JPS6221106A - Aligning device for optical fiber - Google Patents

Aligning device for optical fiber

Info

Publication number
JPS6221106A
JPS6221106A JP16077185A JP16077185A JPS6221106A JP S6221106 A JPS6221106 A JP S6221106A JP 16077185 A JP16077185 A JP 16077185A JP 16077185 A JP16077185 A JP 16077185A JP S6221106 A JPS6221106 A JP S6221106A
Authority
JP
Japan
Prior art keywords
holder
optical
optical fiber
optical system
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16077185A
Other languages
Japanese (ja)
Inventor
Takashi Ide
井出 貴史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16077185A priority Critical patent/JPS6221106A/en
Publication of JPS6221106A publication Critical patent/JPS6221106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3803Adjustment or alignment devices for alignment prior to splicing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To adjust the relative position of an optical fiber or optical system by fitting plural tension springs in different directions on a plane nearly perpendicular to the optical axis of the optical fiber or optical system on a holder, and adjusting the tensile force of each spring. CONSTITUTION:The 1st and the 2nd tension springs 23 and 25 are fitted almost at right angles to each other in the plane nearly perpendicular to the optical axis of a fiber end 7a. Their positions are adjustable independently in directions V1 and V2 and position adjusting operation is performed while the detected light power of a photodetector 33 is referred to; and linear actuators 27 and 29 are only moved so that the photodetector 33 detects maximum light power, thereby aligning the optical axes of the 1st and the 2nd fibers 7 and 21 with each other. The Young's modulus and size of a rod member 3, the size of the holder 5, the spring constants of the 1st and the 2nd tension springs 23 and 25, etc., are determined properly and the displacement of the fiber end 7a is adjusted finely for the displacement of the linear actuators 27 and 29.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバの調心装置に関し、より詳細には光
ファイバとこれに光学接続されるべき光学系との間の光
軸な合わせるための応力ひずみ方式による調心装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical fiber alignment device, and more specifically, for aligning the optical axis between an optical fiber and an optical system to be optically connected to the optical fiber. This invention relates to an alignment device using a stress-strain method.

(従来の技術) 従来、光ファイバの特性測定試験や光フアイバ通信シス
テムの構成等において、光フ7・ア不バ湘互間或は光フ
ァイバと他の光学機器との間の接続を行うに、これら光
ファイバと光学機器等の光軸間の高精度な位置合わせを
行うべく、いわゆる応力ひずみ方式による調心装置を用
いることは公知である。該従来の応力ひずみ方式による
調心装置は、第2図に示すように、固定部1より弾性変
形可能な部材3を介して片持ばり式に支持されたホルダ
5上に接続されるべき一方の部材である光ファイバ7の
先端を固定し、該ホルダ5に圧縮ばね9忙よりv1方向
の力を加えるとともに圧縮ばね11により固定支点13
まわりに枢動される回転レバー15を介してvlと直交
するv2方向の力を加え、これら圧縮ばね9,11によ
り加えられる力をアクチュエータ17.19によシ調節
することによってホルダ5、つt#)は該ホルダ上に固
定された光ファイバ7の光軸位置を調整し、該光ファイ
バ7に対向して固定配置された接続されるべき他方の部
材、例えば、光ファイバ21の光軸と一致させるように
したもので、上記光軸位置の調整は光ファイバ7より該
接続されるべき他方の光ファイバ21への入射光量が最
大になるように該他方の光ファイバからの出射光量を参
照しつつ行われる。
(Prior art) Conventionally, in optical fiber characteristic measurement tests, configuration of optical fiber communication systems, etc., connections between optical fibers and optical fibers or between optical fibers and other optical equipment have been used. It is well known to use a so-called stress-strain type alignment device to achieve highly accurate alignment between the optical axes of these optical fibers and optical equipment. As shown in FIG. 2, the conventional stress-strain type alignment device has one side which is connected to a holder 5 supported in a cantilever manner by a fixed part 1 via an elastically deformable member 3. The tip of the optical fiber 7, which is a member of
By applying a force in the direction v2 orthogonal to vl via a rotary lever 15 pivoted about the holder 5, t #) adjusts the optical axis position of the optical fiber 7 fixed on the holder, and aligns it with the optical axis of the other member to be connected fixedly arranged opposite to the optical fiber 7, for example, the optical fiber 21. The optical axis position is adjusted by referring to the amount of light emitted from the other optical fiber 21 so that the amount of light incident on the other optical fiber 21 to be connected from the optical fiber 7 is maximized. It is carried out while

(発明が解決しようとする問題点) しかしながら、上記従来の調心装置は下記の理由で安定
かつ高精度な位置決めを行うことが困難であった。
(Problems to be Solved by the Invention) However, the conventional alignment device described above has difficulty in performing stable and highly accurate positioning for the following reasons.

