JP4171615B2 - Shape measurement method - Google Patents

Shape measurement method Download PDF

Info

Publication number
JP4171615B2
JP4171615B2 JP2002183082A JP2002183082A JP4171615B2 JP 4171615 B2 JP4171615 B2 JP 4171615B2 JP 2002183082 A JP2002183082 A JP 2002183082A JP 2002183082 A JP2002183082 A JP 2002183082A JP 4171615 B2 JP4171615 B2 JP 4171615B2
Authority
JP
Japan
Prior art keywords
measurement
measured
stylus
measuring
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002183082A
Other languages
Japanese (ja)
Other versions
JP2004028684A (en
Inventor
孝昭 葛西
恵一 吉住
圭司 久保
博之 竹内
宏治 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002183082A priority Critical patent/JP4171615B2/en
Publication of JP2004028684A publication Critical patent/JP2004028684A/en
Application granted granted Critical
Publication of JP4171615B2 publication Critical patent/JP4171615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、表面形状測定、非球面レンズなどの自由曲面の形状測定、面粗さや段差の形状測定などの二次元ないし三次元の形状測定を高精度にかつ低い測定圧で行うことができる形状測定方法に関するものである。
【0002】
【従来の技術】
表面形状測定、非球面レンズ等の自由曲面形状測定や、表面粗さ測定において、サブミクロン(ノナメートル)程度の高精度で測定できる超高精度三次元測定機については、特開平4−2992064号公報や、特開平10−170243号公報に開示されている。
【0003】
その超高精度三次元測定機の構成例を図1を参照して説明する。図1において、石定盤1上に設置されたレンズ等の被測定物2の被測定面2aに、移動体3に取付けられた原子間力プローブ5の先端を追従させて、被測定面2aの表面形状を測定するように構成されている。
【0004】
詳細には、被測定物2が搭載されている石定盤1に、支持部を介してX参照ミラー6、Y参照ミラー7、Z参照ミラー8が配置されている。また、原子間力プローブ5が設けられた移動体3は、石定盤1上にXステージ9及びYステージ10を介して配設されており、被測定物2の被測定面2aの表面形状に追従してX軸方向、Y軸方向に移動体3と原子間力プローブ5を走査できる構成となっている。
【0005】
移動体3には、レーザ測長光学系4が設けられており、既知の光干渉法によりX参照ミラー6を基準とした原子間力プローブ5のX座標、Y参照ミラー7を基準とした原子間力プローブ5のY座標、Z参照ミラー8を基準とした原子間力プローブ5のZ座標をそれぞれ測長できる構成となっている。
【0006】
次に、上記原子間力プローブ5とこの原子間力プローブ5をオートフォーカス制御する構成例として、特許第2638157号明細書及び特許第3000819号明細書に記載されているものを、図2を参照して説明する。
【0007】
原子間力プローブ5は、ガイド部15にてエア軸受31を介してZ座標方向に移動可能に支持されたスライド部11と、このスライド部11の−Z方向端部に付けられたスタイラス12と、このスライド部11のZ座標を測定する位置測定手段を備えている。この位置測定手段は、スライド部11の他端をミラー面13とし、このミラー面13にレーザ光Fzを照射し、反射光からミラー面13の位置を測定するように構成されている。
【0008】
スライド部11とスタイラス12及びミラー面13から成る可動部の重量は、Z方向の移動を弾性的に規制する弾性材、具体的には板ばね14によって支えられ、スライド部11とスタイラス12は板ばね14に吊るされた状態で被測定面2aに追従して上下する。また、スライド部11はエア軸受31によりXY方向には剛性が高く、Z方向には自由に動く構成となっており、かつスライド部11は構造が簡単で軽量にできるため、傾きの大きな被測定面2aに対して測定押圧による横ずれを小さくでき、また測定押圧も小さくできるため、被測定面2aを高精度に傷を付けずに測定できる。
【0009】
さらに、スライド部11とガイド部15の相対位置を測定する相対位置測定手段と、相対位置測定手段から得られたスライド部11とガイド部15の相対位置がほぼ一定になるように、ガイド部15をZ方向に駆動するオートフォーカシング制御手段が設けられている。このオートフォーカシング制御手段にてスライド部11のガイド部15に対するZ方向の相対位置が所定位置に規制されることで、被測定面2aに対して常に一定の測定押圧で測定が行われる。
【0010】
上記相対位置測定手段及びオートフォーカシング制御手段は、ガイド部15が連結されかつZ方向に移動可能なプローブ本体16に配設されている。その構成を説明すると、半導体レーザ17から発したレーザ光Gが、コリメートレンズ18、偏光ビームスプリッタ19、λ/4波長板20を通過した後、ダイクロックミラー21で反射し、対物レンズ22によってスライド部11のミラー面13上に集光する。
【0011】
対物レンズ22に戻ったレーザ光Gの反射光は、ダイクロックミラー21及び偏光ビームスプリッタ19で全反射し、レンズ23で集光されるとともにハーフミラー24で2つに分離され、それぞれピンホール25a、25bを通過して2つの光検出器26a、26bで受光される。
【0012】
2つの光検出器26a、26bによる検出出力は誤差信号発生部27に入力されている。誤差信号発生部27からはフォーカス誤差信号がサーボ回路28に出力され、サーボ回路28にてリニアモータ29が駆動制御され、プローブ本体16の位置が所定の測定力が得られる位置にフォーカシングされる。なお、プローブ本体16を含むZ移動部の自重分はばね30により支持されている。
【0013】
次に、原子間力プローブ5に付けられたスタイラス12が、測定時に受ける力を説明する。以下、説明を簡単にするため、被測定物2は球とし、図3に示すように、被測定面2a上の任意点の傾きΦは、その被測定面2aの任意点における法線とZ軸がなす鋭角とする。また、今はX−Z面の二次元面で働く力を考える。Y−Z面にも同様な力が働くと考えられる。なお、X>0のときΦ>0、X<0のときΦ<0とする。
【0014】
図4は、被測定物2からスタイラス12が受ける抗力を説明する図である。測定時には、スタイラス12は、−Z方向に一定の力Fで被測定面2aに対して測定押圧を負荷する。そして、スタイラス12は被測定面2aからその面に対して法線方向に抗力FcosΦを受ける。よって、被測定面2aの傾きが大きくなるほど(傾きΦが大きくなるほど)スタイラス12に働く抗力は小さくなる。
【0015】
図5(a)は、測定方向上り時の被測定物2とスタイラス12との間に働く摩擦力を説明する図であり、図5(b)は、測定方向下り時の被測定物2とスタイラス12との間に働く摩擦力を説明する図である。スタイラス12は、常に、被測定面2aからその面に対して接線方向に摩擦力μFcosΦを受ける。ここで、μはスタイラス12の先端部に対する被測定面2aの動摩擦係数を表す。よって、被測定面2aの傾きが大きくなるほど(傾きΦが大きくなるほど)、被測定面2aとスタイラス12との間に働く摩擦力は小さくなる。また、この摩擦力は、常に測定方向に逆向きにスタイラス12に働く。
【0016】
図6(a)は、測定方向上りで被測定面2aを測定するときに、スタイラス12が受けるトータルの力を説明する図であり、図6(b)は、測定方向下りで被測定面2aを測定するときに、スタイラス12が受けるトータルの力を説明する図である。スタイラス12は、被測定面2aの法線方向+Zφの方向に、抗力FcosΦ、被測定面2aの接線方向Xφに、被測定面2aとの間に働く摩擦力μFcosΦを受ける。また、この摩擦力は常に測定方向と逆方向にスタイラス12に働く。
【0017】
図7(a)は、測定方向上り時にスタイラス12に働く力の、X軸方向の分力を考えた図であり、図7(b)は、測定方向下り時にスタイラス12に働く力の、X軸方向の分力を考えた図である。被測定面2aを上りながら測定する時、スタイラス12には被測定面2aから抗力のX軸方向分力FcosΦ・sinΦと、摩擦力のX軸方向分力μFcosΦ・cosΦがそれぞれ同じ方向に働く。被測定面2aを下りながら測定する時、スタイラス12には被測定面2aから抗力のX軸方向分力FcosΦ・sinΦと、摩擦力のX軸方向分力μFcosΦ・cosΦがそれぞれ反対の方向に働く。
【0018】
以上より、被測定面2aを上りながら測定する時、スタイラス12の先端部に働くモーメントMU は、
U =L×(FcosΦ・sinΦ+μFcosΦ・cosΦ) (1)
被測定面2aを下りながら測定する時、スタイラス12の先端部に働くモーメントMD は、
D =L×(FcosΦ・sinΦ−μFcosΦ・cosΦ) (2)
がそれぞれ働くことになる。ここで、モーメントは反時計回りを正とする。また、Lは、スタイラス12とスライド部11の長さの和を表し、具体的な構成例では17mm〜22mmである。
【0019】
以上より、被測定面2aを上りながら測定する時と被測定面2aを下りながら測定する時のモーメントの左は、式(1) 、(2) より
U −MD =2×L×μFcosΦ・cosΦ (3)
となり、測定押圧Fが一定であれば、スタイラス12の先端部に対する被測定面2aの動摩擦係数μが大きいほど、式(3) より被測定面2aを上りながら測定する時のモーメントMU と、被測定面2aを下りながら測定する時のモーメントMD の差が無視できなくなる。
【0020】
図8は、スタイラス12の先端部に対する被測定面2aの動摩擦係数μが大きい時、被測定面2aの測定点A(XA 、ZA )を通過するときのスタイラス12の傾きを表す。12aは、スタイラス12に対して抗力及び摩擦力が働いていない理想的な状態を表す。12bは、被測定面2aを上りながら測定する時のスタイラスを、12cは被測定面2aを下りながら測定する時のスタイラスをそれぞれ表す。また、スタイラス12aと被測定面2aとの接点A(XA 、ZA )と、スタイラス12bと被測定面2aとの接点B(XB 、ZB )とのX軸方向の差をΔX1 、Z軸方向の差をΔZ1 とする。同様に、A(XA 、ZA )と、スタイラス12cと被測定面2aとの接点C(XC 、ZC )とのX軸方向の差をΔX2 、Z軸方向の差をΔZ2 とする。
【0021】
今、ΔZ1 とΔZ2 をそれぞれΔX1 とΔX2 により表すために、図9のモデルを考える。12a’、12b’は、それぞれスタイラス12a、スタイラス12bの中心軸を表す。また、12a’と12b’の成す角をα、12a’と12c’の成す角をβとすると、ΔX1 とΔX2 はそれぞれ以下のように表すことができる。
【0022】
ΔX1 =Lcosα (4)
ΔX2 =Lcosβ (5)
また、被測定面2aのX座標に対するZの値を表す設計式をZ=f(X)とすると、
ΔZ1 =L(1−cosα)+f(XA )−f(XA +ΔX1 ) (6)
ΔZ2 =L(1−cosβ)+f(XA )−f(XA +ΔX2 ) (7)
となる。なお、|ΔX1 |>|ΔX2 |、及びα>βである。
【0023】
よって、測定点A(XA ,ZA )の測定値ZA は、式(6) 、式(7) の誤差が含まれることになる。被測定面2aを上りながら測定する時は、式(6) より、
A1=ZA −ΔZ1 =−L(1−cosα)+f(XA +ΔX1 ) (8)
と表すことができる。
【0024】
同様に、被測定面2aを下りながら測定する時は、式(7) より、
A2=ZA −ΔZ2 =−L(1−cosβ)+f(XA +ΔX2 ) (9)
となる。
【0025】
以上より、被測定面2aを上りながら測定する時と、被測定面2aを下りながら測定する時の測定点A(XA ,ZA )の測定値の差は、式(8) 、式(9) より

