JPS62211549A - Radiation image processing method - Google Patents

Radiation image processing method

Info

Publication number
JPS62211549A
JPS62211549A JP61054062A JP5406286A JPS62211549A JP S62211549 A JPS62211549 A JP S62211549A JP 61054062 A JP61054062 A JP 61054062A JP 5406286 A JP5406286 A JP 5406286A JP S62211549 A JPS62211549 A JP S62211549A
Authority
JP
Japan
Prior art keywords
radiation
image
energy
ratio
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61054062A
Other languages
Japanese (ja)
Other versions
JPH0833916B2 (en
Inventor
Hiroshi Tsutsui
博司 筒井
Matsuki Baba
末喜 馬場
Yasuichi Oomori
大森 康以知
Osamu Yamamoto
理 山本
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61054062A priority Critical patent/JPH0833916B2/en
Publication of JPS62211549A publication Critical patent/JPS62211549A/en
Publication of JPH0833916B2 publication Critical patent/JPH0833916B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To display the concentration of the property itself of the material in a subject or gradations when a different material is contained by obtaining an absorption coefficient ratio from transmission images obtained by radial rays which differ in energy and visualizing it as an image. CONSTITUTION:The object is photographed by being projected with >=2 kinds of different-energy radiation in the same direction. The natural logarithmic value of the ratio of the incident radiation intensity and transmitted radiation intensity of each picture element of a transmission radiation image for each energy value is compared with that for another different energy value. A value measured by this method is the real ratio of mean absorption coefficients of radiation-transmitted parts to the different radial rays. Namely, an image consisting of those picture elements is an image from which information on the thickness of the subject is removed. This image consists of only the nature of the material constituting the subject to radiation.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は医療に用いられるX線診断装置あるいは工業
に用いられる非破壊検査装置に用いられる画像処理方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an image processing method used in an X-ray diagnostic device used in medical treatment or a non-destructive inspection device used in industry.

従来の技術 被写体の一方向から放射線を照射し、透過した放射線に
より得られる透過像の成分は、基本的に吸収係数と厚さ
の積から成っている0 第2図に放射線透過の基本原理を示す0被写体1の斜線
部を透過する放射線について考える。特定のエネルギー
2の放射線の入射強度なl1n(IC)。
Conventional technology The component of the transmitted image obtained by irradiating radiation from one direction of the object and the transmitted radiation basically consists of the product of absorption coefficient and thickness. Figure 2 shows the basic principle of radiation transmission. Consider the radiation that passes through the shaded area of object 1 shown in FIG. Incident intensity of radiation of specific energy 2, l1n (IC).

透過強度を工out(E)、斜線部の平均吸収係数をμ
(幻とし、厚さをXとすると、次式が成立する。
The transmission intensity is calculated as (E), and the average absorption coefficient of the shaded area is μ.
(If it is an illusion and the thickness is X, the following formula holds true.

Iout(IC)=Iin(IC))Cp(μ(IC)
・)C)   ・−・−(1)(1)式で示されるよう
に、透過放射線の強度変化はμCX)とXの積μ(K)
・Xの成分の変化である。
Iout(IC)=Iin(IC))Cp(μ(IC)
・)C) ・-・-(1) As shown in equation (1), the change in the intensity of transmitted radiation is the product μ(K) of μCX) and X
・It is a change in the components of X.

すなわち透過放射線画像には常に被写体の厚さの情報が
含まれている。
That is, a transmitted radiation image always includes information about the thickness of the subject.

発明が解決しようとする問題点 透過画像に被写体の厚さ情報が常に含まれているので、
その画像は単に影としての形状的意味しか持たない。
Problems to be Solved by the Invention Since the transmitted image always includes the thickness information of the object,
The image only has a geometrical meaning as a shadow.

透過放射線画像の中で、例えば医用X線画像においては
、X線診断学上必要とするものは、被写体のμ(IC)
の変化であシ、通常はX線診断を行なう医師が頭の中で
形態的なパターン認識を行ない、μ(E)・Xの変化を
μ(E)の変化として読取っている。
Among transmitted radiation images, for example, in medical X-ray images, what is required for X-ray diagnostics is the μ(IC) of the subject.
Normally, a doctor who performs X-ray diagnosis performs morphological pattern recognition in his head and reads changes in μ(E)·X as changes in μ(E).

