JPS62210174A - Self-propelled vehicle - Google Patents

Self-propelled vehicle

Info

Publication number
JPS62210174A
JPS62210174A JP61051744A JP5174486A JPS62210174A JP S62210174 A JPS62210174 A JP S62210174A JP 61051744 A JP61051744 A JP 61051744A JP 5174486 A JP5174486 A JP 5174486A JP S62210174 A JPS62210174 A JP S62210174A
Authority
JP
Japan
Prior art keywords
rear wheels
wheels
self
propelled vehicle
front wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61051744A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsumoto
松本 義廣
Nobuo Mino
美濃 伸夫
Koichi Fujikawa
幸一 藤川
Norihide Higaki
桧垣 典秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61051744A priority Critical patent/JPS62210174A/en
Priority to US07/022,934 priority patent/US4778024A/en
Priority to GB08705448A priority patent/GB2188294A/en
Priority to KR1019870002110A priority patent/KR930001761B1/en
Publication of JPS62210174A publication Critical patent/JPS62210174A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/24Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
    • B62D1/28Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips

Abstract

PURPOSE:To allow a self-propelled vehicle to be turned with the minimum radius and laterally traveled by constituting the three-wheeled self-propelled vehicle so that one front wheel can be normally steered and locked in the right angle direction and a pair of rear wheels can be relatively rotated. CONSTITUTION:A self-propelled vehicle 1 is traveled along a track 12 which detecting a track 12 with a track sensor 13. When the self-propelled vehicle 1 is to be reversed in direction on the track 12, a front wheel 2 is rotated by a steering motor 10 in the right angle direction against the longitudinal center line L of the self-propelled vehicle 1. Both rear wheels 3, 4 are rotated outward by motors 10a, 10b in opposite directions to each other by the same angle theta. Then, drive motors 7a, 7b are simultaneously driven, and the front wheel 2 and both rear wheels 3, 4 are rotated around the point O with rotating radii R, (r) respectively. On the other hand, if the front wheel 2 and both rear wheels 3, 4 are set laterally in parallel, the self-propelled vehicle 1 can be shifted to the other track.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、前輪及び一対の後輪よりなる三輪を有し、そ
の本体自体を車輪の駆動によって回転又は横行走行可能
に構成した自走車に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a self-propelled vehicle which has three wheels consisting of a front wheel and a pair of rear wheels, and whose main body itself is configured to rotate or travel sideways by driving the wheels. It is.

従来の技術 この種自走車としては、例えば床上の白線やアルミ箔等
により構成した軌道に沿って、その軌道を光学式軌道セ
ンサで検出しながら走行するものがある。このような従
来の自走車において、前輪と一対の後輪よりなる三輪の
場合は、前輪を駆動装置に連結して駆動可能とするとと
もに、操舵装置によって自動操舵可能に構成し、後輪は
駆動装置を備えずフリーの車輪として回転されるように
なし、かつ操舵もできないようになっている。
BACKGROUND OF THE INVENTION Some self-propelled vehicles of this type run, for example, along a track constructed of white lines on the floor, aluminum foil, etc., while detecting the track with an optical track sensor. In such conventional self-propelled vehicles, in the case of a three-wheeled vehicle consisting of a front wheel and a pair of rear wheels, the front wheels are connected to a drive device so that they can be driven, and the steering device is configured to allow automatic steering. It does not have a driving device and can be rotated as a free wheel, and cannot be steered.