Figure 0004171615
となり、特に被測定物2が球の時、
Figure 0004171615
と表すことができる。
【0026】
スタイラス12の先端部に対する被測定面2aの動摩擦係数μが大きい時、測定押圧が一定であれば、被測定面を上りながら測定する時のモーメントM1 と、被測定面を下りながら測定する時のモーメントM2 との差が式(3) より大きくなる。そして、モーメントの差が大きくなることにより、スタイラス12の傾き量α、βの差が大きくなり、式(4) 、(5) よりX軸方向の誤差の差(ΔX1 −ΔX2 )及びスタイラス12の傾きの差(cosα−cosβ)が大きくなり、式(11)より(ZA1−ZA2)が大きくなる。さらに、測定点の傾きΦA が大きくなると、式(11)より(ZA1−ZA2)がさらに大きくなる。
【0027】
例えば、球面上の測定において、スタイラス12とスライド部11の長さの和をL=20mmとし、測定面の傾斜角度がΦA =60°における、上りと下りのスタイラスの傾きを、それぞれα=0.3°、β=0.2°とすると、
L(cosα−cosβ)=−0.152μm
ΔX1 −ΔX2 =34.906μm
となり、ΦA =60°における
Figure 0004171615
となる。
【0028】
【発明が解決しようとする課題】
図10は、横軸に被測定面の傾斜角度、縦軸に設計式Z=f(X)と測定値との差Zd(μm)を表記し、球を測定したときの結果を示す。
【0029】
図10から明らかなように、ナノオーダーの測定においては、スタイラス12の傾きの差が、微小角度であっても、傾斜が大きい被測定面では、測定値の誤差が無視できなくなるほど大きくなる。例えば、測定方向が上り場合と下りの場合ともに、被測定面の傾斜角度が30°より大きくなると、測定値と設計値との差が大きくなる傾向が認められる。また、スタイラス12に働く摩擦力は、測定方向で働く向きが異なり、動摩擦係数μが大きい面の測定では無視できない。このように、同じ測定点を測定しても、測定方向により測定値の誤差が大きくなる傾向にあり、この同じ測定点の測定値が測定方向により異なる現象(これを「ヒステリシス」と呼ぶ。)が生じることになる。
【0030】
本発明は、上記従来の問題点に鑑み、ヒステリシスの影響を小さくすることができる形状測定方法を提供することを目的とする。
【0032】
【課題を解決するための手段】
本発明の形状測定方法は、一端にスタイラスを他端にミラー面を設けたスライド部の前記スタイラスを被測定面に接触させ、第1の光源から照射した光が前記ミラー面で反射した反射光から前記被測定面の複数の位置における前記スライド部の軸芯方向の位置を測定する第1の測定工程と、第2の光源から照射した光が前記ミラー面で反射した反射光から前記スライド部と前記スライド部を支持するガイド部との相対位置を測定する第2の測定工程と、前記スライド部の軸芯方向と直交し、かつ互いに直交する2つの方向の位置を測定する第3の測定工程とを有し、前記第1の測定工程と第3の測定工程とで測定した前記被測定面の第1の測定位置における第1の測定値と前記第1の測定位置の1つ前の第2の測定位置における第2の測定値と前記第1の測定位置の1つ後の第3の測定位置における第3の測定値とに基づいて前記スタイラスが前記被測定面を走査する時の前記被測定面の傾斜角度と傾斜に対する測定方向を算出し、前記第2の測定工程で測定した前記スライド部と前記ガイド部との相対位置と前記算出した被測定面の傾斜角度と傾斜に対する測定方向とに基づいて前記スライド部と前記ガイド部の相対位置を調整して前記被測定面に対する前記スタイラスの押圧力を、下記の式(1)で表される測定方向が上りの時の押圧力Fuと、下記の式(2)で表される下りの時の押圧力Fdとで切り換えて変化させながら前記被測定面を測定することを特徴とするものである。
Fu=F×(cosΦ・sinΦ−μcosΦ・cosΦ)
但し 20 [ mgf ] <Fu<50 [ mgf ] …式(1)
Fd=F×(cosΦ・sinΦ+μcosΦ・cosΦ)
但し 20 [ mgf ] <Fd<50 [ mgf ] …式(2)
ここで、Φは被測定面の傾き、μは被測定面の動摩擦係数、Fは一定値
本発明によると、任意の測定点において測定方向の違いにより生じる測定値の差(ヒステリシス)を小さくすることができる。
【0033】
また、前記スライド部と前記ガイド部の間に弾性材が配置され、前記スライド部と前記ガイド部の相対位置を調整して前記弾性材の変位量を変化させることにより前記スタイラスの押圧力を変化させると、スタイラスの押圧力を自動制御できて好適である。
【0034】
【発明の実施の形態】
以下、本発明の形状測定方法の一実施形態について、図11〜図19を参照して説明する。なお、形状測定装置の全体構成及び基本的な測定方法は、図1、図2を参照して説明した従来例と同一であり、その説明を援用、主として相違点について説明する。
【0035】
本実施形態においては、図11に示すように、第1に測定時に任意の測定点の傾斜角度と、スタイラス12が被測定面2aの斜面を上りながらの測定か、下りながらの測定かといった測定方向を算出するための算出手段33を設け、第2に算出手段33により求められた測定点の傾斜角度や測定方向と、スタイラス12の先端部に対する被測定面2aの動摩擦係数に応じて、スタイラス12が被測定面2aに負荷する測定押圧を変えるように、サーボ回路28に対して出力を指示する誤差信号を設定するように誤差信号発生部27を構成している。なお、図11において、32はミラー面13の位置を測定する位置測定手段であり、その測定結果が算出手段33に入力されている。以下、上記算出手段33における算出方法及び誤差信号発生部27からの出力信号の設定方法について、順次説明する。
【0036】
まず、被測定面2aの任意の測定点における傾斜角度と測定方向を自動的に算出する測定手段33の算出アルゴリズムを説明する。ここで、傾斜角度は測定点における法線とZ軸がなす鋭角とする。なお、本発明の測定方法においては、連続面の測定に限定される。また、常に被測定面2aの測定原点を決めてから測定を開始する。例えば、被測定物2が球であれば、球の頂点を原点として測定を開始し、また特公平7−69158号公報に開示された方法により自動的に測定原点を求める機能を備えている。
【0037】
図12において、スタイラス12は被測定面2aの形状に追随しながら走査している。スタイラス12の現在の測定位置における測定値をA1(X1,1)、ΔX離れた1つ前の測定値をA0(X0,0)、ΔX離れた次の測定値をA2(X2,2)とすると、ΔXが非常に小さいとき、測定点A2(X2,2)の傾斜角度と測定方向は次のように近似することができる。
【0038】
傾斜角度ΦA =tan-1|(Z1 −Z0 )/(X1 −X2 )| (12)
また、被測定面2aが設計式にほぼ一致する場合、被測定面2aのX座標に対するZの値を表す式をZ=f(X)とすると、
傾斜角度ΦA =tan-1|df(X)/dX| (13)
と表すことができる。
【0039】
測定方向は、Z1 −Z0 >0のときは上り、Z1 −Z0 <0のときは下りとする。
【0040】
次に、任意の測定点の、測定方向の違いにより生じるヒステリシスを小さくする測定押圧の設定方法について説明する。ヒステリシスを小さくするためには、任意の測定点を通過するときに、スタイラス12先端が受ける曲げモーメントが、その任意の点において測定方向にかかわらず一定であれば良い。すなわち、測定方向と測定面の傾きに応じて、ある一定の法則で、スタイラス12が測定面2aに負荷する測定押圧を変えながら測定することで実現できる。
【0041】
被測定面2aの傾きがΦA2の任意の点A2(X2,2)を、Z1 −Z0 >0の方向で測定する時と、Z1 −Z0 <0の方向で測定する時のスタイラス12の先端部に働くモーメントは以下のようになる。
【0042】
1 −Z0 >0の方向の測定で、測定押圧をFu とすると、スタイラス12の先端部には、
Figure 0004171615
が働く。
【0043】
同様に、Z1 −Z0 <0の方向の測定で、測定押圧をFD とすると、スタイラス12の先端部には、
Figure 0004171615
が働く。ここで、Lはスタイラス12とスライド部11の長さの和である。
【0044】
よって、ヒステリシスを無くすためには、
U =L×Fu (cosΦA2・sinΦA2+μcosΦA2・cosΦA2
=MD =L×FD (cosΦA2・sinΦA2−μcosΦA2・cosΦA2
であれば良い。その1つの実施例としては、
1 −Z0 >0の方向の測定時の測定押圧FU は、
Fu =F×(cosΦA2・sinΦA2−μcosΦA2・cosΦA2) (16)
1 −Z0 <0の方向の測定時の測定押圧FD は、
D =F×(cosΦA2・sinΦA2+μcosΦA2・cosΦA2) (17)
というように、測定押圧を測定点の傾きΦA2と、動摩擦係数μによって切り換えることで、ヒステリシスを小さくすることができる。
【0045】
さらに、プローブが被測定面2aに追随し、被測定面2aに傷を付けずに測定するために、Fu 、FD ともに、以下の条件を満たすことが推奨される。
【0046】
20〔mgf〕<Fu <50〔mgf〕
20〔mgf〕<FD <50〔mgf〕 (18)
なお、式(16)、式(17)のFは一定値とする。
【0047】
図13、図14に、スタイラス12の先端部に対する被測定面2aの動摩擦係数がμ=0.1、μ=0.3のとき例について、ヒシテリシスを小さくするための測定押圧Fu 及びFD の値を、測定点の傾きΦA をパラメータとして表している。なお、このときF=80〔mgf〕として算出した。
【0048】
次に、上記のようにスタイラス12の測定押圧を制御するための構成について説明する。
【0049】
図15は、ミラー面13で反射し、ピンホール25a、25bを通過し、2つの光検出器26a、26bに到達するレーザ光Gの光量を説明する図で、(a)はスライド部11が上昇した時の、(b)はスライド部11が下降した時の状態を示す。(a)での光検出器26a、26bが受光する光量をA1、B1、(b)での光検出器26a、26bが受光する光量をA2、B2とすると、(a)ではA1<B1、(b)ではA2<B2となる。
【0050】
2つの光検出器26a、26bの受光出力は、誤差信号発生部27によりフォーカス誤差信号(FE〔V〕)として検出される。このFE信号は、横軸に板ばね14の変位量ΔX(μm)、縦軸にFE信号を取り、かつスライド部11、スタイラス12、ミラー面13から成る可動部の重量により伸びた自然状態におけるFE信号の値を−1〔V〕とすると、図16に示すようなS字形状の特性を示す。ただし、本実施形態では図16の主に原点付近の範囲の信号を用いるため、図17に示すように、FE信号と板ばね14の変位量はほぼ比例関係にある。
【0051】
従って、今、板ばね14のばね定数を200〔mgf/mm〕とし、横軸にFE信号〔V〕、縦軸に被測定物2の被測定面2aに負荷される測定押圧〔mgf〕をとると、図18に示すような関係になる。
【0052】
かくして、スタイラス12の先端部に対する被測定面2aの動摩擦係数がμ=0.1の場合には、測定点の傾きΦA に応じて、図13に示したような測定押圧を負荷して、測定方向の違いによるヒステリシスを小さくするため、誤差信号発生部27から、測定点の傾きΦA に応じて、図19に示すようなFEU 信号、FED 信号を出力し、これらFEU 信号、FED 信号に基づいてサーボ回路28にてリニアモータ29を制御するように構成されている。
【0053】
このようにFE信号の目標値を受けて、スライド部11とガイド部15の相対位置を制御し、被測定面2aに対するスタイラス12の測定押圧を変えながら測定することで、被測定面2aの傾きが大きい場合にも、測定方向の違いによるヒステリシスが小さい状態で高精度の測定を行うことができる。
【0054】
【発明の効果】
本発明の形状測定方法によれば、従来よりはるかに高精度で、より傾きの大きな面形状を非常に広範囲に測定することができる。
【図面の簡単な説明】
【図1】本発明及び従来例の形状測定装置の一構成例を示す全体概略斜視図。
【図2】従来例の形状測定装置におけるオートフォーカス制御部の構成図。
【図3】被測定面上の任意点の傾きの説明図。
【図4】被測定物からスタイラスが受ける抗力の説明図。
【図5】(a)は測定方向が上り時に被測定物とスタイラスとの間に働く摩擦力の説明図、(b)は測定方向が下り時に被測定物とスタイラスとの間に働く摩擦力の説明図。
【図6】(a)は測定方向が上り時にスタイラスが受けるトータルの力の説明図、(b)は測定方向が下り時にスタイラスが受けるトータルの力の説明図。
【図7】(a)は測定方向が上り時にスタイラスに働くX方向の分力の説明図、(b)は測定方向が下り時にスタイラスに働くX方向の分力の説明図。
【図8】スタイラスの傾きを表す模式図。
【図9】スタイラスの傾きを表す別の模式図。
【図10】球を測定した時の測定結果を示すグラフ。
【図11】本実施形態の形状測定装置における測定押圧制御部の構成図。
【図12】測定面上の任意点の傾斜角度と測定方向の算出方法の説明図。
【図13】動摩擦係数がμ=0.1の時にヒステリシスを小さくする測定押圧の特性図。
【図14】動摩擦係数がμ=0.3の時にヒステリシスを小さくする測定押圧の特性図。
【図15】(a)はスライド部が上昇した時に光検出器に到達するレーザ光の光量の説明図、(b)はスライド部が上昇した時の光検出器に到達するレーザ光の光量の説明図。
【図16】フォーカス誤差信号と板ばねの変位量の関係を示す図。
【図17】図16の原点付近の拡大図。
【図18】測定押圧とフォーカス誤差信号の関係を示す図。
【図19】ヒステリシスを小さくするためのフォーカス誤差信号の値の説明図。
【符号の説明】
2 被測定物
2a 被測定面
4 レーザ測長光学系
5 原子間力プローブ
11 スライド部
12 スタイラス
13 ミラー面
14 板ばね(弾性材)
15 ガイド部
27 誤差信号発生部(相対位置測定手段)
28 サーボ回路(位置調整手段)
29 リニアモータ(位置調整手段)
31 エア軸受
32 位置測定手段
33 算出手段[0001]
BACKGROUND OF THE INVENTION
The present invention, the surface shape measurement, the shape measurement of the free-form surface, such as aspherical lenses, Ru can be performed two-dimensional or three-dimensional shape measurement, such as surface roughness or stepped shape measurements with high accuracy and at a low measurement pressure it relates shape measuring method.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 4-2992064 discloses an ultra-high-precision three-dimensional measuring machine capable of measuring surface shape measurement, free-form surface shape measurement such as an aspheric lens, and surface roughness measurement with high accuracy of about submicron (nonameter). This is disclosed in Japanese Patent Laid-Open No. 10-170243.
[0003]
A configuration example of the ultra-high accuracy coordinate measuring machine will be described with reference to FIG. In FIG. 1, the tip of an atomic force probe 5 attached to a moving body 3 is made to follow a measurement surface 2a of a measurement object 2 such as a lens installed on a stone surface plate 1 to measure the measurement surface 2a. It is comprised so that the surface shape of may be measured.
[0004]
