JPS62212009A - Method for controlling tension between stands of continuous rolling mill - Google Patents

Method for controlling tension between stands of continuous rolling mill

Info

Publication number
JPS62212009A
JPS62212009A JP61055715A JP5571586A JPS62212009A JP S62212009 A JPS62212009 A JP S62212009A JP 61055715 A JP61055715 A JP 61055715A JP 5571586 A JP5571586 A JP 5571586A JP S62212009 A JPS62212009 A JP S62212009A
Authority
JP
Japan
Prior art keywords
looper
tension
stands
control device
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61055715A
Other languages
Japanese (ja)
Inventor
Takayuki Kachi
孝行 加地
Mikio Kondo
幹夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61055715A priority Critical patent/JPS62212009A/en
Publication of JPS62212009A publication Critical patent/JPS62212009A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To eliminate the instability of responses and to stably control tensions by estimating a state amount and controlling tensions, excluding the influence of a detector. CONSTITUTION:A speed target value correcting amount VR of a mill speed controller and a current target value correcting amount GR of a looper torque controller are denoted as manipulated variables and respective deviations DELTAV, DELTAdelta, DELTAg, DELTAN, and DELTAtheta from a mill speed deviation detecting value, a deviation detecting value for a tension between stands, a looper torque deviation detecting value, a looper angle speed detecting value, and a looper angle deviation detecting value are denoted as quantities of state. An arithmetic unit estimates thereof, performs integrations by a proportional action of the proportional gain (f) and the integral gain K, and corrects the VR and GR.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続式圧延機スタンド間のルーパのルーパ角
度およびスタンド間張力を所望値に制御する制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method for controlling the looper angle of a looper between stands of a continuous rolling mill and the tension between the stands to desired values.

〔従来の技術〕[Conventional technology]

ルーパの基本的な構成とこれを制御する制御装置のブロ
ック図を第2図に示す、被圧延材料1は前方圧延スタン
ド2を通過した後、後方圧延スタンド3へ進行し、この
間でルーパ4と接触°している。
The basic configuration of the looper and a block diagram of the control device that controls it are shown in FIG. are in contact.

従来の技術は、ミル速度[V]、スタンド間張力[σ]
、ルーパトルク[g]、ルーパ角速度[N]、ルーバ角
度[θ]を検出器11.12゜13.14.15により
検出し、これらの検出値Vm、crm、gm、Nm、0
mを特徴とする制御開始時からの各々の偏差ΔVm、Δ
σm・6gm、ΔNm、ΔOrn、およびミル速度制御
装置の速度目標値修正量[VR]、ルーパトルク制御装
置電流目標値修正量[GRlの2次形式時間積分型評価
関数が最小となるように、状態量に比例動作を行い、ま
た出力とするスタンド間張力検出値[σm]およびルー
パ角度検出値[θm]と各々の目標値[σref ]、
[θref ]との偏差[Δσref ]、[Δθre
f ]に積分動作を行い、速度目標値修正量および電流
目標値修正量を修正するものであった(特公昭59−4
4129)(特開昭59−118213)。
In the conventional technology, mill speed [V], tension between stands [σ]
, looper torque [g], looper angular velocity [N], and louver angle [θ] are detected by detectors 11.12°13.14.15, and these detected values Vm, crm, gm, Nm, 0
Each deviation ΔVm, Δ from the start of control characterized by m
σm・6gm, ΔNm, ΔOrn, the speed target value correction amount [VR] of the mill speed control device, the current target value correction amount [GRl] of the looper torque control device so that the quadratic time integral type evaluation function of The inter-stand tension detection value [σm] and the looper angle detection value [θm] are operated in proportion to the amount, and the detected value of the looper angle [θm] and each target value [σref] are output.
Deviation [Δσref ] from [θref ], [Δθre
f ] to perform an integral operation to correct the speed target value correction amount and the current target value correction amount (Japanese Patent Publication No. 59-4
4129) (Japanese Patent Application Laid-Open No. 59-118213).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の技術においては特に検出器に対する考慮がなされ
ていないが、速い応答性を実現するためには検出器の動
特性も考慮する必要がある。該ルーパ系では、非常に速
い応答性が要求されており、その実現にあたっては、検
出器の動特性を考慮しないと、例えば第3図に示したよ
うに、ルーパ角速度検出器を考慮した場合のスタンド間
張力検出値の応答が不安定となる。
In conventional techniques, no particular consideration is given to the detector, but in order to achieve fast response, it is necessary to also consider the dynamic characteristics of the detector. The looper system is required to have extremely fast response, and in order to achieve this, the dynamic characteristics of the detector must be taken into account. The response of the inter-stand tension detection value becomes unstable.