また、他の例として、第7図イ9口に示すような四輪の
自走車がある。この場合は1本体20における前後に駆
動源を有しない前輪21と後輪22を有するとともに、
その左右に駆動モータ25及び26をそれぞれ有する車
輪23及び24を有するものである。この例では、イ図
のように全車輪21〜24を前方に向け、駆動モータ2
5゜26の、鳴動により通常走行を行なうものであシ、
左右の車輪23.24の回転速度を同一にすれば直進し
、その速度比を変えることによシ左右への操舵が可能と
なるものである。なおこのとき、前輪21と後輪22の
うち少なくとも前輪21は、左右輪23.24の回転速
度比による操舵に追従すべく、その方向はフリーとしで
ある。そして、口図に示すように、前輪21及び後輪2
2を本体20の前後方向に対し直角方向にして固定し、
この状態で左右輪23.24を逆方向へ、同一回転速度
で1駆動すれば、本体20はP点を中心に矢印方向に回
転することが可能となる。なお、同図において27は軌
道である。
Further, as another example, there is a four-wheeled self-propelled vehicle as shown in Figure 7B. In this case, one main body 20 has a front wheel 21 and a rear wheel 22 without a driving source at the front and rear thereof, and
It has wheels 23 and 24 having drive motors 25 and 26, respectively, on its left and right sides. In this example, all wheels 21 to 24 are directed forward as shown in Figure A, and the drive motor 2 is
5゜26, which performs normal driving by sounding.
If the rotational speeds of the left and right wheels 23 and 24 are made the same, the vehicle will travel straight, and by changing the speed ratio, it will be possible to steer the vehicle to the left or right. At this time, at least the front wheel 21 out of the front wheels 21 and the rear wheels 22 is free in its direction so as to follow the steering based on the rotational speed ratio of the left and right wheels 23.24. Then, as shown in the diagram, the front wheel 21 and the rear wheel 2
2 in a direction perpendicular to the front-rear direction of the main body 20,
In this state, if the left and right wheels 23 and 24 are driven once in opposite directions at the same rotational speed, the main body 20 can rotate in the direction of the arrow around point P. In addition, in the figure, 27 is a trajectory.

発明が解決しようとする問題点 しかしながら上記従来のような構成では1まず三輪のも
のにあっては、前輪部に設けた軌道センサによる軌道の
検出によって前方にのみ走行されるものであり、従って
自動走行では方向転換や軌道外への走行は不可能であっ
た。このため、軌道は最低でも前輪の操舵可能な曲率半
径のカーブを要し1方向転換するには軌道から外して手
動にて行なうか、最小曲率半径のループ状の軌道を設け
て転換する等の手段を構じておシ、そのための広いスペ
ースを要するものであった。又、並行する軌道がある場
合、その一方から他方への移動を行なうためには、両者
間の軌道の連続化が必要であるという問題があった。
Problems to be Solved by the Invention However, in the above-mentioned conventional configuration, 1. First of all, in the case of a three-wheeled vehicle, the vehicle can only travel forward by detecting the trajectory using a trajectory sensor installed in the front wheel, and therefore cannot automatically move forward. While running, it was impossible to change direction or run off track. For this reason, the track must have at least a curve with a radius of curvature that allows steering of the front wheels, and to change one direction, it must be removed from the track and done manually, or a loop-shaped track with the minimum radius of curvature should be provided. It required a large amount of space to do so. Furthermore, when there are parallel trajectories, there is a problem in that in order to move from one to the other, it is necessary to make the trajectories continuous between the two.

また一方、四輪のものにあっては、通常走行時において
も、左右側駆動モータの同期または操舵のための両者の
回転比の調整等が必要であり、また軌道上での方向転換
は可能であるものの四輪の中点(P点)を中心とする回
転しかできず、しかも軌道を外れての横方向への走行は
できないものであった。
On the other hand, for four-wheeled vehicles, even during normal running, it is necessary to synchronize the left and right drive motors or adjust the rotation ratio of both for steering, and it is possible to change direction on the track. However, it could only rotate around the midpoint of the four wheels (point P), and was unable to run sideways off the track.

本発明は1上記問題点に鑑み、軌道の終端や任意の位置
において、ループ状の軌道を有することなく最小の回転
半径で方向転換ができるとともに、軌道から外れて横行
走行ができる三輪の自走車を提供するものである。
In view of the above-mentioned problems, the present invention provides a three-wheeled self-propelled vehicle that can change direction with a minimum turning radius at the end of the track or at any arbitrary position without having a loop-shaped track, and can deviate from the track and travel sideways. It provides cars.