Specifically, an X reference mirror 6, a Y reference mirror 7, and a Z reference mirror 8 are arranged on a stone surface plate 1 on which the device under test 2 is mounted via a support portion. The movable body 3 provided with the atomic force probe 5 is disposed on the stone surface plate 1 via the X stage 9 and the Y stage 10, and the surface shape of the measurement surface 2 a of the measurement object 2. Following this, the moving body 3 and the atomic force probe 5 can be scanned in the X-axis direction and the Y-axis direction.
[0005]
The moving body 3 is provided with a laser length measuring optical system 4, and the X coordinate of the atomic force probe 5 based on the X reference mirror 6 and the atoms based on the Y reference mirror 7 by a known optical interference method. The Y coordinate of the atomic force probe 5 and the Z coordinate of the atomic force probe 5 based on the Z reference mirror 8 can be measured.
[0006]
Next, as an example of a configuration in which the atomic force probe 5 and the atomic force probe 5 are subjected to autofocus control, those described in Japanese Patent Nos. 2638157 and 3000819 are referred to FIG. To explain.
[0007]
The atomic force probe 5 includes a slide part 11 supported by a guide part 15 via an air bearing 31 so as to be movable in the Z coordinate direction, and a stylus 12 attached to an end of the slide part 11 in the −Z direction. A position measuring means for measuring the Z coordinate of the slide portion 11 is provided. This position measuring means is configured to use the other end of the slide portion 11 as a mirror surface 13, irradiate the mirror surface 13 with a laser beam Fz, and measure the position of the mirror surface 13 from the reflected light.
[0008]
The weight of the movable part composed of the slide part 11, the stylus 12, and the mirror surface 13 is supported by an elastic material that elastically restricts movement in the Z direction, specifically, a leaf spring 14, and the slide part 11 and the stylus 12 are plate. It moves up and down following the surface to be measured 2 a while being suspended by the spring 14. In addition, the slide portion 11 is highly rigid in the XY direction by the air bearing 31 and is configured to move freely in the Z direction, and the slide portion 11 can be made simple and light in weight, so that a measured object with a large inclination can be obtained. Since the lateral displacement due to the measurement pressure can be reduced with respect to the surface 2a, and the measurement pressure can also be reduced, the surface 2a to be measured can be measured with high accuracy without scratching.
[0009]
Furthermore, the relative position measuring means for measuring the relative position between the slide part 11 and the guide part 15 and the guide part 15 so that the relative position between the slide part 11 and the guide part 15 obtained from the relative position measuring means is substantially constant. There is provided auto-focusing control means for driving in the Z direction. By the autofocusing control means, the relative position in the Z direction with respect to the guide portion 15 of the slide portion 11 is restricted to a predetermined position, so that the measurement is always performed with a constant measurement pressure on the measured surface 2a.
[0010]
The relative position measuring means and the autofocusing control means are disposed on the probe body 16 to which the guide portion 15 is connected and movable in the Z direction. Explaining the configuration, the laser light G emitted from the semiconductor laser 17 passes through the collimating lens 18, the polarizing beam splitter 19, and the λ / 4 wavelength plate 20, is reflected by the dichroic mirror 21, and is slid by the objective lens 22. The light is condensed on the mirror surface 13 of the part 11.
[0011]
The reflected light of the laser beam G that has returned to the objective lens 22 is totally reflected by the dichroic mirror 21 and the polarization beam splitter 19, collected by the lens 23, and separated into two by the half mirror 24. , 25b and received by the two photodetectors 26a, 26b.
[0012]
Detection outputs from the two photodetectors 26 a and 26 b are input to the error signal generator 27. A focus error signal is output from the error signal generator 27 to the servo circuit 28, and the linear motor 29 is driven and controlled by the servo circuit 28, and the position of the probe body 16 is focused to a position where a predetermined measuring force can be obtained. The weight of the Z moving part including the probe main body 16 is supported by the spring 30.
[0013]
Next, the force that the stylus 12 attached to the atomic force probe 5 receives during measurement will be described. Hereinafter, in order to simplify the description, the object 2 to be measured is a sphere, and as shown in FIG. 3, the slope Φ of an arbitrary point on the surface 2a to be measured is the normal to the arbitrary point on the surface 2a to be measured and Z The acute angle formed by the axis. Now consider the force acting on the two-dimensional surface of the XZ plane. A similar force is considered to work on the YZ plane. Note that Φ> 0 when X> 0, and Φ <0 when X <0.
[0014]
FIG. 4 is a diagram for explaining the drag that the stylus 12 receives from the DUT 2. At the time of measurement, the stylus 12 applies a measurement pressure to the measured surface 2a with a constant force F in the -Z direction. The stylus 12 receives a drag force FcosΦ from the surface to be measured 2a in the normal direction to the surface. Therefore, the drag acting on the stylus 12 becomes smaller as the inclination of the measured surface 2a becomes larger (the inclination Φ becomes larger).
[0015]
FIG. 5A is a diagram for explaining the frictional force acting between the DUT 2 and the stylus 12 when the measurement direction is up, and FIG. 5B is a diagram illustrating the DUT 2 when the measurement direction is down. It is a figure explaining the frictional force which acts between the stylus. The stylus 12 always receives a frictional force μFcosΦ from the surface 2a to be measured in a tangential direction to the surface. Here, μ represents the dynamic friction coefficient of the surface 2a to be measured with respect to the tip of the stylus 12. Therefore, the greater the inclination of the measured surface 2a (the greater the inclination Φ), the smaller the frictional force acting between the measured surface 2a and the stylus 12. This frictional force always acts on the stylus 12 in the direction opposite to the measurement direction.
[0016]
FIG. 6A is a diagram for explaining the total force that the stylus 12 receives when measuring the measured surface 2a in the measuring direction up, and FIG. 6B shows the measured surface 2a in the measuring direction down. It is a figure explaining the total force which stylus 12 receives when measuring. The stylus 12 receives a drag force FcosΦ in the normal direction + Zφ direction of the measured surface 2a and a frictional force μFcosΦ acting between the measured surface 2a and the tangential direction Xφ of the measured surface 2a. This frictional force always acts on the stylus 12 in the direction opposite to the measurement direction.
[0017]