1)圧縮ばね11および回転レバー15を介してホルダ
5にv2方向の変位を加えると、圧縮ばね9の先端がホ
ルダ5との摩擦によりv2方向に引きずられる結果、該
圧縮ばね9によシホルダ5にv1方向の力を加えると圧
縮ばね9に座屈が生じ、このためv1方向におけるばね
9の圧縮力とホルダ5の変位との間に比例関係が成立し
なくなる。なお、こ\でばねの座屈とはばねの軸心が曲
がる結果、軸心方向の荷重と変位との比例関係がくずれ
ることをいう。
1) When a displacement is applied to the holder 5 in the v2 direction via the compression spring 11 and the rotary lever 15, the tip of the compression spring 9 is dragged in the v2 direction due to friction with the holder 5. When a force in the v1 direction is applied to the spring 9, buckling occurs in the compression spring 9, so that the proportional relationship between the compression force of the spring 9 in the v1 direction and the displacement of the holder 5 no longer holds true. Note that buckling of a spring means that the proportional relationship between the load in the axial direction and the displacement breaks down as a result of the axial center of the spring being bent.

++)  ホルダ5と回転レバー15との間に摩擦力が
作用し、該摩擦力がばね11の圧縮力により変動するた
め、これによっても■1方向におけるばね9の圧縮力と
ホルダ5の変位との間の比例関係がくずれる。
++) Frictional force acts between the holder 5 and the rotary lever 15, and this frictional force fluctuates due to the compression force of the spring 11. Therefore, this also causes the difference between the compression force of the spring 9 in one direction and the displacement of the holder 5. The proportional relationship between them breaks down.

111)同様に、ばね9とホルダ5との間に摩擦力が作
用し、該摩擦力がばね9の圧縮力により変動するため、
回転レバー15を介してばね11によシ加えられるv2
方向の力とホルダ5のv2方向における変位とは比例し
ない。
111) Similarly, a frictional force acts between the spring 9 and the holder 5, and this frictional force varies depending on the compressive force of the spring 9, so
v2 applied to spring 11 via rotary lever 15
The force in the direction and the displacement of the holder 5 in the v2 direction are not proportional.

1い ホルダ5にv2方向の変位を与えない時でも、ば
ね9に座屈が生ずるとホルダ5はv2方向に変位する。
1 Even when the holder 5 is not displaced in the v2 direction, if the spring 9 is buckled, the holder 5 is displaced in the v2 direction.

また、ばね9が座屈しない場合でも、ホルダ5がVi方
向に変位される際にホルダ5と回転レバー15との間の
摩擦によシ該回転レバーが回動される結果、ホルダ5に
v2方向の変位が生ずる。
Furthermore, even if the spring 9 does not buckle, when the holder 5 is displaced in the Vi direction, the friction between the holder 5 and the rotary lever 15 causes the rotary lever to rotate, so that the holder 5 has v2 A displacement in the direction occurs.

すなわち、従来の調心装置では、つねに一方のばねによ
る圧縮力或はホルダの変位が他方のばねに対し端面での
摩擦や座屈等を起させ、安定かつ精度よシ位置決めを困
難にしている。これに対し、ばねの端面や回転レバーと
ホルダの衝合面を滑らかに研削する等の方法で摩擦によ
る影響を排除しようとしているが充分な対策とはいえな
い。また、座屈を防止すべくばねの剛性を大きくすれば
逆に摩擦力が大きくなるという両者の相反する性質のた
めに根本的な解決は得られなかった。
In other words, in conventional alignment devices, the compressive force of one spring or the displacement of the holder always causes friction or buckling on the end face of the other spring, making it difficult to achieve stable and accurate positioning. . In response to this, attempts have been made to eliminate the effects of friction by smoothing the end faces of the springs and the abutting surfaces between the rotary lever and the holder, but this is not a sufficient countermeasure. Moreover, if the rigidity of the spring is increased to prevent buckling, the frictional force will be increased, and no fundamental solution could be obtained due to the contradictory nature of the two.

