等の如き
、一般に粉末状プラスチックや粉体塗料等に使用されて
いる成分を添加、混合することも出来る。
9. In addition to the above-mentioned components, if necessary, components such as anti-sag agents, hardening accelerators, antioxidants, pigments, etc., which are generally used in powdered plastics and powder coatings, may be added to the powdered resin composition. , can also be mixed.

本発明の方法に使用される粉末状樹脂組成物は、例えば
、公知の粉体塗料の製造方法よちより得られる。
The powdered resin composition used in the method of the present invention can be obtained, for example, from a known powder coating manufacturing method.

例えば、前記導電性微粉末、樹脂及び其の他必要により
硬化剤、添加剤等を加熱溶融混合後、冷却、粉砕、篩分
けする機械粉砕法や、導電性微粉末、樹脂及び必要によ
り硬化剤、添加剤等を溶剤中に分散せしめた後、得られ
た分散液を加熱空気中に噴霧するドライスプレー法等が
適用出来る。
For example, a mechanical pulverization method in which the conductive fine powder, resin, and other necessary hardening agents, additives, etc. are heated, melted, mixed, cooled, crushed, and sieved; A dry spray method, etc., in which additives and the like are dispersed in a solvent and then the resulting dispersion is sprayed into heated air, can be applied.

しかして、より高濃度の導電性微粉末含有組成物を得る
場合や、導電性微粉末の形状、維持、粉末状樹脂組成物
のひ集防止等を考慮した場合、以下に示す湿式造粒法に
よる製造方法が特に好ましい。
Therefore, when obtaining a composition containing a conductive fine powder with a higher concentration, or when considering the shape and maintenance of the conductive fine powder, prevention of clumping of the powdered resin composition, etc., the following wet granulation method is recommended. The manufacturing method according to is particularly preferred.

例えば、アルコール類、エチレングリコール誘導体、ジ
エチレングリコール誘導体、エステル類、ケトン類等の
水可溶性溶媒(好ましくは、20℃で水に対する溶解度
が10〜30重遣%)中に、前記樹脂を溶解せしめ、つ
いで導電性微粉末を分散せしめ、必要により硬化剤、添
加剤等を混合して得られる液体組成物(以下分散液とい
う)を、該分散液中に含まれる全ての水可溶性溶媒が溶
解する量(分散液の約3〜40倍量)の水中に乳化、分
散する。乳化は、分散液を激しい攪拌下にある水中に滴
下、注入、噴霧する方法、あるいは水と分散液をライン
ミキサーで混合する方法等により行われる。
For example, the resin is dissolved in a water-soluble solvent such as alcohols, ethylene glycol derivatives, diethylene glycol derivatives, esters, and ketones (preferably having a solubility in water of 10 to 30% by weight at 20°C), and then A liquid composition (hereinafter referred to as a dispersion liquid) obtained by dispersing conductive fine powder and mixing a curing agent, additives, etc. as necessary, is prepared in an amount that dissolves all the water-soluble solvent contained in the dispersion liquid ( Emulsify and disperse in water (approximately 3 to 40 times the volume of the dispersion). Emulsification is carried out by dropping, pouring, or spraying the dispersion into water under vigorous stirring, or by mixing water and the dispersion using a line mixer.

前記攪拌もしくはラインミキサーでの混合は、乳濁微粒
子中の溶剤が水中に移行し、粒子が形成される迄行う。
The above-mentioned stirring or mixing using a line mixer is carried out until the solvent in the emulsion fine particles is transferred into water and particles are formed.

かくして、乳濁微粒子中の溶剤が水中に抽出され、樹脂
粒子が得られる。
In this way, the solvent in the emulsion fine particles is extracted into water, and resin particles are obtained.

この樹脂粒子を濾過または遠心分離等により水−溶剤混
合物と分離し、さらに必要ならば水洗及び分離を必要回
数繰り返し、スラリー状ないし含水ケーキ状の樹脂粒子
を得る。ついで、必要によりボールミル、ポットミル、
サンドミル等により調粒を行った後、樹脂粒子が凝集し
ないよう乾燥、好ましくは凍結乾燥、真空乾燥等により
乾煙し、必要により篩分けして本発明の粉末状樹脂組成
物を得る。このような製造方法は、例えば特開昭48−
52851号、特公昭54−5832号、同54−26
250号、同54−31492号、同56−5796号
、同56−29890号公報に詳述されている。
The resin particles are separated from the water-solvent mixture by filtration or centrifugation, and if necessary, water washing and separation are repeated a necessary number of times to obtain resin particles in the form of a slurry or a water-containing cake. Then, if necessary, use a ball mill, pot mill,
After granulation with a sand mill or the like, the resin particles are dried, preferably freeze-dried, vacuum-dried, or smoked to prevent agglomeration, and if necessary, sieved to obtain the powdered resin composition of the present invention. Such a manufacturing method is described, for example, in Japanese Patent Application Laid-open No. 48-
No. 52851, Special Publication No. 54-5832, No. 54-26
250, No. 54-31492, No. 56-5796, and No. 56-29890.

かくして、導電性微粉末を含有し、該粉末の形状を維持
しつつ、比較的球状に近い粉末状樹脂組成物を得ること
ができる。
In this way, it is possible to obtain a powdered resin composition containing conductive fine powder and having a relatively nearly spherical shape while maintaining the shape of the powder.

本発明において粉末状樹脂組成物に使用される樹脂の軟
化点は40〜160℃、融点は60〜180℃、好まし
くは軟化点60〜130℃、融点70〜160℃程度で
ある。
The resin used in the powdered resin composition in the present invention has a softening point of 40 to 160°C and a melting point of 60 to 180°C, preferably a softening point of 60 to 130°C and a melting point of about 70 to 160°C.

尚、前記軟化点はKof Ier’ s法により、また
融点はDu’rran’s法により測定したものである
The softening point was measured by Kof Ier's method, and the melting point was measured by Du'rran's method.

更に、本発明の方法に使用される粉末状樹脂組成物の粒
子径範囲は、100μ以下、好ましくは0.05〜50
μ程度のものである。
Further, the particle size range of the powdered resin composition used in the method of the present invention is 100μ or less, preferably 0.05 to 50μ.
It is about μ.

一方、本発明の方法が適用出来る成形方法としては特に
制限がなく、一般に行われている成形方法、例えば圧縮
成形方法、トランスファ成形方法、積層成形方法、射出
成形方法(リアクション及びリキッドインジェクション
モールディング法も含む)、ブロー成形方法、真空成形
方法等が挙げられる。
On the other hand, there are no particular restrictions on the molding methods to which the method of the present invention can be applied, and commonly used molding methods such as compression molding, transfer molding, lamination molding, and injection molding (reaction and liquid injection molding methods are also applicable). ), blow molding method, vacuum molding method, etc.