FIG. 7A is a diagram that considers the component force in the X-axis direction of the force acting on the stylus 12 when the measurement direction goes up, and FIG. 7B shows the force acting on the stylus 12 when going down the measurement direction. It is the figure which considered the component force of the axial direction. When the measurement is performed while ascending the surface to be measured 2a, the drag X-axis direction component force FcosΦ · sinΦ and the frictional force X-axis direction component force μFcosΦ · cosΦ act on the stylus 12 in the same direction. When measuring while descending the measured surface 2a, the X-axis direction component force FcosΦ · sinΦ of the drag force and the X-axis direction component force μFcosΦ · cosΦ of the friction force act on the stylus 12 in opposite directions. .
[0018]
From the above, when the measurement is performed while ascending the surface to be measured 2a, the moment M U acting on the tip of the stylus 12 is
M U = L × (FcosΦ · sinΦ + μFcosΦ · cosΦ) (1)
When measuring while down the measurement surface 2a, the moment M D acting on the tip portion of the stylus 12,
M D = L × (FcosΦ · sinΦ−μFcosΦ · cosΦ) (2)
Will each work. Here, the moment is positive in the counterclockwise direction. L represents the sum of the lengths of the stylus 12 and the slide portion 11, and is 17 mm to 22 mm in a specific configuration example.
[0019]
From the above, the moment to the left when measuring while going up the measured surface 2a and when measuring while going down the measured surface 2a is M U −M D = 2 × L × μFcosΦ from the equations (1) and (2).・ CosΦ (3)
If the measurement pressure F is constant, the moment M U when measuring while moving up the measured surface 2a from the equation (3) as the dynamic friction coefficient μ of the measured surface 2a with respect to the tip of the stylus 12 increases, the difference between the moment M D at the time of measurement, while down the surface to be measured 2a can not be ignored.
[0020]
FIG. 8 shows the inclination of the stylus 12 when passing through the measurement point A (X A , Z A ) of the measured surface 2a when the dynamic friction coefficient μ of the measured surface 2a relative to the tip of the stylus 12 is large. Reference numeral 12 a represents an ideal state where no drag force and friction force are acting on the stylus 12. Reference numeral 12b denotes a stylus when measuring while going up the measured surface 2a, and 12c denotes a stylus when measuring while going down the measured surface 2a. Further, the difference in the X-axis direction between the contact A (X A , Z A ) between the stylus 12a and the measured surface 2a and the contact B (X B , Z B ) between the stylus 12b and the measured surface 2a is expressed as ΔX 1. The difference in the Z-axis direction is ΔZ 1 . Similarly, the difference in the X-axis direction between A (X A , Z A ) and the contact C (X C , Z C ) between the stylus 12c and the measured surface 2a is ΔX 2 , and the difference in the Z-axis direction is ΔZ 2. And
[0021]
Now, in order to represent the a [Delta] Z 1 and [Delta] Z 2, respectively [Delta] X 1 and [Delta] X 2, consider the model of Figure 9. 12a ′ and 12b ′ represent central axes of the stylus 12a and stylus 12b, respectively. Further, if the angle formed by 12a ′ and 12b ′ is α, and the angle formed by 12a ′ and 12c ′ is β, ΔX 1 and ΔX 2 can be expressed as follows.
[0022]
ΔX 1 = Lcosα (4)
ΔX 2 = Lcosβ (5)
Further, when a design formula representing a value of Z with respect to the X coordinate of the surface to be measured 2a is Z = f (X),
ΔZ 1 = L (1-cos α) + f (X A ) −f (X A + ΔX 1 ) (6)
ΔZ 2 = L (1-cosβ) + f (X A ) −f (X A + ΔX 2 ) (7)
It becomes. Note that | ΔX 1 |> | ΔX 2 | and α> β.
[0023]
Therefore, the measurement value Z A at the measurement point A (X A , Z A ) includes the errors of the equations (6) and (7). When measuring while going up the measured surface 2a,
Z A1 = Z A −ΔZ 1 = −L (1−cos α) + f (X A + ΔX 1 ) (8)
It can be expressed as.
[0024]
Similarly, when measuring while descending the measured surface 2a,
Z A2 = Z A −ΔZ 2 = −L (1−cos β) + f (X A + ΔX 2 ) (9)
It becomes.
[0025]
From the above, the difference between the measurement values at the measurement point A (X A , Z A ) when measuring while going up the measured surface 2a and when going down while measuring the measured surface 2a is the equation (8), 9) From
Figure 0004171615
Especially when the DUT 2 is a sphere,
Figure 0004171615
It can be expressed as.
[0026]
When the dynamic friction coefficient μ of the measured surface 2a with respect to the tip of the stylus 12 is large, if the measurement pressure is constant, the moment M 1 when measuring while ascending the measured surface and when measuring while descending the measured surface The difference from the moment M 2 is larger than that in the equation (3). As the difference in moment increases, the difference between the inclination amounts α and β of the stylus 12 increases, and the difference in error in the X-axis direction (ΔX 1 −ΔX 2 ) and the stylus are determined from the equations (4) and (5). The difference in the inclination of 12 (cos α−cos β) is increased, and (Z A1 −Z A2 ) is increased from the equation (11). Further, when the inclination Φ A of the measurement point increases, (Z A1 −Z A2 ) further increases from Equation (11).
[0027]
For example, in the measurement on the spherical surface, the sum of the lengths of the stylus 12 and the slide portion 11 is L = 20 mm, and the inclination of the up and down styluss when the inclination angle of the measurement surface is Φ A = 60 ° is α = If 0.3 ° and β = 0.2 °,
L (cos α-cos β) = − 0.152 μm
ΔX 1 −ΔX 2 = 34.906 μm
At Φ A = 60 °
Figure 0004171615
It becomes.
[0028]
[Problems to be solved by the invention]
FIG. 10 shows the result of measuring a sphere with the horizontal axis representing the tilt angle of the surface to be measured and the vertical axis representing the design formula Z = f (X) and the difference Zd (μm) between the measured values.
[0029]
As is apparent from FIG. 10, in the nano-order measurement, even if the difference in the inclination of the stylus 12 is a minute angle, the measured value error becomes large on the measurement surface with a large inclination so that the measurement value error cannot be ignored. For example, it is recognized that the difference between the measured value and the design value tends to increase when the inclination angle of the surface to be measured is larger than 30 ° both when the measurement direction is up and down. Further, the friction force acting on the stylus 12 is different in the direction of working in the measurement direction, and cannot be ignored in the measurement of a surface having a large dynamic friction coefficient μ. As described above, even if the same measurement point is measured, the measurement value error tends to increase depending on the measurement direction, and a phenomenon in which the measurement value at the same measurement point varies depending on the measurement direction (this is referred to as “hysteresis”). Will occur.
[0030]
The present invention aims at providing the light of the conventional problems, shape measurement method that can be reduced the effect of the hysteresis.
[0032]
[Means for Solving the Problems]