問題点を解決するだめの手段 上記問題点を解決するだめに本発明の自走車は、前輪と
一対の後輪よりなる三輪を有し、少なくとも前輪は本体
に対し操舵に対応するように回動変化可能に構成すると
ともに1直角方向にロック可能に構成し、一方一対の後
輪は本体中心線に対し平行から直角まで対称に変化させ
て設定可能に構成して、両後輪の軸心が上記本体の中心
線上で交わるようになし、前輪を直角方向にロックして
後輪を適宜の角度に設定した状態でその前輪及び後輪と
上記交点との距離を回転半径とし、前輪及び後輪の駆動
によって本体を回転可能に構成しだものである。
Means for Solving the Problems In order to solve the above problems, the self-propelled vehicle of the present invention has three wheels consisting of a front wheel and a pair of rear wheels, and at least the front wheels are rotated relative to the main body so as to respond to steering. The rear wheels are configured so that they can be changed dynamically and locked in one perpendicular direction, while the pair of rear wheels can be changed symmetrically from parallel to perpendicular to the center line of the main body, so that the axis of both rear wheels can be adjusted. intersect on the center line of the main body, the front wheels are locked at right angles, and the rear wheels are set at an appropriate angle.The distance between the front wheels and the rear wheels and the above intersection point is the turning radius. The main body is configured to be rotatable by driving wheels.

作用 本発明は上記した構成によって、後輪の本体に対する回
動角に応じた回転半径で、かつ前輪と後輪の相対的な回
転駆動によって、本体の方向転換から横行走行までを行
なうこととなる。
Effects With the above-described configuration, the present invention is capable of performing everything from changing the direction of the main body to traversing by driving the front wheels and rear wheels relative to each other with a rotation radius that corresponds to the rotation angle of the rear wheels with respect to the main body. .

実施例 以下本発明の一実施例の自走車について図面を参照しな
がら説明する。
EXAMPLE Hereinafter, a self-propelled vehicle according to an example of the present invention will be described with reference to the drawings.

図面において、1は前輪2と一対の後輪3,4よりなる
三輪を有する自走車本体であり、シャシ5を備えるとと
もにその外部を覆うカバー6を有する。上記前輪2は、
駆動モータ7によって駆動されるもので1そのホイルブ
ラケット8と一体のタイミングプーリ9を、操舵モータ
10によりタイミングベルト11を介して駆動すること
によって、前輪2の操舵を行なうものである。ホイルブ
ラケット8にはまた、床上に設けられた白線やアルミ箔
等により形成された軌道12を検出する光学式軌道セン
サ13を有し、この軌道センサ13による軌道12の検
出により操舵モータ1oを駆動し、前輪2を操舵するよ
うになっている。
In the drawings, reference numeral 1 denotes a self-propelled vehicle body having three wheels consisting of a front wheel 2 and a pair of rear wheels 3 and 4, and includes a chassis 5 and a cover 6 covering the outside thereof. The front wheel 2 is
The front wheels 2 are steered by driving a timing pulley 9, which is driven by a drive motor 7 and is integral with the wheel bracket 8, by a steering motor 10 via a timing belt 11. The wheel bracket 8 also has an optical track sensor 13 that detects a track 12 formed by a white line on the floor, aluminum foil, etc., and the detection of the track 12 by the track sensor 13 drives the steering motor 1o. The vehicle is designed to steer the front wheels 2.

上記後輪3.4は、駆動モータアa、7bをそれぞれ有
しており1また上記前輪2と同様、ホイルブラケットs
a、sbと一体に設けたタイミングプーリ9a、9bを
、操舵モータ101L、10bによりタイミングベルト
11a、11bを介して駆動するようにしている。ここ
で、後輪3.4の駆動モータ7a、7bは、第1図に示
すような通常走行時には駆動されず、後輪3.4との間
に設けたクラッチ等の連結手段によって切離すようにし
ており、したがってこのとき後輪3.4の回転はフリー
である。また1その通常走行時には、操舵モータ10&
、10bは何ら駆動されず、後輪3.4の方向は前方に
ロックされたままである。
The rear wheels 3.4 each have drive motors a and 7b, and like the front wheels 2, the wheel brackets s
Timing pulleys 9a and 9b provided integrally with a and sb are driven by steering motors 101L and 10b via timing belts 11a and 11b. Here, the drive motors 7a and 7b of the rear wheels 3.4 are not driven during normal driving as shown in FIG. Therefore, at this time, the rear wheels 3.4 are free to rotate. Also, during normal driving, the steering motor 10 &
, 10b are not driven in any way and the direction of the rear wheels 3.4 remains locked forward.