また、これらの成形方法に使用されるプラスチック素材
としては、不飽和ポリエステル樹脂、フェノール樹脂、
エポキシ樹脂、ユリア及びメラミン樹脂、スチレン樹脂
、アクリル樹脂、ビニル樹脂、ポリエチレン樹脂、シリ
コーン樹脂、ABS樹脂、ナイロン樹脂、ポリアセクー
ル樹脂、ポリカーボネート樹脂、ポリフェニレンオキサ
イド樹脂、ポリプロピレン樹脂等の如き、通常成形用に
使用される熱硬化性あるいは熱可塑性樹脂、及びこれら
の樹脂に強化用繊維、充填材、硬化剤、安定剤、着色剤
、増粘剤、離型剤、発泡剤、難燃化剤等を混練した樹脂
組成物、更にシートモールディングコンパウンド(SM
C)、バルクモールディングコンパウンド(BMC)等
が使用可能である。
In addition, the plastic materials used in these molding methods include unsaturated polyester resin, phenolic resin,
Commonly used for molding such as epoxy resins, urea and melamine resins, styrene resins, acrylic resins, vinyl resins, polyethylene resins, silicone resins, ABS resins, nylon resins, polyacecool resins, polycarbonate resins, polyphenylene oxide resins, polypropylene resins, etc. thermosetting or thermoplastic resins, and these resins are kneaded with reinforcing fibers, fillers, curing agents, stabilizers, colorants, thickeners, mold release agents, foaming agents, flame retardants, etc. Resin composition, further sheet molding compound (SM
C), bulk molding compound (BMC), etc. can be used.

次に本発明の成形方法を説明する。Next, the molding method of the present invention will be explained.

前記の如くして得られた導電性微粉末を1〜95重型%
含有する粉末状樹脂組成物を静電粉末塗装機等により−
60〜−9QKVに帯電させて金型内に塗布する。塗布
膜厚等は必要により決定されるが、通常10〜200μ
程度である。
The conductive fine powder obtained as described above is 1 to 95% heavy weight.
The powdered resin composition containing the powder is coated with an electrostatic powder coater or the like.
Charge it to 60 to -9QKV and apply it inside the mold. The coating film thickness etc. is determined as necessary, but it is usually 10 to 200μ.
That's about it.

ついで、金型内にプラスチック素材を充填し、各々所定
の温度及び/又は圧力により成形する。
Next, plastic materials are filled into the molds and molded at predetermined temperatures and/or pressures.

かくして、金型内の粉末状樹脂組成物は、プラスチック
素材熱及び/又は成形等の熱により成形プラスチック表
面に投錨密着され、表面に均一な導電性被膜を有するプ
ラスチック成形体が得られる。
In this way, the powdered resin composition in the mold is anchored and adhered to the molded plastic surface by the heat of the plastic material and/or the heat of molding, etc., and a plastic molded article having a uniform conductive coating on the surface is obtained.

本発明の方法を代表的な射出成形方法について図面によ
り説明すると、第1図は本発明の方法を示す概略図であ
り、第2図は第1図のC工程の点線部分の拡大図であり
、第3図は得られたプラスチック成形体の要部拡大図で
ある。
The method of the present invention will be explained with reference to drawings regarding a typical injection molding method. FIG. 1 is a schematic diagram showing the method of the present invention, and FIG. 2 is an enlarged view of the dotted line portion of step C in FIG. 1. , FIG. 3 is an enlarged view of the main part of the obtained plastic molded body.

第1図に示すように、前工程Aにおいては固定金型3a
の不要部にマスキング材4を定着する。
As shown in FIG. 1, in the pre-process A, the fixed mold 3a
The masking material 4 is fixed on unnecessary parts.

塗布工程Bにおいて、静電塗装機5により粉末状樹脂組
成物2aを固定金型3aの表面に塗布する。次いで、マ
スキング材をはずし必要により、加熱工程Cで加熱し、
塗布された粉末状樹脂組成物2aを可塑化する。
In coating step B, the electrostatic coating machine 5 coats the powdered resin composition 2a on the surface of the fixed mold 3a. Next, remove the masking material and heat it in heating step C if necessary.
The applied powdered resin composition 2a is plasticized.

ついで、成形工程りでは、固定金型3a上に可塑金型3
bを載置型閉し、型内間隙に充填孔3b’より溶融プラ
スチック素材を充填し成形するとともに、プラスチック
成形体1の表面に帯電防止塗膜2を投錨密着せしめる。
Next, in the molding process, a plastic mold 3 is placed on the fixed mold 3a.
b is placed and the mold is closed, and the gap in the mold is filled with molten plastic material through the filling hole 3b' and molded, and at the same time, the antistatic coating film 2 is anchored and adhered to the surface of the plastic molded product 1.

脱型工程Eでは、表面に帯電防止機能を具備した塗膜2
を有するプラスチック成形体lを型開して取り出す。か
くして、均一な厚さの帯電防止被膜を有するプラスチッ
ク成形体が効率良く得られるのである。
In the demolding process E, a coating film 2 with an antistatic function is formed on the surface.
The plastic molded body l having the following properties is opened and taken out. In this way, a plastic molded article having an antistatic coating of uniform thickness can be efficiently obtained.

尚、本発明の成形方法においては、金型をあらかじめ予
熱するか、常温の金型もしくは予熱温度の低い金型の場
合、粉末状樹脂組成物塗布後熱風、電気、赤外線等によ
り加熱することが好ましい。
In addition, in the molding method of the present invention, the mold may be preheated in advance, or in the case of a mold at room temperature or a mold with a low preheating temperature, it may be heated with hot air, electricity, infrared rays, etc. after applying the powdered resin composition. preferable.

かくすることにより、静電塗装により静電力のみにより
付着している粉末状樹脂組成物の飛散等を防ぐことが出
来る。
By doing so, it is possible to prevent scattering of the powdered resin composition adhered only by electrostatic force by electrostatic coating.

特に、成形時にプラスチック素材を加圧注入したり、プ
ラスチック素材が移動するような射出成形法、ブロー成
形方法、あるいは真空成形方法等においては、金型予熱
温度と、粉末状樹脂組成物中の樹脂の軟化点及び融点と
が、(融点+10℃)≧金型予熱温度≧軟化点の範囲内
にあることが好ましい。
In particular, in injection molding, blow molding, or vacuum forming methods in which plastic material is injected under pressure or moves during molding, the preheating temperature of the mold and the resin content in the powdered resin composition are particularly important. It is preferable that the softening point and melting point of (melting point +10°C)≧mold preheating temperature≧softening point.