In the shape measuring method of the present invention, the stylus of the slide portion having the stylus at one end and the mirror surface at the other end is brought into contact with the surface to be measured, and the light irradiated from the first light source is reflected by the mirror surface. From the first measurement step of measuring the position of the slide portion in the axial direction at a plurality of positions on the surface to be measured, and the slide portion from the reflected light reflected from the mirror surface by the light emitted from the second light source And a second measurement step for measuring the relative position between the slide portion and the guide portion supporting the slide portion, and a third measurement for measuring positions in two directions perpendicular to the axial direction of the slide portion and perpendicular to each other A first measurement value at the first measurement position of the surface to be measured measured in the first measurement process and the third measurement process, and one previous to the first measurement position. Second measurement value at the second measurement position An inclination angle of the surface to be measured and a measurement direction with respect to the inclination when the stylus scans the surface to be measured based on a third measurement value at a third measurement position immediately after the first measurement position. And the slide portion and the guide portion based on the relative position between the slide portion and the guide portion measured in the second measurement step, the calculated inclination angle of the measured surface, and the measurement direction relative to the inclination. The pressing force of the stylus against the surface to be measured by adjusting the relative position is expressed by the pressing force Fu when the measurement direction represented by the following formula (1) is up and the following formula (2). Ru der those characterized by measuring the measurement surface while switching by changing in the pressing force Fd when the downlink that.
Fu = F × (cosΦ · sinΦ−μcosΦ · cosΦ)
However, 20 [ mgf ] <Fu <50 [ mgf ] ... Formula (1)
Fd = F × (cosΦ · sinΦ + μcosΦ · cosΦ)
However, 20 [ mgf ] <Fd <50 [ mgf ] ... Formula (2)
Where Φ is the inclination of the surface to be measured, μ is the coefficient of dynamic friction of the surface to be measured, and F is a constant value
According to the present invention, it is possible to reduce a difference (hysteresis) in measurement values caused by a difference in measurement direction at an arbitrary measurement point.
[0033]
The front the kiss riding portion guide portion is disposed elastic material between, press the stylus by adjusting the relative position of the guide portion and the sliding portion to vary the displacement amount of the elastic member It is preferable to change the pressure because the pressing force of the stylus can be automatically controlled.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a shape measuring method of the present invention will be described with reference to FIGS. 11 to 19. Note that the overall configuration and basic measurement method of the shape measuring apparatus are the same as those of the conventional example described with reference to FIGS. 1 and 2, and the differences will be mainly described with reference to the description.
[0035]
In the present embodiment, as shown in FIG. 11, firstly, the measurement is performed such as the inclination angle of an arbitrary measurement point at the time of measurement and whether the stylus 12 is measured while going up or down the measured surface 2a. Calculation means 33 for calculating the direction is provided, and secondly, the stylus according to the inclination angle and measurement direction of the measurement point obtained by the calculation means 33 and the dynamic friction coefficient of the measured surface 2a with respect to the tip of the stylus 12 The error signal generator 27 is configured to set an error signal for instructing the servo circuit 28 to output so that 12 changes the measurement pressure applied to the surface 2a to be measured. In FIG. 11, reference numeral 32 denotes position measuring means for measuring the position of the mirror surface 13, and the measurement result is input to the calculating means 33. Hereinafter, the calculation method in the calculation means 33 and the method for setting the output signal from the error signal generator 27 will be sequentially described.
[0036]
First, the calculation algorithm of the measuring means 33 for automatically calculating the inclination angle and the measurement direction at an arbitrary measurement point on the measurement surface 2a will be described. Here, the inclination angle is an acute angle formed by the normal line at the measurement point and the Z axis. In addition, in the measuring method of this invention, it is limited to the measurement of a continuous surface. Further, the measurement is always started after the measurement origin of the measured surface 2a is determined. For example, if the DUT 2 is a sphere, the measurement is started with the top of the sphere as the origin, and the measurement origin is automatically obtained by the method disclosed in Japanese Patent Publication No. 7-69158.
[0037]
In FIG. 12, the stylus 12 is scanned while following the shape of the surface 2a to be measured. The measurement value at the current measurement position of the stylus 12 is A 1 (X 1, Z 1 ), the previous measurement value separated by ΔX is A 0 (X 0, Z 0 ), and the next measurement value separated by ΔX is A Assuming 2 (X 2, Z 2 ), when ΔX is very small, the inclination angle and measurement direction of the measurement point A 2 (X 2, Z 2 ) can be approximated as follows.
[0038]
Inclination angle Φ A = tan −1 | (Z 1 −Z 0 ) / (X 1 −X 2 ) | (12)
In addition, when the surface to be measured 2a substantially matches the design formula, if the equation representing the value of Z with respect to the X coordinate of the surface to be measured 2a is Z = f (X),
Inclination angle Φ A = tan −1 | df (X) / dX | (13)
It can be expressed as.
[0039]
The measurement direction is up when Z 1 −Z 0 > 0, and down when Z 1 −Z 0 <0.
[0040]
Next, a measurement pressing setting method for reducing hysteresis caused by a difference in measurement direction at an arbitrary measurement point will be described. In order to reduce the hysteresis, the bending moment received by the tip of the stylus 12 when passing through an arbitrary measurement point may be constant regardless of the measurement direction at the arbitrary point. In other words, the measurement can be realized by changing the measurement pressure applied to the measurement surface 2a by the stylus 12 according to a certain law according to the measurement direction and the inclination of the measurement surface.
[0041]
When measuring an arbitrary point A 2 (X 2, Z 2 ) where the inclination of the measured surface 2a is Φ A2 in the direction of Z 1 -Z 0 > 0, and in the direction of Z 1 -Z 0 <0 The moment acting on the tip of the stylus 12 at the time is as follows.
[0042]
When measuring in the direction of Z 1 −Z 0 > 0 and the measurement pressure is Fu, the tip of the stylus 12 is
Figure 0004171615
Work.
[0043]
Similarly, in the measurement in the direction of Z 1 −Z 0 <0, when the measurement pressure is F D , the tip of the stylus 12 is
Figure 0004171615
Work. Here, L is the sum of the lengths of the stylus 12 and the slide portion 11.
[0044]
Therefore, to eliminate hysteresis,