以上のような構成にして、第1図及び第2図は通常走行
状態であシ1軌道センサ13により軌道12を検出しな
がら、軌道12に沿って前方への走行を行なうものであ
る。そして、軌道12がカーブしておればそのカーブに
沿って前輪2が操舵され、後輪3,4は駆動モータ71
L 、7bから切離されていてフリーであるため、前輪
2に追従してカーブすることになる。
With the above configuration, the vehicle is in a normal running state as shown in FIGS. 1 and 2, and the vehicle travels forward along the track 12 while the track 12 is detected by the track sensor 13. If the track 12 is curved, the front wheels 2 are steered along the curve, and the rear wheels 3 and 4 are driven by the drive motor 71.
Since it is separated from L and 7b and is free, it follows the front wheel 2 and curves.

次に、この自走車を軌道12上の任意の位置で方向転換
する場合について、第3図に基づいて説明する。第3図
は、軌道12上の任意の位置において停止し1方向転換
すべくその準備が完了した状態(実線)から、方向転換
した状態(仮想線)を示すものである。すなわち、第1
図の状態から方向転換の準備として、まず前輪2を操舵
モータ1oの駆動によって自走車本体10前後方向中心
線乙に対し直角方向を向くように回動し設定する。
Next, a case where the self-propelled vehicle changes direction at an arbitrary position on the track 12 will be explained based on FIG. 3. FIG. 3 shows a state in which the vehicle has stopped at an arbitrary position on the track 12 and is ready to change one direction (solid line), and a state in which the vehicle has changed direction (imaginary line). That is, the first
In preparation for changing the direction from the state shown in the figure, first, the front wheels 2 are rotated and set to face in a direction perpendicular to the center line B in the longitudinal direction of the self-propelled vehicle body 10 by driving the steering motor 1o.

これと同時に、後輪3.4を、モータ10a。At the same time, the motor 10a controls the rear wheel 3.4.

IQbの駆動によって、それぞれ逆方向に回動し前方に
対して逆ハ字状になるようにし1同じ角度θだけ回動し
設定する。ここで、後輪3及び4の中心を通りかつ直角
方向に伸びる線La、Lbの上記本体1の中心線りに交
わる点を0とすれば、この0点から後輪3及び4の中心
までの距離は等しく、これをrとしkまた前輪2の中心
と0点との距離をRとする。また、前輪20回転数をN
、後輪3,4の回転数をnとするとき、その両者の回転
比が、上記距離R,rとの関係で。
By driving IQb, they are rotated in opposite directions so that they form an inverted V-shape with respect to the front, and are rotated by the same angle θ. Here, if the point where the lines La and Lb passing through the center of the rear wheels 3 and 4 and extending in the right angle direction intersects with the center line of the main body 1 is set to 0, then from this 0 point to the center of the rear wheels 3 and 4 The distances between the front wheels 2 and 0 are equal, and this distance is defined as r, and the distance between the center of the front wheel 2 and the zero point is defined as R. Also, the number of revolutions of the front wheel is N
, when the number of rotations of the rear wheels 3 and 4 is n, the rotation ratio of the two is in relation to the distances R and r.

N=−n             ・・・・・・(1
)となるように、設定しておけば、駆動モータ7及び7
B−又は7bを同時に駆動したとき、前輪2と後輪3及
び4は、それぞれ回転半径をR,rとして、0点を中心
に回転することができる。ここで、両者の回転比の設定
は1駆動モータ7.7fL。
N=-n (1
), the drive motors 7 and 7
When B- or 7b are driven at the same time, the front wheels 2 and rear wheels 3 and 4 can rotate around the 0 point with rotation radii R and r, respectively. Here, the rotation ratio of both is set at 7.7fL for one drive motor.