本発明では状!、1の検出量ΔVm、Δσm、6gm、
ΔNm、ΔOmおよび操作量VR,GRからΔV、Δσ
、Δg、ΔN、Δθを推定し、制御にあたっては、見か
け玉検出器が存在しないとして、検出器の影響を除外し
て制御し、応答の不安定性を除去し安定な張力制御を行
うことを目的とする。
In this invention, the state! , 1 detection amount ΔVm, Δσm, 6gm,
ΔV, Δσ from ΔNm, ΔOm and manipulated variables VR, GR
, Δg, ΔN, and Δθ, and control is performed by excluding the influence of the detector, assuming that there is no apparent ball detector, to eliminate response instability and perform stable tension control. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、狭義のルーパ系としてルーパ制御系を2人力
2出力5次元の多変数制御系としており、操作量は、ル
ーパトルク制御装置の電流目標値修正量およびミル速度
制御装置の速度目標値修正量としている。また状態量は
、操作量およびミル速度検出値・スタンド間張力検出値
・ルーパトルク検出値・ルーパ角速度検出値・ルーパ角
度検出値より推定したミル速度拳スタンド間張力Φルー
パトルク0ルーパ角速度・ルーパ角度の各々の制御開始
時からの偏差である。出力は先に推定したスタンド間張
力偏差およびルーパ角度偏差としている。これらの状態
量および出力に所要演算を行う。
The present invention uses a looper control system as a looper system in a narrow sense as a two-man, two-output, five-dimensional multivariable control system, and the manipulated variables are the current target value correction amount of the looper torque control device and the speed target value correction of the mill speed control device. It is the amount. In addition, the state quantities are the mill speed, tension between stands, Φ looper torque, 0 looper angular velocity, and looper angle estimated from the operation amount, mill speed detection value, inter-stand tension detection value, looper torque detection value, looper angular velocity detection value, and looper angle detection value. This is the deviation from the start of each control. The outputs are the inter-stand tension deviation and looper angle deviation estimated previously. Necessary calculations are performed on these state quantities and outputs.

このような狭義のルーパ系での各状態量の検出値を状態
量かつ出力とする広義のルーパ系を設定し、前記操作量
および広義のルーパ系の出力から狭義のルーパ系におけ
る状態量を推定する。
A broad-sense looper system is set in which the detected values of each state quantity in the narrow-sense looper system are state quantities and outputs, and the state quantities in the narrow-sense looper system are estimated from the manipulated variables and the outputs of the broad-sense looper system. do.

次に狭義のルーパ系において推定された状態量に対応し
て操作量を補正すると共に、制御開始時からの狭義のル
ーパ系での出力目標値と出力との偏差に対応させて、操
作量を補正する構成となっている。
Next, the manipulated variable is corrected in accordance with the state quantity estimated in the looper system in the narrow sense, and the manipulated variable is corrected in accordance with the deviation between the output target value and the output in the looper system in the narrow sense from the start of control. The configuration is configured to correct this.

〔作用〕[Effect]

第1図は本発明に係るルーパ制御系の構成を示す制御ブ
ロック図である。第1図は制御開始時の値を基準値とし
、偏差で表現している。
FIG. 1 is a control block diagram showing the configuration of a looper control system according to the present invention. In FIG. 1, the value at the start of control is used as a reference value, and is expressed as a deviation.