M U = L × Fu (cosΦ A2 · sinΦ A2 + μcosΦ A2 · cosΦ A2)
= M D = L × F D (cosΦ A2 · sinΦ A2 -μcosΦ A2 · cosΦ A2)
If it is good. One example is as follows:
The measurement pressure F U when measuring in the direction of Z 1 −Z 0 > 0 is
Fu = F × (cos Φ A 2 · sin Φ A2 −μ cos Φ A 2 , cos Φ A2 ) (16)
The measurement pressure F D at the time of measurement in the direction of Z 1 −Z 0 <0 is
F D = F × (cosΦ A2 · sinΦ A2 + μcosΦ A2 · cosΦ A2) (17)
As described above, the hysteresis can be reduced by switching the measurement pressure according to the inclination Φ A2 of the measurement point and the dynamic friction coefficient μ.
[0045]
Further, the probe to follow the measurement surface 2a, in order to measure without scratching the surface to be measured 2a, Fu, F D together is recommended that the following conditions are satisfied.
[0046]
20 [mgf] <Fu <50 [mgf]
20 [mgf] <F D <50 [mgf] (18)
Note that F in equations (16) and (17) is a constant value.
[0047]
13, 14, the dynamic friction coefficient mu = 0.1 of the sample surface 2a against the tip portion of the stylus 12, for example when mu = 0.3, measuring the pressing Fu and F D for reducing the hysteresis The value is expressed using the inclination Φ A of the measurement point as a parameter. At this time, F = 80 [mgf] was calculated.
[0048]
Next, a configuration for controlling the measurement press of the stylus 12 as described above will be described.
[0049]
FIG. 15 is a diagram for explaining the light quantity of the laser light G that is reflected by the mirror surface 13, passes through the pinholes 25a and 25b, and reaches the two photodetectors 26a and 26b. (B) when it raises shows the state when the slide part 11 descend | falls. When the light amounts received by the photodetectors 26a and 26b in (a) are A1 and B1, and the light amounts received by the photodetectors 26a and 26b in (b) are A2 and B2, in FIG. In (b), A2 <B2.
[0050]
The light reception outputs of the two photodetectors 26a and 26b are detected as a focus error signal (FE [V]) by the error signal generator 27. This FE signal takes the displacement amount ΔX (μm) of the leaf spring 14 on the horizontal axis, the FE signal on the vertical axis, and in a natural state extended by the weight of the movable part including the slide part 11, the stylus 12, and the mirror surface 13. When the value of the FE signal is -1 [V], an S-shaped characteristic as shown in FIG. 16 is shown. However, in the present embodiment, since signals in the vicinity of the origin in FIG. 16 are mainly used, as shown in FIG. 17, the displacement of the FE signal and the leaf spring 14 is substantially proportional.
[0051]
Therefore, the spring constant of the leaf spring 14 is now set to 200 [mgf / mm], the horizontal axis represents the FE signal [V], and the vertical axis represents the measurement pressure [mgf] applied to the measurement surface 2a of the DUT 2. If it takes, it will become a relationship as shown in FIG.
[0052]
Thus, when the dynamic friction coefficient of the surface 2a to be measured with respect to the tip of the stylus 12 is μ = 0.1, a measurement pressure as shown in FIG. 13 is applied according to the inclination Φ A of the measurement point, In order to reduce the hysteresis due to the difference in the measurement direction, the error signal generator 27 outputs FE U signals and FE D signals as shown in FIG. 19 according to the inclination Φ A of the measurement point, and these FE U signals, It is configured to control the linear motor 29 by the servo circuit 28 based on the FE D signal.
[0053]
In this way, receiving the target value of the FE signal, the relative position between the slide portion 11 and the guide portion 15 is controlled, and the measurement is performed while changing the measurement pressure of the stylus 12 with respect to the measurement surface 2a, whereby the inclination of the measurement surface 2a is measured. Even when is large, highly accurate measurement can be performed in a state where hysteresis due to a difference in measurement direction is small.
[0054]
【The invention's effect】
According to shape measuring method of the present invention, with much higher precision than the conventional, more large surface shape of the gradient can be quite extensive measurements.
[Brief description of the drawings]
FIG. 1 is an overall schematic perspective view showing a configuration example of a shape measuring apparatus according to the present invention and a conventional example.
FIG. 2 is a configuration diagram of an autofocus control unit in a conventional shape measuring apparatus.
FIG. 3 is an explanatory diagram of an inclination of an arbitrary point on a surface to be measured.
FIG. 4 is an explanatory diagram of a drag force received by a stylus from an object to be measured.
5A is an explanatory diagram of a friction force acting between the object to be measured and the stylus when the measurement direction is ascending, and FIG. 5B is a friction force acting between the object to be measured and the stylus when the measurement direction is descending. FIG.
6A is an explanatory diagram of the total force received by the stylus when the measuring direction is up, and FIG. 6B is an explanatory diagram of the total force received by the stylus when the measuring direction is down.
7A is an explanatory diagram of a component force in the X direction acting on the stylus when the measurement direction is up, and FIG. 7B is an explanatory diagram of a component force in the X direction acting on the stylus when the measurement direction is down.
FIG. 8 is a schematic diagram showing the inclination of a stylus.
FIG. 9 is another schematic diagram showing the inclination of the stylus.
FIG. 10 is a graph showing a measurement result when a sphere is measured.
FIG. 11 is a configuration diagram of a measurement pressing control unit in the shape measuring apparatus according to the present embodiment.
FIG. 12 is an explanatory diagram of a method of calculating an inclination angle of an arbitrary point on a measurement surface and a measurement direction.
FIG. 13 is a characteristic diagram of measurement pressing that reduces the hysteresis when the dynamic friction coefficient is μ = 0.1.
FIG. 14 is a characteristic diagram of measurement pressing for reducing the hysteresis when the dynamic friction coefficient is μ = 0.3.
15A is an explanatory diagram of the amount of laser light reaching the photodetector when the slide portion is raised, and FIG. 15B is the amount of laser light reaching the photodetector when the slide portion is raised. Illustration.
FIG. 16 is a diagram illustrating a relationship between a focus error signal and a displacement amount of a leaf spring.
17 is an enlarged view near the origin of FIG.
FIG. 18 is a diagram illustrating a relationship between measurement pressing and a focus error signal.
FIG. 19 is an explanatory diagram of the value of a focus error signal for reducing hysteresis.
[Explanation of symbols]
2 Measurement object 2a Measurement surface 4 Laser length measurement optical system 5 Atomic force probe 11 Slide portion 12 Stylus 13 Mirror surface 14 Leaf spring (elastic material)
15 Guide part 27 Error signal generation part (relative position measuring means)
28 Servo circuit (Position adjustment means)
29 Linear motor (position adjustment means)
31 air bearing 32 position measuring means 33 calculating means