7bの回転数で設定しても、この駆動モータ7゜7a、
7bと車輪2,3.4との間に設けたギヤ等の伝達部で
設定するようにしても良い。今、第3図に示す矢印イ方
向に回転する場合、後輪4をモータγbによって駆動す
るようにし、後輪3側はフリーにしておく。そして、イ
方向への回転で本体1がほぼ180°回転する少し手前
の状態、すなわち軌道センサー3が軌道12を再び検出
する位置より、わずかに回転させた位置でこれを停止す
るもので、その停止状態が第3図に仮想線で示す状態で
ある。なお、軌道センサー3が軌道12を検出して停止
されるまでの距離は、前輪2の中心から軌道センサ13
までの寸法Hが決っているので、この寸法Hから前輪2
の回転角を割り出して決定するようにしている。
Even if the rotation speed is set at 7b, this drive motor 7°7a,
It may be set by a transmission unit such as a gear provided between 7b and the wheels 2, 3.4. Now, when rotating in the direction of arrow A shown in FIG. 3, the rear wheels 4 are driven by the motor γb, and the rear wheels 3 are left free. Then, the main body 1 is stopped slightly before it rotates approximately 180 degrees by rotating in the A direction, that is, at a position slightly rotated from the position where the orbit sensor 3 detects the orbit 12 again. The stopped state is shown by the imaginary line in FIG. Note that the distance from the center of the front wheel 2 to the track sensor 13 until the track sensor 3 detects the track 12 and stops is
Since the dimension H up to is determined, from this dimension H to the front wheel 2
The rotation angle is calculated and determined.

第3図の状態で、前輪2の直角方向の向きを逆にすれば
1本体1の矢印口方向への回転ができ、このとき後輪3
側をモータ7aによって駆動し、後輪4側はフリーにし
ておく。
In the state shown in Fig. 3, if the right angle direction of the front wheel 2 is reversed, the main body 1 can be rotated in the direction of the arrow.
The rear wheel 4 side is driven by the motor 7a, and the rear wheel 4 side is left free.

次に、第4図の使用例であるが、これは第3図で説明し
た後輪3及び4の操舵モータ1Q&。
Next, an example of use is shown in FIG. 4, which is the steering motor 1Q& for the rear wheels 3 and 4 explained in FIG.

10bの駆動により、θを90°にした例である。This is an example in which θ is set to 90° by driving 10b.

この場合は、上記半径R及びrが無限大になったことを
示し、従って上記のような本体1の回転動作は実質上不
可能である。しかしながら、前輪2と後輪3.4は平行
になっており、この状態で前輪2と後輪3側を同一の回
転比で駆動すれば、自走者本体1は矢印ハ方向に横行走
行することとなる。従って、例えば軌道12&から軌道
12bへの移動が可能となるものであり、この場合の停
止は、軌道センサ13による軌道12bの検出によリ、
前述の方向転換の場合と同様に行なわれる。
In this case, the radii R and r have become infinite, and therefore, the rotational movement of the main body 1 as described above is virtually impossible. However, the front wheels 2 and rear wheels 3.4 are parallel, and if the front wheels 2 and rear wheels 3 are driven at the same rotation ratio in this state, the self-propelled vehicle 1 will run sideways in the direction of arrow C. becomes. Therefore, for example, it is possible to move from the track 12& to the track 12b, and in this case, the stop is determined by the detection of the track 12b by the track sensor 13.
This is done in the same way as for the change of direction described above.

第5図は、更に他の使用例であり、これは第3図の例に
比べ、距離Rをrよりも大きくして、0点を後輪3.4
側に移動させた例である。この場合にも、上記(1)式
を満足するように、前輪2と後輪3,4の回転比を設定
すれば、0点を中心に回転することができる。
FIG. 5 shows yet another usage example, in which the distance R is larger than r and the 0 point is set to 3.4 points on the rear wheel compared to the example in FIG. 3.
This is an example of moving it to the side. In this case as well, if the rotation ratio of the front wheels 2 and the rear wheels 3 and 4 is set so as to satisfy the above formula (1), rotation can be achieved around the zero point.

なお、上記距離Rとrを等しくなるように、後輪3,4
の回動角θを設定すれば、前輪2と後輪3.4の回転比
を同一に設定することができる。
Note that the rear wheels 3 and 4 are adjusted so that the distances R and r are equal.
By setting the rotation angle θ, it is possible to set the rotation ratios of the front wheels 2 and rear wheels 3.4 to be the same.

またここで、0点の設定について見ると、前輪2と後輪
3,4の中心が自走車本体1の中心と異なる場合、0点
が自走車本体1の中心となるように設定すれば、本体1
の回転時の最少回転半径とすることができる。
Also, looking at the setting of the 0 point, if the centers of the front wheels 2 and rear wheels 3 and 4 are different from the center of the self-propelled vehicle body 1, the 0 point should be set to be the center of the self-propelled vehicle body 1. If, main body 1
The minimum radius of rotation when rotating.