(問題点を解決するための手段) 本発明は上記従来の欠点を除去すべくなされたものであ
って、このため本発明は光ファイバとこれに光学接続さ
れるべき光学系との間の調心装置であって、互いに対向
する光ファイバと光学系のいずれか一方を位置固定させ
、かついずれか他方を固定部よシ弾性変形可能な部材を
介して片持ばり式に支持されたホルダ上に固定させ、該
ホルダに直接複数個の引張りばねを該ホルダ上の光ファ
イバ又は光学系の光軸に対しほゞ垂直な面内において異
なる方向に向けて取付け、各ばねの引張力を調節する手
段を設け、ホルダに加わる各ばねの引張力を調節するこ
とにより該ホルダ上に固定された光ファイバ又は光学系
の相対位置を調節可能としたことを特徴とする。
(Means for Solving the Problems) The present invention has been made to eliminate the above-mentioned drawbacks of the conventional art. The optical fiber and the optical system facing each other are fixed in position, and the other is supported on a holder in a cantilever manner via a member that can be elastically deformed from the fixing part. A plurality of tension springs are directly attached to the holder in different directions in a plane substantially perpendicular to the optical axis of the optical fiber or optical system on the holder, and the tension of each spring is adjusted. The present invention is characterized in that a means is provided so that the relative position of the optical fiber or optical system fixed on the holder can be adjusted by adjusting the tensile force of each spring applied to the holder.

(作 用) ホルダ、つまシは該ホルダ上に位置固定された光ファイ
バ又は光学系の光軸は、ホルダに直接取付けられた各引
張シばねの引張力を調節することにより位置調節するこ
とができる。この場合、ホルダの正確な位置決めに大き
な影響を及ぼすのは、上述したようにばねの座屈とホル
ダ〜ばね系間の摩擦であるが、本発明では引張りばねを
使用しているので一つのばねのホルダ連結端が他のばね
の作用時に変位されてもばね軸心が屈曲することはなく
、従って座屈を生ずるおそれがない。また、各゛ばねは
直接ホルダを引張っているので、ホルダとばねとの間に
摩擦を生ずる余地はなく、さらにホルダとばねとの間に
上記の回転レバーのごとき介在物を含まないので、介在
物による摩擦の影響もない。従って、ホルダをばねの引
張力のみを用いて安定かつ精度よく位置調節することが
できる。
(Function) The optical axis of the optical fiber or optical system fixed on the holder and the holder can be adjusted in position by adjusting the tensile force of each tension spring directly attached to the holder. can. In this case, as mentioned above, the buckling of the spring and the friction between the holder and the spring system have a large effect on the accurate positioning of the holder, but since the present invention uses a tension spring, one spring Even if the holder connecting end of the holder is displaced during the action of another spring, the spring axis will not bend, so there is no risk of buckling. In addition, since each spring is directly pulling the holder, there is no room for friction between the holder and the spring, and since there is no inclusion between the holder and the spring, such as the above-mentioned rotating lever, there is no interference between the holder and the spring. There is no effect of friction caused by objects. Therefore, the position of the holder can be adjusted stably and precisely using only the tensile force of the spring.