問題点を解決するための手段 2種類以上の異なるエネルギーの放射線を、同一方向か
ら被写体に照射して撮影を行ない、1つのエネルギーに
対して透過放射線画像のそれぞれの画素の入射放射線強
度と透過放射線強度の比の自然対数をとった値と、異な
るエネルギーに対して得られた画像のそれぞれの画素の
入射放射線強度と透過放射線強度の比の自然対数をとっ
た値との比をとる。
Means for solving the problem: Photograph the subject by irradiating two or more types of radiation with different energies from the same direction, and calculate the incident radiation intensity and the transmitted radiation of each pixel of the transmitted radiation image for one energy. The ratio is taken of the natural logarithm of the ratio of the intensities and the natural logarithm of the ratio of the incident radiation intensity to the transmitted radiation intensity of each pixel of the images obtained for different energies.

作用 上記のような方法により測定された値は放射線の透過し
た部分の異なる放射線に対する平均吸収係数の比のみの
値となり、すなわち、それらの画素からなる画像は被写
体の厚さの情報を無くした画像となる。従って、この画
像は被写体を構成する物質の放射線に対する性質のみか
らなる画像である。
Effect: The value measured by the method described above is only the ratio of the average absorption coefficient for different radiations in the area through which the radiation has passed.In other words, the image composed of those pixels is an image without information about the thickness of the object. becomes. Therefore, this image is an image consisting only of the radiation-resistant properties of the materials that make up the subject.

実施例 本発明の方法を第1図に示す基本原理に従い説明する。Example The method of the present invention will be explained according to the basic principle shown in FIG.

異なる放射線のエネルギーをEl+”2  とすると、
放射線の透過強度は次式のようになる。
Letting the energy of different radiation be El+”2,
The transmitted intensity of radiation is expressed by the following equation.

工out (li:+)= l1n(L)6Xp(4(
L)・xl ・−(2)Iout(Ez)=Iin(E
z) eXl) (、u(E+) ”X ) −(3)
両辺対数をとり変形すると、 (4) 、 (5)式かられかるように、右辺には被写
体の厚さXが共通に入っている。そこで(4) 、 (
5)式の比をとると、次のようにXを消去することがで
きる。
out (li:+)=l1n(L)6Xp(4(
L)・xl ・−(2) Iout(Ez)=Iin(E
z) eXl) (, u(E+) ”X ) −(3)
If we take the logarithms of both sides and transform them, as can be seen from equations (4) and (5), the thickness X of the object is commonly included on the right side. Therefore, (4), (
5) By taking the ratio of the equation, X can be eliminated as follows.

ここで、入力放射線強度は前もって測定ができるために
、I in (E)は定数として取扱うことが可能とな
り、次式のように表わすことができる。
Here, since the input radiation intensity can be measured in advance, I in (E) can be treated as a constant and can be expressed as in the following equation.

(8)式を用いて(7)式を書き直すと、このようにし
て、異なるエネルギーの放射線を用いて撮影を行なった
透過画像を上記のように処理することにより、透過画像
に含まれていた厚さXに関する情報を消去することが可
能となり、被写体の吸収係数μのみからなる画像に変換
することができる。
Rewriting equation (7) using equation (8), we can see that by processing the transmission images taken using radiation of different energy as described above, It becomes possible to erase information regarding the thickness X, and it is possible to convert into an image consisting only of the absorption coefficient μ of the subject.

(8)式で表わされるμ(L)/μ(Ez)なる値のも
つ意味について、X線を用いて説明する。
The meaning of the value μ(L)/μ(Ez) expressed by equation (8) will be explained using X-rays.

第3図はX線の管電圧(KVp )に対する骨と筋肉の
線吸収係数(am)を示している。図に示すように、物
質により吸収係数の値およびその傾きは異なっている。
FIG. 3 shows the linear absorption coefficient (am) of bones and muscles with respect to the X-ray tube voltage (KVp). As shown in the figure, the absorption coefficient value and its slope differ depending on the substance.