また、0点を前輪2より前方に持っていくように、後輪
3,4の回動角θを設定した場合は、(1)式の回転比
条件を満し、かつ前輪2の向いている方向と同一方向の
後輪3又は4を選択して駆動すれば、自走車本体1は大
きく回転することになる。
Also, if the rotation angle θ of the rear wheels 3 and 4 is set so that the 0 point is brought forward from the front wheel 2, then the rotation ratio condition of equation (1) is satisfied and the front wheel 2 is facing the same direction. If the rear wheels 3 or 4 in the same direction as the vehicle are selected and driven, the self-propelled vehicle body 1 will rotate significantly.

この場合は方向転換としては現実的でないが、その駆動
の最も極端な例が、距離R及びrが無限大でθが90’
となる上記第4図の例である。
Although this case is not practical as a direction change, the most extreme example of this drive is when the distances R and r are infinite and θ is 90'.
This is the example shown in FIG. 4 above.

次に第6図は他の実施例を示すもので1この例は後輪3
,4の操舵モータ10a、10bを省略した例である。
Next, Fig. 6 shows another embodiment.1 In this example, the rear wheel 3
, 4, the steering motors 10a and 10b are omitted.

すなわちこの例では、前輪2のタイミングプーリ9に1
電磁クラツチ14を介してスプロケッ)15を一体に設
け、まだ後輪3.4用のタイミングプーリ92L、9b
にもそれぞれ、電磁クラッチ142L、14bを介して
スプロケット15& 、15bを一体に設ける。そして
1 これらのスプロケット15.16a、15b間をチ
ェーン16で連結し、このときスプロケッ)16&と1
5bが逆回転するようにスプロケット17を設ける。こ
のような構成により、各電磁クラッチ14.14Δ、1
4bを連結しておけば、前輪2のモータ1oによる操舵
力が、タイミングプーリ9より電磁クラッチ14.スプ
ロケット15からチェーン16を介し、更にスプロケッ
ト15a 。
In other words, in this example, the timing pulley 9 of the front wheel 2 is
A sprocket) 15 is integrally installed via an electromagnetic clutch 14, and timing pulleys 92L and 9b for rear wheels 3.
Also, sprockets 15& and 15b are integrally provided via electromagnetic clutches 142L and 14b, respectively. 1 Connect these sprockets 15, 16a and 15b with a chain 16, and at this time sprockets 16& and 1
A sprocket 17 is provided so that 5b rotates in the opposite direction. With such a configuration, each electromagnetic clutch 14.14Δ, 1
4b is connected, the steering force from the motor 1o for the front wheels 2 is transferred from the timing pulley 9 to the electromagnetic clutch 14. From sprocket 15 through chain 16, and then to sprocket 15a.

16bと電磁クラッチ14a、14bを介して、タイミ
ングプーリ91L 、9bに伝達される。このとき、プ
ーリ9aと9bはスプロケット17によって逆方向に回
転されるので、後輪3と4は前述の例と同様1本体1の
前方に対し逆ノ・字状に開く方向に回動されることにな
る。ここで、前輪2の本体1に対する直角方向への回動
、すなわちタイミングプーリ9の90’の回動に合せて
、後輪3゜4側のタイミングプーリ9a、9bをも90
°の回動にするためには、スプロケット15に対するス
プロケット16&、16bの回転比を同一にすれば良い
。またその回転比を変えることにより1後輪3,4の回
動角を小さくすることもでき、従って前述の回動角θを
適宜設定することができる。
16b and electromagnetic clutches 14a, 14b, it is transmitted to timing pulleys 91L, 9b. At this time, the pulleys 9a and 9b are rotated in opposite directions by the sprocket 17, so the rear wheels 3 and 4 are rotated in the direction of opening in an inverted C-shape with respect to the front of the main body 1, as in the previous example. It turns out. Here, in accordance with the rotation of the front wheel 2 in the direction perpendicular to the main body 1, that is, the rotation of the timing pulley 9 by 90', the timing pulleys 9a and 9b on the rear wheel 3°4 side are also rotated by 90'.
In order to rotate the sprockets 16 and 16b, the rotation ratios of the sprockets 16 and 16b relative to the sprocket 15 may be made the same. Further, by changing the rotation ratio, the rotation angle of the rear wheels 3 and 4 can be made smaller, and therefore the aforementioned rotation angle θ can be set appropriately.