(実施例) 以下、本発明の好適な実施例を添附図に沿って説明する
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は2軸移動機構を用いた本発明による7742〜
7747間の調心装置を示すもので、同図において1は
装置の固定部、3は該固定部に片持ばり式に一端を固定
された弾性変形可能な棒状部材、5は該棒状部材3の他
端に固定されたホルダ、7は該ホルダ上に先端7cLを
位置固定された第1のファイバ、21は該第1のファイ
バと光学的に接続されるべき第2のファイバを示すもの
で図示しないが先端部を装置固定部に位置固定されてい
る。23および25はファイバ端7αの光軸にはソ垂直
な面内で互いにはソ直角をなす方向vl、v2に向けら
れてホルダ5に直接取付けられた第1および第2の引張
りばね、27および29はそれぞれ装置固定部に支持さ
れかつ第1および第2の引張りばね23.25の引張力
を調節すべく該第1および第2の引張りばねに連結され
た第1および第2のリニアアクチュエータ、31は第1
のファイバ7の後端に接続された光源、33は第2のフ
ァイバ21の後端に接続された受光器をそれぞれ示す。
Figure 1 shows 7742~ according to the present invention using a two-axis movement mechanism.
7747, in which 1 is a fixed part of the device, 3 is an elastically deformable rod-like member whose one end is fixed in a cantilever manner to the fixed part, and 5 is the rod-like member 3. A holder is fixed at the other end, 7 is a first fiber whose tip 7cL is fixed on the holder, and 21 is a second fiber to be optically connected to the first fiber. Although not shown, the distal end portion is fixed in position to a device fixing portion. Reference numerals 23 and 25 denote first and second tension springs, 27 and 25, which are directly attached to the holder 5 and are oriented in directions vl and v2 that are perpendicular to each other in a plane perpendicular to the optical axis of the fiber end 7α. first and second linear actuators 29 are respectively supported on the device fixing part and connected to the first and second tension springs 23.25 to adjust the tension of the first and second tension springs; 31 is the first
A light source is connected to the rear end of the second fiber 7, and 33 is a light receiver connected to the rear end of the second fiber 21.

本実施例においては、第1および第2の引張りばね23
.25がファイバ端7aの光軸にはソ垂直な面内で互い
にはソ直角をなして取付けられているので、一方の引張
りばねによる位置調節は他方の引張りばねによる位置調
節可能響を与えず、それぞれ独立にVlおよびV2方向
に位置調節可能である。位置調節は受光器33の検出光
パワーを参照しながら行ない、受光器33が最大光パワ
ーを検出するようにリニアアクチュエータ27゜29を
動かせば、第1および第2フアイバ7.21の光軸を合
わせることができる。この場合、棒状部材3の弾性係数
と寸法、ホルダ50寸法および第1、第2引張シばね2
3.25のばね定数等を適当に定めることにより、リニ
アアクチュエータ27.29の変位に対しファイバ端7
aの変位を微細に調節することができる。例えば、棒状
部材3とホルダ5からなるばね系の弾性係数に、をV、
方向と■2とでともに等L < k t = 40Kf
、/1mと設定し、ばね23.25のばね定数をともに
IK9/mmとすれば、リニアアクチュエータ27゜2
9を1間変位させた場合のファイバ端7aのv1方向お
よびV2方向の変位量はともに0.025朋となる。ま
た、上記のように位置合わせを受光器33の光パワーを
参照して行うことにより迅速かつ正確な位置合わせが可
能である。
In this embodiment, the first and second tension springs 23
.. 25 are attached in a plane perpendicular to the optical axis of the fiber end 7a and at right angles to each other, so that the position adjustment by one tension spring does not affect the position adjustment by the other tension spring. The positions can be adjusted independently in the Vl and V2 directions. The position adjustment is performed while referring to the optical power detected by the optical receiver 33. By moving the linear actuators 27 and 29 so that the optical receiver 33 detects the maximum optical power, the optical axes of the first and second fibers 7 and 21 can be adjusted. Can be matched. In this case, the elastic modulus and dimensions of the rod-shaped member 3, the dimensions of the holder 50, and the first and second tension springs 2
By appropriately determining the spring constant of 3.25, etc., the fiber end 7
The displacement of a can be finely adjusted. For example, the elastic modulus of the spring system consisting of the rod-shaped member 3 and the holder 5 is V,
Both direction and ■2 are equal L < k t = 40Kf
, /1m, and the spring constants of spring 23.25 are both IK9/mm, then the linear actuator is 27°2
When the fiber end 7a is displaced by one distance, the amount of displacement of the fiber end 7a in the v1 direction and the V2 direction is both 0.025 mm. In addition, by performing positioning with reference to the optical power of the light receiver 33 as described above, quick and accurate positioning is possible.