例えば、管電圧140 KVp (実効エネルギー6 
a KeV )と管電圧80 KVp (実効エネルギ
ー48 KeV )における吸収係数に注目すると、骨
または筋肉の吸収係数の比は以下のようになる。
For example, tube voltage 140 KVp (effective energy 6
a KeV ) and the absorption coefficient at a tube voltage of 80 KVp (effective energy 48 KeV), the ratio of the absorption coefficient of bone or muscle is as follows.

i)筋肉の場合 11)骨の場合 このように特定のエネルギーにおける吸収係数の比は物
質によって異なっており、この比を求めることにより画
像から物体の厚さによる画像の濃淡を除去し、その物体
の構成物質の固定が可能となる。例えば(9)式のよう
に1.11なる値が得られたならば、この組織は筋肉組
織からなるということが固定できる。
i) In the case of muscles 11) In the case of bones The ratio of absorption coefficients at a specific energy differs depending on the substance, and by determining this ratio, the shading of the image due to the thickness of the object is removed from the image, and the It becomes possible to fix the constituent substances of For example, if a value of 1.11 is obtained as shown in equation (9), it can be determined that this tissue is composed of muscle tissue.

第1図は本願発明の原理に基づいた画像を得る方法を模
式化した図である。aは被写体1の断面であり、内部に
異物2すなわち吸収係数の異なる箇所が存在すると仮定
する。b、cは異なる入射X線のエネルギーに対応した
X線透過強度を示し、bは低エネルギーX線に対応し、
Cは高エネルギーX線に対応する。この2つのデータよ
り、本願発明の原理に基づき、吸収係数比μ(El)/
μ(TL2)を求めてその強度分布を表示するとdのよ
うになり、被写体の厚さの違いによる濃淡差はなくなり
、吸収係数の異なる箇所のみ濃淡差を生じる。その結果
、被写体の厚さの変化により画像の濃淡変化の中にうず
もれた異物2の存在が、吸収係数比からなる画像を表示
することにより、明瞭に浮かび上がってくる。
FIG. 1 is a diagram schematically showing a method for obtaining an image based on the principle of the present invention. It is assumed that a is a cross section of the object 1, and that there is a foreign object 2, that is, a location with a different absorption coefficient inside. b, c indicate the X-ray transmission intensity corresponding to different energies of incident X-rays, b corresponds to low-energy X-rays,
C corresponds to high energy X-rays. From these two data, based on the principle of the present invention, the absorption coefficient ratio μ(El)/
When μ(TL2) is calculated and its intensity distribution is displayed, it becomes as shown in d, and there is no shading difference due to the difference in the thickness of the object, and only the parts with different absorption coefficients have a shading difference. As a result, the presence of the foreign substance 2, which has been hidden in the change in shading of the image due to the change in the thickness of the object, becomes clearly visible by displaying the image made up of the absorption coefficient ratio.

ここで吸収係数比を得るために用いる入射強度l1n(
K)の測定は、被写体1を撮影する前に、被写体のない
状態でl1n(IE)を測定するか、または被写体1が
画面サイズより小さい場合は、第1図す、cに示すよう
に、被写体を通らないX線強度をrin(E)として用
いればよい。
Here, the incident intensity l1n (
To measure K), before photographing the subject 1, measure l1n (IE) without the subject, or if the subject 1 is smaller than the screen size, as shown in Figure 1, c. The X-ray intensity that does not pass through the object may be used as rin (E).

また、本願発明に用いることのできる放射線画像検出手
段としては、フィルム撮影によるフィルム濃淡を電気信
号に変換する手段、蛍光板またはイメージインテンシフ
ァイアの出力画像面を撮像管で電気信号に変える手段、
または、電離箱、半導体等の放射線センサをスキャニン
グして電気信号に変える手段等がある。
Further, as the radiation image detection means that can be used in the present invention, means for converting the film density obtained by film photography into electrical signals, means for converting the output image plane of a fluorescent screen or image intensifier into electrical signals using an image pickup tube,
Alternatively, there is a means of scanning a radiation sensor such as an ionization chamber or a semiconductor and converting it into an electrical signal.

また、異なるエネルギーの放射線源として、検出器側で
十分にエネルギー分解能を有するエネルギー帯域以上に
わたる広い範囲のエネルギーを放出するX線源を使用す
ることも可能である。
Furthermore, as a radiation source of different energies, it is also possible to use an X-ray source that emits energy in a wide range beyond the energy band that has sufficient energy resolution on the detector side.

本発明を用いることにより、例えば医用においては診断
に際して被写体の形状にまどわされることなく被写体の
吸収係数のみからなる内部構造の変化の情報のみを直接
視認できる。
By using the present invention, for example, in medical applications, it is possible to directly view only information on changes in the internal structure of the subject, consisting only of the absorption coefficient, without being confused by the shape of the subject.