更に、電磁クラッチ14,142L、14m)とスプロ
ケット15.15&、16bを各々2個ずつ組み合せ、
その回転比を変えておけば、その電磁クラッチの選択に
よって、後輪3,4の回動角θを2種類選択できるよう
にすることも可能である。
Furthermore, combine two each of electromagnetic clutches 14, 142L, 14m) and sprockets 15, 15 & 16b,
By changing the rotation ratio, it is possible to select two types of rotation angles θ of the rear wheels 3 and 4 by selecting the electromagnetic clutch.

このことは、要するに、方向転換時でも横行走行時でも
、前@2の方向は本体に対し直角方向に設定することに
着目し、その操舵小動力を利用して後輪の回動をも行な
おうとするものである。
In short, this focuses on the fact that the front @2 direction is set perpendicular to the main body when changing direction or when driving sideways, and the small steering power is used to rotate the rear wheels. This is what we are trying to do.

このような構成にして、通常走行時には電磁クラッチ1
4,142L、14bを解除シテ、前輪2の走行中の操
舵による回動力が後輪3.4側へ伝達されないようにし
ておく。そして、方向転換又は横行走行する場合には、
電磁クラッチ14゜14&、14bを働かせて、前輪3
の直角方向への回動に合せて後輪3.4をも所定の角度
θだけ回動させるのである。そして、方向転換又は横行
走行中は、その前輪2の直角方向と後輪3,4の角度θ
を保持したままで1前輪2の駆動モータ7と後輪3,4
の駆動モータ7a及び7bのうち選択されだ方(回転方
向又は横行方向によって異なる)を駆動し、方向転換又
は横行走行を行なう。
With this configuration, electromagnetic clutch 1 is used during normal driving.
4,142L and 14b are released so that the rotational force generated by steering the front wheels 2 while driving is not transmitted to the rear wheels 3.4. When changing direction or driving sideways,
Activate the electromagnetic clutches 14°14&, 14b to rotate the front wheel 3.
In accordance with the rotation in the right angle direction, the rear wheels 3.4 are also rotated by a predetermined angle θ. When changing direction or traveling sideways, the angle θ between the front wheel 2 and the rear wheels 3 and 4 is
While holding the 1 front wheel 2 drive motor 7 and the rear wheels 3 and 4.
A selected one of the drive motors 7a and 7b (which differs depending on the rotational direction or the traverse direction) is driven to change direction or traverse the vehicle.

発明の効果 以上のように本発明自走車は、前輪と一対の後輪よりな
る三輪を有し、少なくとも前輪は操舵可能にするととも
に直角方向にロック可能に構成し。
Effects of the Invention As described above, the self-propelled vehicle of the present invention has three wheels consisting of a front wheel and a pair of rear wheels, and at least the front wheels are configured to be steerable and lockable in a right angle direction.

一対の後輪は本体中心線に対し平行から直角まで対称に
変化させて設定可能に構成して1前輪を直角方向にロッ
クして後輪を適宜の角度に設定した状態で前輪及び後輪
を1繋動することにより、自走車本体を回転可能とした
ものであり、軌道上の任意の位置でかつ最小回転径でも
って方向転換をすることができるものである。しかも、
後輪の角度を本体前方に対し直角方向に設定し、直角方
向に設定した前輪とともに駆動することによシ横行も可
能であり、その使用態様の拡大を図ることができる。ま
た、三輪であって前輪で駆動するため、通常走行時の操
舵制御は1従来の四輪のものと比べ非常に簡単に行なう
ことができるものである。
The pair of rear wheels can be set symmetrically from parallel to perpendicular to the center line of the main body, and when one front wheel is locked in the right angle direction and the rear wheel is set at an appropriate angle, the front and rear wheels can be adjusted. 1, the main body of the self-propelled vehicle can be rotated, and the direction can be changed at any position on the track with a minimum rotation diameter. Moreover,
By setting the angle of the rear wheels perpendicular to the front of the main body and driving them together with the front wheels set in the perpendicular direction, it is also possible to cross the vehicle, and its usage can be expanded. Furthermore, since it is a three-wheeled vehicle and is driven by the front wheels, steering control during normal driving can be performed much more easily than in conventional four-wheeled vehicles.