金型予熱温度が樹脂の軟化点より低い場合には、金型と
粉末状樹脂組成物との密着性が低くなり、成形時にプラ
スチック素材に加えられる圧力によるプラスチック素材
の移動や射出時の注入速度及び圧力等により、粉末状樹
脂組成物が移動あるいは飛散するため均一な被膜を得難
くなる。また、金型)熱温度が(樹脂の融点+10℃)
をこえると、粉末状樹脂組成物は塗布後溶融し、流動性
を示すようになり、前記と同様にプラスチック素材の移
動や注入速度、圧力等により移動し、均一な被膜が得難
くなる。特に射出成形方法においては、縞模様の被膜と
なったり、特に注入口(ノズル)付近は被膜の全くない
成形品が得られるというよな好ましくない問題が生じる
可能性がある。
If the mold preheating temperature is lower than the softening point of the resin, the adhesion between the mold and the powdered resin composition will be low, leading to the movement of the plastic material due to the pressure applied to the plastic material during molding and the injection speed during injection. The powdered resin composition moves or scatters due to pressure and the like, making it difficult to obtain a uniform coating. In addition, the heat temperature of the mold is (melting point of resin + 10℃)
If it exceeds this, the powdered resin composition will melt after being applied, exhibit fluidity, and will move due to movement of the plastic material, injection speed, pressure, etc., as described above, making it difficult to obtain a uniform coating. Particularly in injection molding methods, undesirable problems may occur, such as a striped coating or a molded product having no coating at all, especially near the injection port (nozzle).

以上の如く、本発明の方法によれば、有機溶剤揮散によ
る安全、衛生上の問題点や、粉末塗料の飛散、金型外へ
の付着や膜厚の不均一さ等の問題点は解消し、導電性微
粉末を含有する粉末状樹脂組成物を効率良く、かつ均一
にプラスチック表面に付着せしめることが出来るのであ
る。
As described above, according to the method of the present invention, safety and hygiene problems caused by organic solvent volatilization, problems such as powder paint scattering, adhesion to the outside of the mold, and uneven film thickness are resolved. , the powdered resin composition containing the conductive fine powder can be efficiently and uniformly adhered to the plastic surface.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

「部」又は「%」は「重a邪」又は「重重%」をもって
示す。実施例に先立って、以下に示す配合にて粉末状樹
脂組成物を製造した。
"Part" or "%" is expressed as "heavy weight" or "heavy weight %". Prior to Examples, a powdered resin composition was manufactured using the formulation shown below.

〔配合1〕 エポキシ樹脂           30%白色導電性
微粉末         30%流動助剤      
        1%メチルエチルケトン      
  39%エポキシ樹脂は、シェル化学@製品品名エピ
コ−)11002 (エポキシ当量600〜700、融
点83℃、軟化点57℃)を、白色導電性微粉末は三菱
金属@製白色導電性粉末、商品名W−1〔酸化チタン表
面を錫系導電剤で被覆した微粉末(平均粒子径0.2μ
)〕を、又流動助剤はモンサンド社製商品名モダフロー
を夫々使用した。
[Formulation 1] Epoxy resin 30% white conductive fine powder 30% flow aid
1% methyl ethyl ketone
The 39% epoxy resin is Shell Chemical @ product name Epico) 11002 (epoxy equivalent 600-700, melting point 83 °C, softening point 57 °C), and the white conductive fine powder is Mitsubishi Metals white conductive powder, trade name W-1 [Fine powder whose titanium oxide surface is coated with a tin-based conductive agent (average particle size 0.2μ)
)] and the flow aid was Modaflow, a product of Monsando Co., Ltd., respectively.

上記配合からなる組成物を、磁性ポットミルで2時間分
散して液体組成物を得た。
The composition consisting of the above formulation was dispersed in a magnetic pot mill for 2 hours to obtain a liquid composition.

ついで、前記液体組成物を高速攪拌下にある水温20℃
以下の水3000部中に噴霧し、前記液体組成物を乳化
するとともに溶剤を水中へ抽出して樹脂粒子を形成せし
めた。その後、濾過および水洗を繰り返し、平均粒子径
約100μの樹脂粒子を得た。含水率を50%前後に調
整した後、更に樹脂粒子を微粉砕調粒し、スラリー状の
粉末樹脂組成物を得た。更に水洗を3回以上繰り返した
後、濾過し、20℃以下の乾燥空気の下で乾燥し、粉砕
、篩分(150メツシユ)して導電性微粉末/樹脂=5
0150 (重量比)の粉末状樹脂組成物(1)を作成
した。
Then, the liquid composition was heated to a water temperature of 20°C under high speed stirring.
The following liquid composition was sprayed into 3000 parts of water to emulsify the liquid composition and extract the solvent into the water to form resin particles. Thereafter, filtration and water washing were repeated to obtain resin particles with an average particle diameter of about 100 μm. After adjusting the water content to around 50%, the resin particles were further finely pulverized to obtain a slurry-like powder resin composition. Furthermore, after repeating water washing three times or more, it is filtered, dried under dry air at 20°C or less, crushed, and sieved (150 meshes) to obtain conductive fine powder/resin = 5
A powdered resin composition (1) having a weight ratio of 0.0150 (weight ratio) was prepared.

〔配合2〕 エポキシ樹脂           24%透明性導電
性微粉末        36%流動助剤(配合1と同
一)      1%メチルエチルケトン      
  39%エポキシ樹脂は、シェル化学0勾製簡品名エ
ピコート#1001(エポキシ当量450〜500、融
点69℃、軟化点50℃)を、透明性導電性微粉末は三
菱金属QI製製品品名−1〔酸化錫を主とする導電性微
粉*)を使用した。
[Formulation 2] Epoxy resin 24% Transparent conductive fine powder 36% Flow aid (same as Formulation 1) 1% Methyl ethyl ketone
The 39% epoxy resin is Shell Chemical's 0-gradient product name Epicoat #1001 (epoxy equivalent 450-500, melting point 69°C, softening point 50°C), and the transparent conductive fine powder is Mitsubishi Metals QI product name-1 [ Conductive fine powder*) mainly composed of tin oxide was used.

配合1と同じ方法で液体組成物を作成した後、同様の方
法で導電性微粉末/樹脂=60/40(重量比)の粉末
状樹脂組成物(2)を作成した。
A liquid composition was prepared in the same manner as in Formulation 1, and then a powdered resin composition (2) having a conductive fine powder/resin ratio of 60/40 (weight ratio) was prepared in the same manner.

〔配合3〕 エポキシ樹口旨           27%導電性酸
化亜鉛粉末        33%流動助剤(配合1と
同一)       1%メチルエチルケトン    
    39%エポキシ樹脂は、チバガイギ−(!菊製
商品名アラルダイト6097 (エポキシ当量900〜
1000、融点100℃、軟化点80℃)を、導電性酸
化亜鉛粉末は白水化学工業■製品品名23−K(平均粒
子径0.4〜0.7μ)を各々使用した。
[Formulation 3] Epoxy resin 27% conductive zinc oxide powder 33% flow aid (same as formulation 1) 1% methyl ethyl ketone
The 39% epoxy resin is Ciba Geigi (!Kiku product name Araldite 6097 (epoxy equivalent: 900~
1000, melting point: 100° C., softening point: 80° C.), and Hakusui Chemical Industry Co., Ltd. product name 23-K (average particle size: 0.4 to 0.7 μm) was used as conductive zinc oxide powder.