ここで。here.

ミル速度制御装置の速度目標値修正量:[VR] ルーパトルク制御装置の電流目標値修正量=[GRl ミル速度偏差検出値[ΔVml スタンド間張力偏差検出値[Δσm] ルーパトルク偏差検出値[Δgml ルーパ角速度検出値[ΔNml ルーパ角度偏差検出値[ΔOm] から、各状態量 [ΔV] 、[Δσ]、[Δg] 、[ΔN]  。Mill speed control device speed target value correction amount: [VR] Looper torque control device current target value correction amount = [GRl Mill speed deviation detection value [ΔVml Inter-stand tension deviation detection value [Δσm] Looper torque deviation detection value [Δgml Looper angular velocity detection value [ΔNml Looper angle deviation detection value [ΔOm] From, each state quantity [ΔV], [Δσ], [Δg], [ΔN].

[Δθ] を後述する方法を用い、演算装置2より[Δθ] と推定し、比例ゲインfの比例動作および積分ゲインK
による積分動作を行い、 速度目標値修正量[V R1 電流目標値修正量[、GR] の補正を後述する方法により行っている。
[Δθ] is estimated by the arithmetic unit 2 using the method described later, and the proportional operation of the proportional gain f and the integral gain K
An integral operation is performed, and the speed target value correction amount [V R1 current target value correction amount [, GR] is corrected by the method described later.

次に上述のように構成した本発明の連続圧延機のルーパ
制御装置の作用を説明する。
Next, the operation of the continuous rolling mill looper control device of the present invention constructed as described above will be explained.

連続圧延機のルーパ動特性モデルは非線形モデルである
が、これを定常状態の近傍でテーラ−展開した時の検出
器を含む制御対象を線形状態方程式で表現すると次の■
式、■式のようになる。
The looper dynamic characteristic model of a continuous rolling mill is a nonlinear model, but when it is expanded by Taylor in the vicinity of a steady state, the controlled object including the detector is expressed as a linear state equation as follows:
It becomes like the expression,■expression.

i;λi+百U        ・・・(Di工Cx 
           ・・・■ただし、 i:時間微分d x / d t x、u、y:各々下記■、■、6式で示されるベクトル λ、百、C: (IOXIO)、 (10X2)、 (5X10)の定数行列 である、ここにtは転置を表わす。
i; λi + 100 U ... (Di engineering Cx
...■ However, i: time differential d x / d t x, u, y: respectively below ■, ■, vector λ shown in formula 6, 100, C: (IOXIO), (10X2), (5X10) is a constant matrix, where t represents the transpose.

x=(ΔV、ΔVm、Δσ、Δσm、Δg。x=(ΔV, ΔVm, Δσ, Δσm, Δg.

Δgm、AN、 ΔNm、Aθ、Δθm)1・・・■ u=  (VR、GR)’           =(
JV =  (ΔVm 、 Δσm 、 4gm 、 
ΔNm 。
Δgm, AN, ΔNm, Aθ, Δθm)1...■ u= (VR, GR)' = (
JV = (ΔVm, Δσm, 4gm,
ΔNm.

60m) t               ・・・■
状態量ΔV、Δσ、Δg、ΔN、Δθを以下の方法によ
り推定する。但し”−”は推定値であることを示す。
60m) t...■
The state quantities ΔV, Δσ, Δg, ΔN, and Δθ are estimated by the following method. However, "-" indicates an estimated value.

H,Gは(5X5)の定数行列であり、Hはλと共通な
固有値を持たないように与える。
H and G are (5×5) constant matrices, and H is given so that it does not have a common eigenvalue with λ.

マ=L1轡+L2Y         、−(6)とマ
を構成するものとする。
It is assumed that Ma=L1轡+L2Y, -(6) constitutes Ma.