なお、上記実施例は7747〜7747間の調心につい
て述べたが、本発明はこれに限らず、一方のファイバを
ピンホール、レンズ系、ガラスロッド、開口等の光学系
とし、ファイバとこれう光学系との間の調心にも適用可
能である。この場合、ホルダ上に固定して位置調節する
のは、ファイバと光学系のいずれであってもよい。また
、上記実施例では、とくに2本の引張りばねをホルダ上
に固定されたファイバの光軸に対し垂直な面内で直交す
るごとく取付けているが、引張シばねの数および配置方
向は上記光軸に垂直な面内であれば随時変更することが
できる。
Although the above embodiment describes alignment between 7747 and 7747, the present invention is not limited to this, and one fiber is an optical system such as a pinhole, a lens system, a glass rod, an aperture, etc., and the fiber and this are aligned. It can also be applied to alignment with an optical system. In this case, either the fiber or the optical system may be fixed on the holder and its position adjusted. Furthermore, in the above embodiment, two tension springs are mounted on the holder so as to be orthogonal to each other in a plane perpendicular to the optical axis of the fiber fixed on the holder. It can be changed at any time within a plane perpendicular to the axis.

(発明の効果) 以上のように、本発明によれば応力ひずみ方式による調
心装置により光ファイバと光学系との光軸を合わせるに
、光ファイバ又は光学系の位置決めを、高精度、迅速か
つ安定に行うことができる。
(Effects of the Invention) As described above, according to the present invention, when aligning the optical axes of an optical fiber and an optical system using a stress-strain alignment device, the positioning of an optical fiber or an optical system can be performed with high accuracy, speed, and accuracy. It can be done stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による調心装置の一実施例を示す要部斜
視図、第2図は従来の調心装置の要部斜視図である。 特許出願人 住友電気工業株式会社 (外5名)
FIG. 1 is a perspective view of a main part showing an embodiment of an alignment device according to the present invention, and FIG. 2 is a perspective view of a main part of a conventional alignment device. Patent applicant: Sumitomo Electric Industries, Ltd. (5 others)

Claims (6)

【特許請求の範囲】[Claims] (1)光ファイバとこれに光学接続されるべき光学系と
の間の調心装置であって、互いに対向する光ファイバと
光学系のいずれか一方を位置固定させ、かついずれか他
方を固定部より弾性変形可能な部材を介して片持ばり式
に支持されたホルダ上に固定させ、該ホルダに直接複数
個の引張りばねを該ホルダ上の光ファイバ又は光学系の
光軸に対しほゞ垂直な面内において異なる方向に向けて
取付け、各ばねの引張力を調節する手段を設け、ホルダ
に加わる各ばねの引張力を調節することにより該ホルダ
上に固定された光ファイバ又は光学系の相対位置を調節
可能とした光ファイバの調心装置。
(1) An alignment device between an optical fiber and an optical system to be optically connected to the optical fiber, which fixes the position of either the optical fiber or the optical system facing each other, and fixes the other one to a fixing part. It is fixed on a holder supported in a cantilever manner via a more elastically deformable member, and a plurality of tension springs are directly attached to the holder approximately perpendicular to the optical axis of the optical fiber or optical system on the holder. The optical fiber or the optical system fixed on the holder can be fixed to the holder by adjusting the tension of each spring. Optical fiber alignment device with adjustable position.
(2)前記引張りばねは前記ホルダ上に固定された光フ
ァイバ又は光学系の光軸に対し略直角な平面内において
略直角をなす2方向に向けられている第1項の調心装置
(2) The alignment device according to item 1, wherein the tension spring is oriented in two directions that are substantially perpendicular to each other in a plane that is substantially perpendicular to the optical axis of the optical fiber or optical system fixed on the holder.
(3)前記光学系は光ファイバ、ピンホール、レンズ系
、ガラスロッドおよび開口のいずれかである第1項又は
第2項の調心装置。
(3) The alignment device according to item 1 or 2, wherein the optical system is any one of an optical fiber, a pinhole, a lens system, a glass rod, and an aperture.
(4)光ファイバとこれに光学接続されるべき光学系と
の間の調心装置であって、互いに対向する光ファイバと
光学系のいずれか一方を位置固定させ、かついずれか他
方を固定部より弾性変形可能な部材を介して片持ばり式
に支持されたホルダ上に固定させ、該ホルダに直接複数
個の引張りばねを該ホルダ上の光ファイバ又は光学系の
光軸に対しほゞ垂直な面内において異なる方向に向けて
取付け、各ばねの引張力を調節する手段を設け、ホルダ
に加わる各ばねの引張力を調節することにより該ホルダ
上に固定された光ファイバ又は光学系の相対位置を調節
可能とし、該光ファイバと光学系のいずれか一方に光源
を接続しかついずれか他方に受光器を接続して該受光器
による受光量を参照しながら調心を行うことを特徴とす
る光ファイバの調心装置。
(4) An alignment device between an optical fiber and an optical system to be optically connected to the optical fiber, which fixes the position of either the optical fiber or the optical system facing each other, and fixes the other one in a fixed position. It is fixed on a holder supported in a cantilever manner via a more elastically deformable member, and a plurality of tension springs are directly attached to the holder approximately perpendicular to the optical axis of the optical fiber or optical system on the holder. The optical fiber or the optical system fixed on the holder can be fixed to the holder by adjusting the tension of each spring. The optical system is characterized in that the position is adjustable, a light source is connected to one of the optical fiber and the optical system, and a light receiver is connected to the other, and alignment is performed while referring to the amount of light received by the light receiver. Optical fiber alignment device.
(5)前記引張りばねは前記ホルダ上に固定された光フ
ァイバ又は光学系の光軸に対し略直角な平面内において
略直角をなす2方向に向けられている第4項の調心装置
(5) The alignment device according to item 4, wherein the tension spring is oriented in two substantially perpendicular directions within a plane substantially perpendicular to the optical axis of the optical fiber or optical system fixed on the holder.
(6)前記光学系は光ファイバ、ピンホール、レンズ系
、ガラスロッドおよび開口のいずれかである第4項又は
第5項の調心装置。
(6) The alignment device according to item 4 or 5, wherein the optical system is any one of an optical fiber, a pinhole, a lens system, a glass rod, and an aperture.
JP16077185A 1985-07-20 1985-07-20 Aligning device for optical fiber Pending JPS6221106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16077185A JPS6221106A (en) 1985-07-20 1985-07-20 Aligning device for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16077185A JPS6221106A (en) 1985-07-20 1985-07-20 Aligning device for optical fiber