上記配合よりなる組成物をペイントシェーカーで1時間
分散して液体組成物とした。
The composition having the above formulation was dispersed in a paint shaker for 1 hour to obtain a liquid composition.

ついで、配合1と同じ方法で粉末状樹脂組成物を作成し
た後、硬化剤として、イミダゾール系エポキシ樹脂用硬
化剤〔四国化成工業潤製商品名キコアゾールCzZ)を
、微粉末として4 phrの割合で乾式混合し、導電性
微粉末/樹脂=45155(重量比)の粉末状組成物(
3)を作成した。
Next, after creating a powdered resin composition in the same manner as Formulation 1, an imidazole-based epoxy resin curing agent [Shikoku Kasei Kogyo Junsei brand name: Kikoazole CzZ] was added as a fine powder at a rate of 4 phr. A powder composition (conductive fine powder/resin = 45155 (weight ratio)) was dry mixed (
3) was created.

〔配合4〕 エポキシ樹脂           30%導電性亜鉛
粉末          30%流動助剤(配合1と同
一)      1%メチルエチルケトン      
  39%エポキシ樹脂はシェル化学■製商品名エピコ
ート01001、$11002、及び111004(エ
ポキシ当量875〜975、融点98℃、軟化点70℃
)を各々1:1コ1(重量比)の割合で混合したもの(
融点86℃、軟化点58℃)を、また導電性亜鉛粉末は
本荘ケミカル側製商品名FX−C(平均粒子径3.2μ
)〕を夫々使用した。
[Formulation 4] Epoxy resin 30% conductive zinc powder 30% flow aid (same as formulation 1) 1% methyl ethyl ketone
The 39% epoxy resins are manufactured by Shell Chemical ■ under the trade name Epicote 01001, $11002, and 111004 (epoxy equivalent weight 875-975, melting point 98°C, softening point 70°C).
) in a ratio of 1:1 to 1 (weight ratio) (
The conductive zinc powder is manufactured by Honjo Chemical under the trade name FX-C (average particle size 3.2μ).
)] were used respectively.

上記配合からなる組成物を、配合3と全く同じ方法で液
体組成物とし、配合1と同じ方法で、導電性微粉末/樹
脂−50150(重量比)の粉末状樹脂組成物(4)を
作成した。
The composition consisting of the above formulation was made into a liquid composition in exactly the same way as Formulation 3, and a powdered resin composition (4) of conductive fine powder/resin -50150 (weight ratio) was created in the same manner as Formulation 1. did.

〔配合5〕 エポキシ樹脂           18%透明性導電
粉末(配合2と同一)  36%酸化チタン(ルチル型
)        6%メチルエチルケトン     
   40%エポキシ樹脂はシェル化学和製商品名工ピ
コ−)tt1002、$11004、tt1007 に
ポキシ当H1750〜2200、融点128℃、軟化点
85℃)を1:1:1(重量比)の割合で混合したもの
(融点約107℃、軟化点65℃)を使用した。
[Formulation 5] Epoxy resin 18% transparent conductive powder (same as formulation 2) 36% titanium oxide (rutile type) 6% methyl ethyl ketone
The 40% epoxy resin was prepared by mixing 40% epoxy resin (Meiko Pico) tt1002, $11004, tt1007 manufactured by Shell Chemical Co., Ltd. with poxy resin (H1750-2200, melting point 128°C, softening point 85°C) in a ratio of 1:1:1 (weight ratio). (melting point: about 107°C, softening point: 65°C) was used.

上記配合からなる組成物を配合3と同じ方法で分散せし
め、液体組成物を作成した。
The composition consisting of the above formulation was dispersed in the same manner as Formulation 3 to create a liquid composition.

次に配合1と同じ方法で、上記液体組成物から、導電性
微粉末/(樹脂+非導電性顔料) =60/40(重重
比)の粉末状樹脂組成物(5)を作成した。
Next, in the same manner as in Formulation 1, a powdered resin composition (5) having a conductive fine powder/(resin+nonconductive pigment) = 60/40 (gravity ratio) was prepared from the liquid composition.

〔配合6〕 エポキシ樹脂           26%透明性導電
性微粉末        30%アゾ系赤色顔料   
        4%メチルエチルケトン      
  40%エポキシ樹脂はシェル化学■製品品名エピコ
ー)#1002、tt1004、#1007及び#10
09 (エポキシ当量2400〜3300、融点148
℃、軟化点90℃)を各々1:1:2:2(重量比)の
割合で混合したもの(融点約135℃、軟化点75℃)
を、透明性導電微粉末は、触媒化成工業@製布品名E 
L COM −T L20〔酸化錫を主とする鱗片状導
電性粉末(巾0.1μ、長径2μ、短径1μ)〕を各々
使用した。
[Formulation 6] Epoxy resin 26% Transparent conductive fine powder 30% Azo red pigment
4% methyl ethyl ketone
40% epoxy resin is manufactured by Shell Chemical Product name Epicor) #1002, tt1004, #1007 and #10
09 (epoxy equivalent 2400-3300, melting point 148
°C, softening point 90 °C) in a ratio of 1:1:2:2 (weight ratio) (melting point approximately 135 °C, softening point 75 °C).
The transparent conductive fine powder is manufactured by Catalysts & Chemicals Industry @ Cloth name E
L COM-T L20 [scaly conductive powder mainly composed of tin oxide (width 0.1 μ, major axis 2 μ, minor axis 1 μ)] was used.

上記配合からなる組成物を、配合3と同様の方法で、導
電性微粉末/(樹脂+非導電性顔料)=50150(重
量比)の粉末状樹脂組成物(6)を作成した。
A powdered resin composition (6) having a conductive fine powder/(resin+non-conductive pigment)=50150 (weight ratio) was prepared using the composition consisting of the above formulation in the same manner as in Formulation 3.

〔配合7〕 エポキシ樹1旨          27.4%グラフ
ァイトカーボン粉末     12%メチルエチルケト
ン        60%ジシアンジアミド     
    0.6%エポキシ樹脂はエピコート#1007
を、グラファイトカーボン粉末は、■申越黒鉛工業所製
商品名CX−3000(粒子径中央値約3μ)を夫々使
用した。
[Formulation 7] Epoxy tree 1 effect 27.4% graphite carbon powder 12% methyl ethyl ketone 60% dicyandiamide
0.6% epoxy resin is Epicoat #1007
The graphite carbon powder used was CX-3000 (trade name, manufactured by Shin-etsu Graphite Industries Co., Ltd. (median particle size: about 3 μm)).