さらに、この装置を医学上のみならず、被破壊検査等に
用いれば、被写体の厚さによる形状の変化を画像から取
り除くことにより、被写体内部の形状のみならず、被写
体を構成する物質の固定測定も行なえ、また例えば内部
に空洞等が存在する場合、従来は空洞の奥行が不明であ
ったのが、被写体の厚さのパラメータを除くことにより
、逆に空洞の奥行の測定も可能となる。
Furthermore, if this device is used not only for medical purposes but also for destructive inspections, it will be possible to remove changes in shape due to the thickness of the object from the image, allowing fixed measurement of not only the internal shape of the object but also the materials that make up the object. For example, if a cavity exists inside the camera, the depth of the cavity was previously unknown, but by removing the parameter of the thickness of the subject, it becomes possible to measure the depth of the cavity.

発明の効果 本発明によれば、異なるエネルギーの放射線を用いて得
られる透過画像から、μ(L)/μ(Ih)なる吸収係
数比を得、それを画像化することにより、従来1方向か
ら入射する放射線の透過画像においてさけることのでき
ない被写体の厚みによる濃淡を除去し、真に被写体内の
物質の物性そのものの濃度、または異なる物質を含む場
合の濃淡を表示することが可能となる。
Effects of the Invention According to the present invention, the absorption coefficient ratio μ(L)/μ(Ih) is obtained from transmitted images obtained using radiation of different energies, and by converting the ratio into an image, it is possible to It is possible to remove the unavoidable shading caused by the thickness of the object in a transmitted image of incident radiation, and to truly display the density of the physical properties of the substance within the object, or the shading when different substances are included.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における放射線画像処理方法
の模式図、第2図は放射線透過の基本原理を示す図、第
3図は骨と筋肉の吸収係数を示すグラフである。 1・・・・・・被写体、2・・・・・・異物。 代理人の氏名 弁理士 中 尾 敏 男 ほか1基筒 
1 図 (ユノ イi ず−一 第2図 Ii九(E) ↓ 1ouj、、 (シ 第3図 青電Z工(K Vr )
FIG. 1 is a schematic diagram of a radiation image processing method according to an embodiment of the present invention, FIG. 2 is a diagram showing the basic principle of radiation transmission, and FIG. 3 is a graph showing absorption coefficients of bones and muscles. 1...Subject, 2...Foreign object. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure (Yunoi i Zu-1 Figure 2 Ii 9 (E) ↓ 1ouj,, (Sh Figure 3 Blue Electric Z Engineering (K Vr)

Claims (1)

【特許請求の範囲】[Claims] 同一の被写体に対して2種類以上の異なるエネルギーの
放射線を同一方向から照射して得られる透過画像情報を
得、1つのエネルギーの放射線により得られる前記透過
画像の各画素成分情報から入射放射線強度と透過放射線
強度の比の対数をとった値と、他のエネルギーの放射線
により得られる前記透過画像の各画素成分情報から入射
放射線強度と透過放射線強度の比の対数をとった値との
2つの値の比を画素成分とした画像を得ることを特徴と
する放射線画像処理方法。
Obtain transmitted image information obtained by irradiating the same subject with two or more types of radiation of different energy from the same direction, and calculate the incident radiation intensity from each pixel component information of the transmitted image obtained by radiation of one energy. Two values: a value obtained by taking the logarithm of the ratio of transmitted radiation intensity, and a value obtained by taking the logarithm of the ratio of incident radiation intensity and transmitted radiation intensity from each pixel component information of the transmitted image obtained by radiation of other energy. A radiation image processing method characterized in that an image is obtained using a ratio of pixel components.
JP61054062A 1986-03-12 1986-03-12 Radiation image processing method Expired - Lifetime JPH0833916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054062A JPH0833916B2 (en) 1986-03-12 1986-03-12 Radiation image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054062A JPH0833916B2 (en) 1986-03-12 1986-03-12 Radiation image processing method

Publications (2)

Publication Number Publication Date
JPS62211549A true JPS62211549A (en) 1987-09-17
JPH0833916B2 JPH0833916B2 (en) 1996-03-29

Family

ID=12960128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054062A Expired - Lifetime JPH0833916B2 (en) 1986-03-12 1986-03-12 Radiation image processing method