Claims (2)

一端にスタイラスを他端にミラー面を設けたスライド部の前記スタイラスを被測定面に接触させ、第1の光源から照射した光が前記ミラー面で反射した反射光から前記被測定面の複数の位置における前記スライド部の軸芯方向の位置を測定する第1の測定工程と、第2の光源から照射した光が前記ミラー面で反射した反射光から前記スライド部と前記スライド部を支持するガイド部との相対位置を測定する第2の測定工程と、前記スライド部の軸芯方向と直交し、かつ互いに直交する2つの方向の位置を測定する第3の測定工程とを有し、前記第1の測定工程と第3の測定工程とで測定した前記被測定面の第1の測定位置における第1の測定値と前記第1の測定位置の1つ前の第2の測定位置における第2の測定値と前記第1の測定位置の1つ後の第3の測定位置における第3の測定値とに基づいて前記スタイラスが前記被測定面を走査する時の前記被測定面の傾斜角度と傾斜に対する測定方向を算出し、前記第2の測定工程で測定した前記スライド部と前記ガイド部との相対位置と前記算出した被測定面の傾斜角度と傾斜に対する測定方向とに基づいて前記スライド部と前記ガイド部の相対位置を調整して前記被測定面に対する前記スタイラスの押圧力を、下記の式(1)で表される測定方向が上りの時の押圧力Fuと、下記の式(2)で表される下りの時の押圧力Fdとで切り換えて変化させながら前記被測定面を測定することを特徴とする形状測定方法。
Fu=F×(cosΦ・sinΦ−μcosΦ・cosΦ)
但し 20 [ mgf ] <Fu<50 [ mgf ] …式(1)
Fd=F×(cosΦ・sinΦ+μcosΦ・cosΦ)
但し 20 [ mgf ] <Fd<50 [ mgf ] …式(2)
ここで、Φは被測定面の傾き、μは被測定面の動摩擦係数、Fは一定値
The stylus of the slide portion having a stylus at one end and a mirror surface at the other end is brought into contact with the surface to be measured, and a plurality of light beams emitted from the first light source are reflected from the reflected light from the mirror surface. A first measurement step for measuring the position of the slide part in the axial direction at a position, and a guide for supporting the slide part and the slide part from the reflected light reflected by the mirror surface by the light emitted from the second light source A second measuring step for measuring a relative position with respect to the portion, and a third measuring step for measuring a position in two directions orthogonal to the axial direction of the slide portion and orthogonal to each other, A first measurement value at a first measurement position on the surface to be measured measured in one measurement step and a third measurement step, and a second measurement position at a second measurement position immediately before the first measurement position. Of the measured value and 1 of the first measurement position Based on a third measurement value at a later third measurement position, an inclination angle of the measurement surface and a measurement direction with respect to the inclination when the stylus scans the measurement surface are calculated, and the second measurement is performed. The relative position between the slide part and the guide part is adjusted by adjusting the relative position between the slide part and the guide part based on the relative position between the slide part and the guide part measured in the process, the calculated inclination angle of the measured surface and the measurement direction relative to the inclination. The pressing force of the stylus on the measurement surface is expressed by the pressing force Fu when the measurement direction represented by the following formula (1) is up, and the pressing force Fd when the measurement direction is represented by the following formula (2). A shape measuring method, characterized in that the surface to be measured is measured while being changed by changing the position.
Fu = F × (cosΦ · sinΦ−μcosΦ · cosΦ)
However, 20 [ mgf ] <Fu <50 [ mgf ] ... Formula (1)
Fd = F × (cosΦ · sinΦ + μcosΦ · cosΦ)
However, 20 [ mgf ] <Fd <50 [ mgf ] ... Formula (2)
Where Φ is the inclination of the surface to be measured, μ is the coefficient of dynamic friction of the surface to be measured, and F is a constant value
前記スライド部と前記ガイド部の間に弾性材が配置され、前記スライド部と前記ガイド部の相対位置を調整して前記弾性材の変位量を変化させることにより前記スタイラスの押圧力を変化させることを特徴とする請求項1記載の形状測定方法。  An elastic material is disposed between the slide portion and the guide portion, and the pressing force of the stylus is changed by changing a displacement amount of the elastic material by adjusting a relative position between the slide portion and the guide portion. The shape measuring method according to claim 1.
JP2002183082A 2002-06-24 2002-06-24 Shape measurement method Expired - Lifetime JP4171615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183082A JP4171615B2 (en) 2002-06-24 2002-06-24 Shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183082A JP4171615B2 (en) 2002-06-24 2002-06-24 Shape measurement method