前記配合からなる組成物を、配合1と同様にして液体組
成物を作成した後、該組成物100部に対して更にメチ
ルエチルケトン50部の割合で加え希釈し、ついでスプ
レードライ法(空気流量:20m’/分、液体組成物供
給量200mj2/分、人口空気温度95℃、出口空気
温度30℃)により、導電性微粉末/樹脂−30/70
(重量比)の粉末状樹脂組成物(7)を作成した。
A liquid composition was prepared using the composition described above in the same manner as in Formulation 1, and then diluted by adding 50 parts of methyl ethyl ketone to 100 parts of the composition, followed by spray drying (air flow rate: 20 m2). conductive fine powder/resin -30/70
A powdered resin composition (7) of (weight ratio) was prepared.

〔配合8〕 エポキシ樹脂(配合4と同一)   32%非結晶導電
性カーボン微粉末     8%流流動助剤配合1と同
一)      0.596メチルエチルケトン   
    59.5%非結晶導電性カーボン微粉末は日本
イージー和製のケッチェンブラックEC(平均粒子径3
0μ)を使用した。
[Formulation 8] Epoxy resin (same as formulation 4) 32% amorphous conductive carbon fine powder 8% flow aid Same as formulation 1) 0.596 methyl ethyl ketone
The 59.5% amorphous conductive carbon fine powder is Ketjen Black EC (average particle size 3
0μ) was used.

上記配合からなる組成物を配合3と同様にして導電性微
粉末/樹脂=20/80 (重量比)の粉末状樹脂組成
物(8)を作成した。
A powdered resin composition (8) with conductive fine powder/resin=20/80 (weight ratio) was prepared by using the composition consisting of the above formulation in the same manner as in Formulation 3.

〔配合9〕 ポリエステル樹脂         18%導電性白色
粉末(配合1と同一)  42%メチルエチルケトン 
       40%ポリエステル樹脂は、大日本イン
キ化学製商品名ファインディックM−8000(融点1
23℃、軟化点75℃)を使用した。
[Formulation 9] Polyester resin 18% Conductive white powder (same as Formulation 1) 42% Methyl ethyl ketone
The 40% polyester resin is manufactured by Dainippon Ink Chemical under the trade name Finedic M-8000 (melting point 1
23°C, softening point 75°C).

上記配合からなる組成物を、磁性ポー/ ) ミルで1
時間半分散して液体組成物を作成し、配合1と同じ方法
で前記液体組成物より、導電性微粉末/樹脂=70/3
0 (重量比)の粉末状樹脂組成物(9)を作成した。
The composition consisting of the above formulation was mixed with a magnetic po/ ) mill for 1
A liquid composition was prepared by dispersing for half an hour, and from the liquid composition in the same manner as in Formulation 1, conductive fine powder/resin = 70/3.
A powdered resin composition (9) having a weight ratio of 0 (weight ratio) was prepared.

〔配合10〕 ポリエステル樹脂(配合9と同一)15.7%透明性導
電粉末(配合2と同一)  36%酸化チタン微粉末(
配合5と同一)  8%メチルエチルケトン     
   40%ジンアンジアミド         0.
3%上記配合からなる組成物を配合7と同様にして導電
性微粉末/(樹脂+非導電性顔料)−60/40(重量
比)の粉末状樹脂組成物σQを作成した。
[Formulation 10] Polyester resin (same as formulation 9) 15.7% transparent conductive powder (same as formulation 2) 36% titanium oxide fine powder (
Same as formulation 5) 8% methyl ethyl ketone
40% dianediamide 0.
A powdered resin composition σQ having a conductive fine powder/(resin+non-conductive pigment)-60/40 (weight ratio) was prepared using a composition consisting of the above-mentioned 3% composition in the same manner as in Formulation 7.

〔配合11〕 ポリエステル樹■旨          27%導電性
酸化亜鉛(配合3と同一)  33%メチルエチルケト
ン        40%ポリエステル樹脂は日本ユビ
カ■製商品名G■−110<融点85℃、軟化点65℃
)を°使用した。
[Formulation 11] Polyester resin 27% conductive zinc oxide (same as formulation 3) 33% methyl ethyl ketone 40% polyester resin manufactured by Nippon Yubika, product name G-110 < melting point 85°C, softening point 65°C
) was used.

上記配合からなる組成物を配合9と同様にして、導電性
微粉末/樹脂=55/45(重量比)の粉末状樹脂組成
物(10を作成した。
A powdered resin composition (10) having the above-mentioned formulation was prepared in the same manner as Formulation 9, with conductive fine powder/resin=55/45 (weight ratio).

〔配合12〕 アクリル樹脂            24%導電性白
色微粉末         36%メチルエチルケトン
        40%アクリル樹脂は大日本インキ化
学製商品名Δ−2243(融点114℃、軟化点70℃
)を、導電性白色微粉末はチタン工業■製商品名ECT
−52〔酸化チタンと酸化錫の混合導電性微粉末(平均
粒子径0.44μ)〕を各々使用した。
[Formulation 12] Acrylic resin 24% Conductive white fine powder 36% Methyl ethyl ketone 40% Acrylic resin is manufactured by Dainippon Ink Chemical under the trade name Δ-2243 (melting point 114°C, softening point 70°C)
), the conductive white fine powder is manufactured by Titanium Industry ■, product name: ECT
-52 [mixed conductive fine powder of titanium oxide and tin oxide (average particle size 0.44μ)] was used.

上記配合からなる組成物を配合5と同様にして、導電性
微粉末/樹脂=60/40 (重量比)の粉末状樹脂組
成物02)を作成した。
A powdered resin composition 02) having the conductive fine powder/resin=60/40 (weight ratio) was prepared by using the composition having the above formulation in the same manner as in Formulation 5.

実施例1 予め、70℃に予熱した固定金型内非塗装部分をマスキ
ングした後、粉末状樹脂組成物(1)を−80KVの電
圧下で静電塗装し、塗膜を形成せしめ、ついでマスキン
グを外し、固定金型と移動金型を密閉した。
Example 1 After masking the unpainted part in a fixed mold preheated to 70°C, the powdered resin composition (1) was electrostatically applied under a voltage of -80 KV to form a coating film, and then masked. was removed, and the fixed mold and movable mold were sealed.

ついで、樹脂温度270℃の耐熱ポリスチレン樹脂液を
、射出圧力約900kg/c111で射出成形した。
Then, a heat-resistant polystyrene resin liquid with a resin temperature of 270° C. was injection molded at an injection pressure of about 900 kg/c111.

かくて、膜厚40μ、表面抵抗値7.5X106オ一ム
/□の均一で帯電防止被膜を有する耐熱性ポリスチレン
成形体を得た。
In this way, a heat-resistant polystyrene molded body having a uniform antistatic coating with a film thickness of 40 μm and a surface resistance value of 7.5×10 6 ohms/□ was obtained.