Publications (1)

Publication Number Publication Date
JPS6221106A true JPS6221106A (en) 1987-01-29

Family

ID=15722099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16077185A Pending JPS6221106A (en) 1985-07-20 1985-07-20 Aligning device for optical fiber

Country Status (1)

Country Link
JP (1) JPS6221106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19633293A1 (en) * 1996-08-19 1998-02-26 Deutsche Telekom Ag Method for lining-up two optical micro-components for coupling
US6961498B2 (en) * 2002-06-11 2005-11-01 Avanex Corporation Coupling device for the alignment of an optical waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19633293A1 (en) * 1996-08-19 1998-02-26 Deutsche Telekom Ag Method for lining-up two optical micro-components for coupling
US6961498B2 (en) * 2002-06-11 2005-11-01 Avanex Corporation Coupling device for the alignment of an optical waveguide

Similar Documents

Publication Publication Date Title
EP1086352B1 (en) Measuring probe with diaphragms ( modules)
US9715070B2 (en) Apparatus providing simplified alignment of optical fiber in photonic integrated circuits
US20050157291A1 (en) Optical beam translation device and method utilizing a pivoting optical fiber
US4376390A (en) Fiber optic angular accelerometer
US9797922B2 (en) Scanning probe microscope head design
JPH01102316A (en) Optical fiber sensor
JPS6221106A (en) Aligning device for optical fiber
JP3343756B2 (en) Manufacturing method of collimator for optical circuit
CN104070483A (en) High-accuracy and high-efficiency monolithic two-degree-of-freedom micro-gripper for assembling optical fiber
CN114114554A (en) Optical fiber plug connector and adjusting method
JP4171615B2 (en) Shape measurement method
JPH0786407B2 (en) Optical fiber movement amount measuring device
US20050217402A1 (en) Two-dimensional displacement apparatus
US20020150358A1 (en) Alignment of a lens array and a fiber array
JP2620321B2 (en) Light switch
US20030128934A1 (en) Dynamic optical coupling device
JPH0232602B2 (en)
JP2577031B2 (en) Optical fiber misalignment detector
JPH0812304B2 (en) Aligning device for multi-fiber optical fiber
JP2942328B2 (en) Position recognition device
JP3225992B2 (en) Multi-core optical fiber alignment mechanism
JP3018530B2 (en) Optical axis adjusting method and device
JPH033176B2 (en)
JP3131256B2 (en) Optical connector measurement coupling device
KR100352939B1 (en) Apparatus for measuring surface profile by using confocal constant-distance maintaining apparatus