5次元ベクトル(w=Tマ;T:  (5X10)の定
数行列)の推定値Wを0式より求める。
The estimated value W of a five-dimensional vector (w=Tma; T: (5×10) constant matrix) is obtained from equation 0.

w=Hw+Gy+T#″Hau     −(7)ただ
しTは次の0式が成り立つように選ぶ。
w=Hw+Gy+T#″Hau − (7) However, T is selected so that the following equation 0 holds true.

Tλ〜HT=GC・・・■ このとき■■■■式より w−Tx=H(w−Tx)       ・−C9)と
なりHのすべての固有性が負または負の実数部をもつよ
うにすれば轡はTxへ漸近する。そして(0式より ・・・(10) したがって となるようにTを選べばiが指定できる。
Tλ~HT=GC...■ At this time, from the formula ■■■■ w-Tx=H (w-Tx) ・-C9), so that all uniqueness of H has a negative or negative real part. The word asymptotes to Tx. Then, if T is chosen so that (from equation 0...(10)), then i can be specified.

得られた推定値を用い新たにルーパ系を状態方程式で表
現すると(12)、 (13)式のようになる。
When the looper system is newly expressed by a state equation using the obtained estimated value, the results are as shown in equations (12) and (13).

1=Ax+B * u          ・・−(1
2)y=cx              ・・・(1
3)ただし、x、yは(14)(15)式で示されるベ
クトルであり、A、B、Cは(5X 5)、(5X2)
、(2X5)の定数行列である。
1=Ax+B*u...-(1
2) y=cx...(1
3) However, x and y are vectors shown in equations (14) and (15), and A, B, and C are (5X 5) and (5X2)
, (2×5) constant matrix.

x= (V、 cr、g、N、θ)t    −(14
)y=(σ、θ)t         ・・・(15)
ルーパ制御の制御目的は目標値に対するスタンド間張力
およびルーパ高さの変動および偏差を小さく抑えること
にあり、積分型制御系の制御法を用いると次式により操
作量を構成すればよい。
x= (V, cr, g, N, θ)t − (14
)y=(σ, θ)t...(15)
The purpose of the looper control is to suppress fluctuations and deviations of the inter-stand tension and the looper height with respect to the target values, and if the control method of the integral type control system is used, the manipulated variable can be configured using the following equation.

u=−R’B” P21f  (y−yR)dt−R−
1B” P22x          −・−(1B)
ここで R:  (2X2)の正値行列 yR:出力ベクルトのl標値ベクトル P21、P22:各々(5X2)、(5X5)の定数行
列 であり、次の(17)式で示されるRiccati方程
式の解Pの部分行列である。
u=-R'B" P21f (y-yR)dt-R-
1B” P22x −・−(1B)
Here, R: (2X2) positive value matrix yR: l standard value vector of output vector P21, P22: constant matrices (5X2) and (5X5), respectively, and the Riccati equation shown in the following equation (17). It is a submatrix of solution P.

(17)式中のA、Bは次の(1B)(19)式で示さ
れる(7X7)、(7X2  )の定数行列であり、Q
は(7X7)の正値行列である。
A and B in equation (17) are constant matrices of (7X7) and (7X2) shown in the following equations (1B) and (19), and Q
is a (7×7) positive value matrix.

上記(16)式をブロック図化したものが第1図である
。なお、上述の構成では、状態ベクトルおよび出力ベク
トルの要素全てに推定値を用いて制御を行っているが、
制御性に影テを与えない検出器も存在する。そこでそれ
らは、特に検出値と推定値を区別する必要はなく、第1
図における比例動作および積分動作を直接これらの検出
値に対して行ってもよい、また、状態量を推定するにあ
たり、全ての検出値を用いて行う必要はなく、ミル速度
、ルーパトルク、ルーパ角速度は省略可能である。
FIG. 1 is a block diagram of the above equation (16). Note that in the above configuration, control is performed using estimated values for all elements of the state vector and output vector, but
There are also detectors that do not affect controllability. Therefore, there is no need to distinguish between detected values and estimated values;
The proportional action and integral action in the figure may be performed directly on these detected values, and it is not necessary to use all detected values when estimating the state quantity, and the mill speed, looper torque, and looper angular velocity are Optional.