実施例2 予め、60℃に予熱した固定金型内非塗装部分をマスキ
ングし、粉末状樹脂組成物(2)を、−70KVの電圧
下で静電塗装し、塗膜を形成せしめた後、マスキングを
外した。ついで、固定金型と移動金型を密閉し、樹脂温
度180℃の塩化ビニル樹脂液を、射出圧力約750k
g/CffIで射出成形したところ、膜厚60μ、表面
抵抗値5X10’ オーム/□の均一で帯電防止被膜を
有する塩化ビニル樹脂成形体が得られた。
Example 2 The non-painted parts of the fixed mold, which had been preheated to 60°C, were masked, and the powdered resin composition (2) was electrostatically applied under a voltage of -70 KV to form a coating film. I removed the masking. Next, the fixed mold and the movable mold are sealed, and a vinyl chloride resin liquid with a resin temperature of 180°C is injected at a pressure of about 750 k.
When injection molded with g/CffI, a vinyl chloride resin molded product having a uniform antistatic coating with a film thickness of 60 μm and a surface resistance value of 5×10′ ohm/□ was obtained.

実施例3 予め、90℃に予熱した成形型内の非塗装部分をマスキ
ングし、次いで粉末状樹脂組成物(3)を静電塗装装置
によって一55KVの電圧下で、その型内の塗装部分に
塗装を行い、塗膜を形成せしめた後マスキングを外した
。そして加熱ヒータによって硬質塩化ビニルシートを1
25℃に加熱、軟化せしめ、これを上記成形型にクラン
プ枠によって固定し、次いで真空ポンプによって型内の
空気を真空度72QmmHgの圧力で吸出し、シートを
型面に密着、成形したところ、膜厚60μ、表面抵抗値
3X10’ オーム/□の均一で帯電防止被膜を有する
硬質塩化ビニル樹脂成形体を得られた。
Example 3 The non-painted parts of a mold that had been preheated to 90°C were masked, and then the powdered resin composition (3) was applied to the painted parts of the mold using an electrostatic coating device under a voltage of 155 KV. After painting and forming a paint film, the masking was removed. Then, a hard vinyl chloride sheet is heated using a heater.
The sheet was heated to 25°C to soften it, and was fixed to the above-mentioned mold using a clamp frame. Then, the air inside the mold was sucked out with a vacuum level of 72 QmmHg using a vacuum pump, and when the sheet was tightly attached to the mold surface and molded, the film thickness was determined. A hard vinyl chloride resin molded body having a uniform antistatic coating with a surface resistance of 60 μm and a surface resistance of 3×10′ ohm/□ was obtained.

実施例4 予め、65℃に予熱した固定金型内非塗装部分をマスキ
ングし、粉末状樹脂組成物(4)を−5QKVの電圧下
で静電塗装し、塗膜を形成せしめ、マスキングを外した
。ついで、固定金型と移動金型を密閉し、樹脂温度22
0℃のポリエチレン樹脂液を射出圧力的1100kg/
cnfで射出成形したところ、膜厚50μ、表面抵抗値
1.2X107オ一ム/□の均一で、帯電防止被膜を有
するポリエチレン樹脂成形体が得られた。
Example 4 The non-painted parts of the fixed mold preheated to 65°C were masked in advance, and the powdered resin composition (4) was electrostatically applied under a voltage of -5QKV to form a coating film, and the masking was removed. did. Next, the fixed mold and the movable mold are sealed, and the resin temperature is set to 22.
Injection pressure of 0℃ polyethylene resin liquid is 1100kg/
When injection molded using cnf, a polyethylene resin molded body having a uniform antistatic coating with a film thickness of 50 μm and a surface resistance value of 1.2×10 7 ohms/□ was obtained.

実施例5 温度、60℃の固定金型内非塗装部分をマスキングし、
粉末状樹脂組成物(5)を−70KVの電圧下で静電塗
装した後、マスキングを外し、赤外線ヒーターで金型を
95℃まで加熱し、塗膜を形成せしめた。ついで固定金
型と移動金型を密閉し、樹脂温度230℃のABS樹脂
液を射出圧力的1000kg/an!で射出成形して、
膜厚60μ、表面抵抗値3.5X10’ オーム/□の
均一な帯電防止被膜を有するABS樹脂成形体を得た。
Example 5 Masking the non-painted part in the fixed mold at a temperature of 60°C,
After applying the powdered resin composition (5) electrostatically under a voltage of -70 KV, the masking was removed and the mold was heated to 95° C. with an infrared heater to form a coating film. Next, the fixed mold and the movable mold are sealed, and ABS resin liquid with a resin temperature of 230°C is injected at a pressure of 1000 kg/an! Injection molded with
An ABS resin molded body having a uniform antistatic coating with a thickness of 60 μm and a surface resistance value of 3.5×10′ ohm/□ was obtained.

実施例6 予め、87℃に予熱した成形型内面の非塗装部分をマス
キングし、粉末状樹脂組成物(6)を静電粉体塗装装置
によって一60KVの電圧下で成形型内面の塗装部分に
塗装し、そしてマスキングを外してから型内面を赤外線
ヒータで加熱し、塗膜を形成せしめ195℃でチューブ
状に押出したポリプロピレンを上記成形型にはさみ込み
、チューブ内に3.5 kg / ctdの圧搾空気を
吹き込んで膨張させて、ポリプロピレンを成形型内面に
密着、成形したところ、膜厚60μ、表面抵抗値3.5
X106オ一ム/□の均一な帯電防止被膜を有するポリ
プロピレン樹脂成形体を得られた。
Example 6 The unpainted part of the inner surface of the mold, which had been preheated to 87°C, was masked, and the powdered resin composition (6) was applied to the coated part of the inner surface of the mold under a voltage of -60 KV using an electrostatic powder coating device. After painting and removing the masking, the inner surface of the mold was heated with an infrared heater to form a coating film.The polypropylene extruded into a tube at 195°C was inserted into the mold, and 3.5 kg/ctd of polypropylene was placed inside the tube. When the polypropylene was expanded by blowing compressed air into the mold and molded, the film thickness was 60 μm and the surface resistance value was 3.5.
A polypropylene resin molded article having a uniform antistatic coating of 106 ohms/square was obtained.