Publications (2)

Publication Number Publication Date
JP2004028684A JP2004028684A (en) 2004-01-29
JP4171615B2 true JP4171615B2 (en) 2008-10-22

Family

ID=31179399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183082A Expired - Lifetime JP4171615B2 (en) 2002-06-24 2002-06-24 Shape measurement method

Country Status (1)

Country Link
JP (1) JP4171615B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114217A (en) * 2007-02-05 2007-05-10 Hoya Corp Measurement method for lens shape or formed surface shape
JP5121292B2 (en) * 2007-04-24 2013-01-16 株式会社牧野フライス製作所 Shape measuring method and apparatus
JP5171108B2 (en) * 2007-05-23 2013-03-27 パナソニック株式会社 3D shape measuring device
DE102009020294A1 (en) * 2009-05-07 2010-11-18 Mahr Gmbh Method and device for measuring a surface profile
JP6623883B2 (en) * 2016-03-28 2019-12-25 株式会社デンソー Cutting unit

Also Published As

Publication number Publication date
JP2004028684A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US5144150A (en) Configuration measuring apparatus
TWI345047B (en) Three dimensional shape measuring apparatus
JP3932502B2 (en) Stylus shape measuring sensor, NC machining apparatus and shape measuring method using the same
JP3926793B2 (en) Surface shape measuring device
US8144340B2 (en) Surface sensing device with optical sensor
EP2150770A2 (en) Optical distance sensor
US5455677A (en) Optical probe
JP2006343249A (en) Shape measuring device and shape measuring method
US7247827B1 (en) System for measurement of the height, angle and their variations of the surface of an object
JP4790551B2 (en) Fine shape measuring device
JP4171615B2 (en) Shape measurement method
CN204064260U (en) A kind of optics self-focusing for free form surface topography measurement is popped one&#39;s head in
KR101330468B1 (en) Three dimensional shape measuring apparatus
US7804605B2 (en) Optical multi-axis linear displacement measurement system and a method thereof
JP5171108B2 (en) 3D shape measuring device
TWI267622B (en) Measuring system with zero Abbe error and method thereof
JP4093828B2 (en) Measuring probe and optical measuring device
KR102228711B1 (en) Shape measuring probe
JP4407254B2 (en) Shape measurement method
US20240060866A1 (en) Indentation head for an indentation instrument
JPS6365346A (en) Optical type surface inspection device
JP2001249018A (en) Surface mechanical characteristic measuring apparatus and method thereof
JPH02128109A (en) Surface shape measuring apparatus
JP2638157B2 (en) Shape measuring apparatus and method
JPH074914A (en) Optical minute displacement/roughness gage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4171615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

EXPY Cancellation because of completion of term