〔実施例〕〔Example〕

第1図に示す制御系構成ブロックに従い制御を行い、ス
タンド間張力目標値をステップ状にIKgf/mrn’
から2Kgf/mm”に変化させた時の応答を第4図に
示す、これから明らかなように、従来の方法では第3図
に示すように応答を速くしようとすると検出器の動特性
の影響により。
Control is performed according to the control system configuration block shown in Fig. 1, and the inter-stand tension target value is adjusted in steps to IKgf/mrn'.
Figure 4 shows the response when the response is changed from 2Kgf/mm'' to 2Kgf/mm. .

応答が不安定であったものが、本発明法により速くかつ
安定な応答を実現できる。
Although the response was unstable, the method of the present invention can realize a fast and stable response.

〔発明の効果〕〔Effect of the invention〕

非常に速い応答性が要求されるルーパ張力制御系におい
て、検出器が持つ検出遅れの影響をなくし、また、状態
量を推定する方法により、少ない検出器によって速くて
安定な応答性を実現するものであり、被圧延材の板厚、
板幅精度の向上など、品質向上に貢献する所は極めて大
きい。
In a looper tension control system that requires extremely fast response, this system eliminates the effects of the detection delay of detectors and achieves fast and stable response with a small number of detectors by estimating the state quantity. and the thickness of the rolled material,
It greatly contributes to quality improvement, such as improving plate width accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成を示すブロック図、第2
図は従来の制御方法の構成を示すブロック図、第3図は
ルーパ角速度検出器を考慮した時の従来の方法による応
答を示すグラフ、第4図は本発明による制御系の応答を
示すグラフである。 1・・・被圧延材 2.3・・・圧延機スタンド 4・・・ルーパ 11・・・ミル速度検出器 12・・・スタンド間張力検出器 13・・・ルーパトルク検出器 14・・・ルーパ角速度検出器 15・・・ルーパ角度検出器 21・・・ミル速度制御装置 22・・・ルーパトルク制御装置 31・・・演算装置 41・・・スタンド間張力発生機構 51〜52・・・積分器 32・・・演算装置
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG.
Figure 3 is a block diagram showing the configuration of a conventional control method, Figure 3 is a graph showing the response of the conventional method when a looper angular velocity detector is considered, and Figure 4 is a graph showing the response of the control system according to the present invention. be. 1... Rolled material 2.3... Rolling mill stand 4... Looper 11... Mill speed detector 12... Inter-stand tension detector 13... Looper torque detector 14... Looper Angular velocity detector 15... Looper angle detector 21... Mill speed control device 22... Looper torque control device 31... Arithmetic device 41... Inter-stand tension generation mechanism 51-52... Integrator 32 ...Arithmetic device

Claims (1)