実施例7 予め、125℃に予熱した成形型内の非塗装部分をマス
キングし、粉末状樹脂組成物(7)を静電粉体塗装装置
によって一73KVの電圧下で、その型内の塗装部分に
塗装し塗膜を成形せしめた後マスキングを外し、成形型
々内に116℃に予熱したフェノール樹脂粉末を入れ、
成形型を閉じて155℃に加熱し180kg/c++f
の圧力で成形型を圧縮したところ、膜厚50μ、表面抵
抗値2.5X10’オ一ム/□の均一な帯電防止被膜を
有するフェノール樹脂成形体を得られた。
Example 7 The non-painted part in a mold preheated to 125°C was masked, and the powdered resin composition (7) was applied to the painted part in the mold under a voltage of 173 KV using an electrostatic powder coating device. After painting and molding the coating film, the masking was removed and phenol resin powder preheated to 116℃ was put into the molds.
Close the mold and heat to 155℃ to 180kg/c++f
When the mold was compressed at a pressure of 1, a phenolic resin molded article having a uniform antistatic coating with a thickness of 50 μm and a surface resistance of 2.5×10′ ohm/□ was obtained.

実施例8 予め、80℃に予熱した成形型内面の非塗装部分をマス
キングを施し、粉末状樹脂組成物(8)を静電粉体塗装
装置によって一5QKVの電圧下で成形型内面の塗装部
分に塗装し、塗膜を形成せしめた後、マスキングを外し
た。ついで固定金型と移動金型を密閉し、樹脂温度25
0℃のガラス繊維で強化したポリブチレンテレフタレー
ト(PBT)樹脂を射出圧力的1000kg/c+fで
射出成形したところ、膜厚45μ、表面抵抗値3.7X
10’ オーム/□の均一な帯電防止被膜を有するガラ
ス繊維強化PBT樹脂成形体を得られた。
Example 8 The unpainted part of the inner surface of the mold preheated to 80° C. was masked, and the powdered resin composition (8) was applied to the coated part of the inner surface of the mold under a voltage of -5 QKV using an electrostatic powder coating device. After coating and forming a coating film, the masking was removed. Then, the fixed mold and the movable mold are sealed, and the resin temperature is set to 25.
When polybutylene terephthalate (PBT) resin reinforced with glass fiber at 0°C was injection molded at an injection pressure of 1000kg/c+f, the film thickness was 45μ and the surface resistance was 3.7X.
A glass fiber-reinforced PBT resin molded body having a uniform antistatic coating of 10' ohm/□ was obtained.

実施例9 予め、120℃に予熱した全型内非塗装部分をマスキン
グし、粉末状樹脂組成物(9)を−70にVの電圧下で
静電塗装し、塗膜を形成せしめた後、マスキングを外し
た。ついで固定金型と移動金型を密閉し、樹脂温度26
0℃のポリカーボネート樹脂液を射出圧力的1500 
kg/cutで射出成形して、膜厚40μ、表面抵抗値
8.5XIQ’ オーム/□の均一な帯電防止被膜を有
するポリカーボネート樹脂成形体を碍た。
Example 9 The unpainted parts of the entire mold, which had been preheated to 120°C, were masked, and the powdered resin composition (9) was electrostatically applied under a voltage of -70 V to form a coating film. I removed the masking. Then, the fixed mold and the movable mold are sealed, and the resin temperature is set to 26.
Injection pressure of 0℃ polycarbonate resin liquid was 1500℃.
A polycarbonate resin molded body having a uniform antistatic coating with a thickness of 40 μm and a surface resistance value of 8.5×IQ′ ohm/□ was obtained by injection molding at a weight of 1.5 kg/cut.

実施例10 予め、150℃に予熱した全型内非塗装部分をマスキン
グし、前記粉末状樹脂組成物αQを−60にVの静電圧
下で静電塗装し、塗膜を形成せしめた後マスキングを外
した。ついで固定金型と移動金型を密閉し、樹脂温度3
30℃のPPO(ポリフェニレンオキサイド)樹脂を射
出圧力1500 kg/ cfflで射出成形して、P
PO樹脂成形体を得た。
Example 10 All non-painted parts in the mold preheated to 150°C were masked, and the powdered resin composition αQ was electrostatically coated under an electrostatic voltage of -60 V to form a coating film, and then masked. I removed it. Then, the fixed mold and the movable mold are sealed, and the resin temperature is set to 3.
PPO (polyphenylene oxide) resin at 30℃ is injection molded at an injection pressure of 1500 kg/cffl.
A PO resin molded body was obtained.

帯電防止被膜は、樹脂を射出するノズル近辺の塗膜面に
や\ムラが発生したが、平均膜厚40μ、表面抵抗値5
.5X105オ一ム/□の帯電防止被膜であった。
The antistatic coating had some unevenness on the coating surface near the nozzle that injects the resin, but the average coating thickness was 40μ and the surface resistance was 5.
.. It was an antistatic coating of 5×105 ohm/□.

実施例11 予め、90℃に予熱した成形型内面の非塗装部分をマス
キングを処し、粉末状樹脂組成物 を静電粉体塗装装置
によってその成形型の塗装部分を塗装した後マスキング
を外し、塗膜を形成せしめ175℃でチューブ状に押出
したポリエチレン樹脂を上記成形型にはさみ込み、3.
2 kg / Crdの圧搾空気を吹き込み、チューブ
を膨らませ型内面に密着、成形したところ、膜厚60μ
、表面抵抗値1.5X105オ一ム/□の均一な帯電防
止被膜を佇するポリエチレン樹脂成形体を得られた。
Example 11 The unpainted part of the inner surface of a mold that had been preheated to 90°C was masked, and the powdered resin composition was applied to the painted part of the mold using an electrostatic powder coating device, and then the masking was removed and the coating was applied. A polyethylene resin formed into a film and extruded into a tube at 175° C. was inserted into the mold, and 3.
When 2 kg/Crd of compressed air was blown into the tube and the tube was tightly attached to the inner surface of the mold, the film thickness was 60μ.
A polyethylene resin molded article having a uniform antistatic coating with a surface resistance value of 1.5×10 5 ohms/□ was obtained.

実施例12 予め、105℃に予熱した全型内非塗装部分をマスキン
グし、前記粉末状樹脂組成物 を−80KVの電圧で静
電塗装し、塗膜を形成せしめた後マスキングを外した。
Example 12 All unpainted parts of the mold, which had been preheated to 105°C, were masked, and the powdered resin composition was electrostatically coated at a voltage of -80 KV to form a coating film, and then the masking was removed.