Country Status (1)

Country Link
JP (1) JPH0833916B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396530A (en) * 1989-12-26 1995-03-07 Matsushita Electric Industrial Co., Ltd. Energy difference image processing method
JP2002168807A (en) * 2000-11-28 2002-06-14 Toshiba It & Control Systems Corp Fruit vegetable inspecting instrument
JP2008119332A (en) * 2006-11-15 2008-05-29 Ge Medical Systems Global Technology Co Llc X-ray tomography apparatus
JP2010091483A (en) * 2008-10-09 2010-04-22 Anritsu Sanki System Co Ltd Method and device for detecting foreign matter
JP2013205123A (en) * 2012-03-27 2013-10-07 Rigaku Corp Heterogeneous substance inspecting device and heterogeneous substance inspecting method
CN113358674A (en) * 2021-04-01 2021-09-07 西安交通大学 Neutron resonance CT imaging system and method designed for reinforced concrete member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166838A (en) * 1980-05-23 1981-12-22 Katsuhiko Shinohara Method of treating x-ray simple picture
JPS5850412A (en) * 1981-09-22 1983-03-24 Rigaku Denki Kogyo Kk Method for measuring film thickness of metal film or amount of inclusion of each element in metal film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166838A (en) * 1980-05-23 1981-12-22 Katsuhiko Shinohara Method of treating x-ray simple picture
JPS5850412A (en) * 1981-09-22 1983-03-24 Rigaku Denki Kogyo Kk Method for measuring film thickness of metal film or amount of inclusion of each element in metal film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396530A (en) * 1989-12-26 1995-03-07 Matsushita Electric Industrial Co., Ltd. Energy difference image processing method
JP2002168807A (en) * 2000-11-28 2002-06-14 Toshiba It & Control Systems Corp Fruit vegetable inspecting instrument
JP2008119332A (en) * 2006-11-15 2008-05-29 Ge Medical Systems Global Technology Co Llc X-ray tomography apparatus
JP2010091483A (en) * 2008-10-09 2010-04-22 Anritsu Sanki System Co Ltd Method and device for detecting foreign matter
JP2013205123A (en) * 2012-03-27 2013-10-07 Rigaku Corp Heterogeneous substance inspecting device and heterogeneous substance inspecting method
CN113358674A (en) * 2021-04-01 2021-09-07 西安交通大学 Neutron resonance CT imaging system and method designed for reinforced concrete member

Also Published As

Publication number Publication date
JPH0833916B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
Brody et al. A method for selective tissue and bone visualization using dual energy scanned projection radiography
US5132998A (en) Radiographic image processing method and photographic imaging apparatus therefor
JP2551552B2 (en) A method of displaying or recording an image in which details of the original image are emphasized
JP3459745B2 (en) Image processing apparatus, radiation imaging apparatus, and image processing method
Ohki et al. A contrast‐correction method for digital subtraction radiography
JP2008268076A (en) Non-destructive discrimination method, and device
JPH05342349A (en) Method for processing digital image and manufacturing histogram by statistic picture element sampling
KR101529876B1 (en) Apparatus and method for image processing
Goodenough et al. Development of a phantom for evaluation and assurance of image quality in CT scanning
JPS62211549A (en) Radiation image processing method
Halmshaw A review of digital radiological methods
RU2407437C2 (en) Method of registering x-ray image of object in various ranges of x-ray irradiation spectrum
JPH0341933A (en) Radiograph processing method and photographing device
JPH05161633A (en) Radiation diagnostic device
Lopes et al. Evaluation of a microtomography system with an X-ray microfocus tube
Welande et al. Correction for attenuation and visual response in digital radiography
JP2983421B2 (en) Bone measurement method and device
Tuomi et al. Real-time video imaging of synchrotron X-ray topographs: Moving multiple diffraction stripes
Hoeschen et al. High-spatial-resolution measurement of x-ray intensity pattern in a radiograph of the thorax
James et al. Digital radiography in the analysis of paintings: a new and promising technique
JPH08146137A (en) Radioscopy using differential image processing
CN111973205B (en) Multilayer X-ray detector image processing method and terminal
Hay X-ray imaging
JPH05329141A (en) X-ray diagnostic system and correction method therefor
JPS63247870A (en) X-ray picture processing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term