【特許請求の範囲】 1 連続式圧延機のスタンド間に配置されたルーパのト
ルク制御装置およびミル速度制御装置よりなる張力制御
装置を備えて、ルーパ角度及びスタンド間張力を所定値
に制御するに際し、次の(a)および(b)工程を含む
ことによりルーパトルクおよびミル速度を同時に操作す
ることを特徴とする連続式圧延機スタンド間張力制御方
法。 (a)ミル速度制御装置の速度目標値修正 量及びルーパトルク制御装置の電流目標値修正量を操作
量とし、ミル速度・スタンド間張力・ルーパトルク・ル
ーパ角速度・ルーパ角度の各々の制御開始時からの偏差
を状態量とし、スタンド間張力およびルーパ角度の各々
の制御開始時からの偏差を出力とする狭義のルーパ系を
設定して、該狭義のルーパ系で の、各状態量の検出値を状態量かつ、出力とする広義の
ルーパ系を設定し、前記操作量および広義のルーパ系の
出力から狭義のルーパ系における状態量を推定する。 (b)狭義のルーパ系において推定された 状態量に対応して操作量を補正するとともに制御開始時
からの狭義のルーパ系での出力目標値と出力との偏差に
対応させて操作量を補正する。
[Claims] 1. A tension control device consisting of a looper torque control device and a mill speed control device disposed between stands of a continuous rolling mill to control the looper angle and inter-stand tension to predetermined values. A method for controlling tension between stands of a continuous rolling mill, characterized in that looper torque and mill speed are simultaneously controlled by including the following steps (a) and (b). (a) The speed target value correction amount of the mill speed control device and the current target value correction amount of the looper torque control device are used as manipulated variables, and each of the mill speed, tension between stands, looper torque, looper angular velocity, and looper angle is adjusted from the start of control. A narrow-sense looper system is set in which the deviation is the state quantity and the deviation from the start of control of each of the tension between stands and the looper angle is set as the output, and the detected value of each state quantity in the narrow-sense looper system is set as the state. A looper system in a broad sense is set as a quantity and output, and a state quantity in the looper system in a narrow sense is estimated from the manipulated variable and the output of the looper system in a narrow sense. (b) Correct the manipulated variable in accordance with the state quantity estimated in the looper system in the narrow sense, and correct the manipulated variable in accordance with the deviation between the output target value and the output in the looper system in the narrow sense from the start of control. do.
JP61055715A 1986-03-13 1986-03-13 Method for controlling tension between stands of continuous rolling mill Pending JPS62212009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61055715A JPS62212009A (en) 1986-03-13 1986-03-13 Method for controlling tension between stands of continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61055715A JPS62212009A (en) 1986-03-13 1986-03-13 Method for controlling tension between stands of continuous rolling mill

Publications (1)

Publication Number Publication Date
JPS62212009A true JPS62212009A (en) 1987-09-18

Family

ID=13006572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61055715A Pending JPS62212009A (en) 1986-03-13 1986-03-13 Method for controlling tension between stands of continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS62212009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010061655A (en) * 1999-12-28 2001-07-07 이구택 Response time control apparatus of hot strip mill and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010061655A (en) * 1999-12-28 2001-07-07 이구택 Response time control apparatus of hot strip mill and its control method

Similar Documents

Publication Publication Date Title
JP3492583B2 (en) Servo control device
JPH0683403A (en) Adaptive pi control system
TW404860B (en) Control device and control method
JP2005293564A (en) Position control device having sliding mode controller
JPS62212009A (en) Method for controlling tension between stands of continuous rolling mill
JPS60263206A (en) Control device of manipulator
JPH0580805A (en) Adaptive sliding mode control system based on pi control loop
JPH0378003A (en) Fuzzy controller
JP3125015B2 (en) Drive controller for orthogonal robot
JP4078396B2 (en) Positioning control device
JP2575818B2 (en) Plant control device
JP2740618B2 (en) Looper control device
JP2672700B2 (en) Rolled material meandering control device
JP3437415B2 (en) Control device for continuous rolling mill
JPH08155522A (en) Method for controlling hot continuous finishing mill
JP2564430B2 (en) Tension looper angle controller between stands of continuous rolling mill
JPS6011571B2 (en) Slip detection method and inter-stand tension control method and device using the same
JPH0811245B2 (en) Looper control device for continuous rolling mill
US6975787B2 (en) Non-linear method for micro-mirror control
JPH08155520A (en) Device for controlling tension of rolling stock in continuous rolling mill
JPH09285809A (en) Controller for looper of continuous rolling mill
JPH1119707A (en) Method for controlling tension of material to be rolled and looper angle in continuous rolling mill and device therefor
JP3194306B2 (en) Control equipment for multi-high rolling equipment
JPS62118911A (en) Method for controlling inter-stand tension of continuous type rolling mill
JPH0261325B2 (en)