ついで固定金型と移動金型を密閉し、樹脂温度240℃
のポリプロピレン樹脂液を射出圧力1500kg/Cl
11で射出成形して、膜厚60μ、表面抵抗値1.8X
106オ一ム/□の均一な帯電防止被膜を有するポリプ
ロピレン樹脂成形体を得た。
Then, the fixed mold and the movable mold are sealed, and the resin temperature is set to 240℃.
injection pressure of polypropylene resin liquid of 1500 kg/Cl
Injection molded with 11, film thickness 60μ, surface resistance value 1.8X
A polypropylene resin molded body having a uniform antistatic coating of 106 ohm/□ was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図C工程は本発明方法の一例である射出成形方法を
示す工程概略図である。 第2図は第1図C工程における点線部分の拡大図、第3
図は本発明方法により得られたプラスチック成形体の拡
大断面図である。 1・・・・・・プラスチック成形体、 2・・・・・・帯電防止被膜、 3・・・・・・成形金
型、4・・・・・・マスキング材、  5・・・・・・
静電塗′!A機。 マ一一 特開昭62−212115 (If) 第2図 第3図
Step C in FIG. 1 is a process schematic diagram showing an injection molding method which is an example of the method of the present invention. Figure 2 is an enlarged view of the dotted line in process C in Figure 1;
The figure is an enlarged sectional view of a plastic molded article obtained by the method of the present invention. 1... Plastic molded body, 2... Antistatic coating, 3... Molding mold, 4... Masking material, 5...
Electrostatic coating! Machine A. Maichi JP 62-212115 (If) Figure 2 Figure 3

Claims (8)

【特許請求の範囲】[Claims] (1)プラスチック成形方法において、導電性微粉末を
1〜95重量%の範囲で含有する粉末状熱硬化性又は熱
可塑性樹脂組成物を静電塗装により金型内に塗布した後
、プラスチック素材を充填成形し、充填素材熱及び/又
は成形時の熱により前記粉末状樹脂組成物を可塑化圧縮
して、成形プラスチック表面に熱硬化性又は熱可塑性樹
脂被膜を密着形成させることを特徴とする、プラスチッ
ク成形体表面に10^3オーム/□より大きく10^1
^1オーム/□以下の帯電防止被膜を形成されるプラス
チック成形方法。
(1) In a plastic molding method, a powdered thermosetting or thermoplastic resin composition containing conductive fine powder in a range of 1 to 95% by weight is applied into a mold by electrostatic coating, and then the plastic material is Filling and molding is performed, and the powdered resin composition is plasticized and compressed using the heat of the filling material and/or the heat during molding to form a thermosetting or thermoplastic resin film in close contact with the surface of the molded plastic. 10^3 ohm on the surface of the plastic molded object/10^1 larger than □
A plastic molding method that forms an antistatic coating of ^1 ohm/□ or less.
(2)プラスチック成形方法が、射出成形方法、ブロー
成形方法、又は真空成形方法である特許請求の範囲第(
1)項記載のプラスチック成形方法。
(2) The plastic molding method is an injection molding method, a blow molding method, or a vacuum forming method.
1) Plastic molding method described in section 1).
(3)金型は、予め予熱されている金型である特許請求
の範囲第(1)項又は第(2)項記載のプラスチック成
形方法。
(3) The plastic molding method according to claim (1) or (2), wherein the mold is a preheated mold.
(4)粉末状熱硬化性又は熱可塑性樹脂組成物を静電塗
装により金型内に塗装し、ついで加熱により前記粉末状
樹脂組成物を融着、又は硬化させた後、成形する特許請
求の範囲第(1)項、第(2)項又は第(3)項記載の
プラスチック成形方法。
(4) A patent claim in which a powdered thermosetting or thermoplastic resin composition is applied inside a mold by electrostatic coating, and then the powdered resin composition is fused or cured by heating and then molded. The plastic molding method according to scope item (1), item (2), or item (3).
(5)粉末状樹脂組成物に使用する樹脂成分の融点及び
硬化点と、金型予熱温度とは、(融点+10℃)≧金型
予熱温度≧軟化点、の関係にある特許請求の範囲第(3
)項記載のプラスチック成形方法。
(5) The melting point and hardening point of the resin component used in the powdered resin composition and the mold preheating temperature have a relationship of (melting point + 10°C) ≧ mold preheating temperature ≧ softening point. (3
The plastic molding method described in ).
(6)粉末状樹脂組成物は、水可溶性溶媒、水不溶性で
かつ前記溶媒可溶性樹脂、及び導電性微粉末からなる液
体組成物を、水中で分散、造粒、溶媒抽出した後、分離
し、乾燥する湿式造粒法により得られた粉末状樹脂組成
物である特許請求の範囲第(1)項記載のプラスチック
成形方法。
(6) The powdered resin composition is obtained by dispersing, granulating, and solvent extracting a liquid composition consisting of a water-soluble solvent, the water-insoluble and solvent-soluble resin, and a conductive fine powder in water, and then separating the liquid composition. The plastic molding method according to claim 1, which is a powdered resin composition obtained by drying wet granulation.
(7)粉末状樹脂組成物は、導電性カーボンを1〜50
重量%含有する特許請求の範囲第(1)項記載のプラス
チック成形方法。
(7) The powdered resin composition contains 1 to 50 conductive carbon.
% by weight of the plastic molding method according to claim (1).
(8)粉末状樹脂組成物は、導電性カーボン以外の導電
性微粉末を30〜95重量%含有する特許請求の範囲第
(1)項記載のプラスチック成形方法。
(8) The plastic molding method according to claim (1), wherein the powdered resin composition contains 30 to 95% by weight of conductive fine powder other than conductive carbon.
JP5637986A 1986-03-14 1986-03-14 Plastic molding method Pending JPS62212115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5637986A JPS62212115A (en) 1986-03-14 1986-03-14 Plastic molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5637986A JPS62212115A (en) 1986-03-14 1986-03-14 Plastic molding method

Publications (1)

Publication Number Publication Date
JPS62212115A true JPS62212115A (en) 1987-09-18

Family

ID=13025623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5637986A Pending JPS62212115A (en) 1986-03-14 1986-03-14 Plastic molding method

Country Status (1)

Country Link
JP (1) JPS62212115A (en)

Similar Documents

Publication Publication Date Title
KR900003733B1 (en) Molding of plastic
TW293099B (en)
US3911161A (en) Electrostatic spray-coating with hot melt compositions
US6746626B2 (en) Graphite polymers and methods of use
US4680139A (en) Electrostatically conductive premold coating
JPH04227667A (en) Surface-treaterd metal oxide and preparation thereof
JPS62212115A (en) Plastic molding method
US20060226393A1 (en) Plastic magnet precursor, production method for the same, and plastic magnet
JPS61220813A (en) Molding of plastic
JPS61209115A (en) Molding of plastic
JPS62259828A (en) Method for molding plastic
JPS62260093A (en) Method for plating plastic product
JPH0358573B2 (en)
CN101534965A (en) Process for coating a substrate with a coating
JPS62259830A (en) Manufacture of plastic molded body
JPS61132317A (en) Method of molding plastic
JPS63159024A (en) Manufacture of plastic molded product
JPS63147617A (en) Preparation of plastic molding
JPS61126185A (en) Composition in powder
JPH03158216A (en) Method for molding plastic
US6299937B1 (en) Methods and means for modifying the surfaces of polymeric solids
JPS63147618A (en) Preparation of plastic molding
JP3779047B2 (en) Film forming method and powder coating used therefor
JPH105635A (en) Electrostatic powder spray coating method and apparatus therefor
KR100350698B1 (en) A coating method using the thermoplastic powder