このように本発明は、種々の効果があり、極めて有効な
発明である。
As described above, the present invention has various effects and is an extremely effective invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略平面図、第2図は
同外観斜視図、第3図は同方向転換時の説明図、第4図
は同横行走行時の説明図、第6図1−・・・・自走車本
体、2・・・・前輪、3,4・・・・・後輪、7 、7
& 、 7b、、、、、、1駆動モータ、10.1Q&
。 10b・・・・・・操舵モータ、12・・・・・・軌道
、13・・・・軌道センサ、0・・・・・本体の回転中
心、R,r・−・・回転半径、L・・・・本体の中心線
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名l−
・−自丸車不、(本 2−1i fk j、4−4檎 f2− 机火 t3−・−、じ、ア 第4図 第5図 第6図 第7図 2、J    75
Fig. 1 is a schematic plan view showing one embodiment of the present invention, Fig. 2 is a perspective view of the same external appearance, Fig. 3 is an explanatory drawing when the same direction is changed, Fig. 4 is an explanatory drawing when the same is traveling sideways, 6 Figure 1 - Self-propelled vehicle body, 2... Front wheels, 3, 4... Rear wheels, 7, 7
& , 7b, , , 1 drive motor, 10.1Q&
. 10b... Steering motor, 12... Orbit, 13... Orbit sensor, 0... Center of rotation of main body, R, r... Rotation radius, L. ...The center line of the main body. Name of agent: Patent attorney Toshio Nakao and one other person
・-Jimarushafu, (Book 2-1i fk j, 4-4 檎f2- 机Fire t3-・-, Ji, A, Figure 4, Figure 5, Figure 6, Figure 7, Figure 2, J 75

Claims (3)

【特許請求の範囲】[Claims] (1)前輪と一対の後輪よりなる三輪を有し、少なくと
も前輪は本体に対し操舵に対応するように回動変化可能
に構成するとともに、直角方向にロック可能に構成し、
一方一対の後輪は本体中心線に対し平行から直角まで対
称に変化させて設定可能に構成して、両後輪の軸心が上
記本体の中心線上で交わるようになし、前輪を直角方向
にロックして後輪を適宜の角度に設定した状態でその前
輪及び後輪と上記交点との距離を回転半径とし、前輪及
び後輪の駆動によって本体を回転可能にしたことを特徴
とする自走車。
(1) It has three wheels consisting of a front wheel and a pair of rear wheels, and at least the front wheel is configured to be rotatable relative to the main body to correspond to steering, and is configured to be lockable in a right angle direction;
On the other hand, the pair of rear wheels can be set symmetrically from parallel to perpendicular to the center line of the main body, so that the axes of both rear wheels intersect on the center line of the main body, and the front wheels are rotated at right angles. A self-propelled vehicle characterized in that when the rear wheels are locked and set at an appropriate angle, the rotation radius is the distance between the front wheels and the rear wheels and the above-mentioned intersection point, and the main body can be rotated by driving the front wheels and the rear wheels. car.
(2)前輪の回転半径をR、後輪の回転半径をrとする
とき、後輪の回転数nに対し前輪の回転数Nを N=(R/r)n となるようにその前輪と後輪のモータ駆動による回転比
を決定するようにしたことを特徴とする特許請求の範囲
第1項記載の自走車。
(2) When the radius of rotation of the front wheel is R and the radius of rotation of the rear wheel is r, the rotation speed of the front wheel is adjusted so that the rotation speed N of the front wheel is N=(R/r)n for the rotation speed n of the rear wheel. 2. The self-propelled vehicle according to claim 1, wherein the rotation ratio of the rear wheels driven by a motor is determined.
(3)後輪を直角方向に設定し、回転半径を無限大にし
たとき、この後輪と前輪を同一方向に駆動して横行を可
能としたことを特徴とする特許請求の範囲第1項又は第
2項記載の自走車。
(3) Claim 1, characterized in that when the rear wheels are set at right angles and the turning radius is made infinite, the rear wheels and front wheels are driven in the same direction to enable traversing. Or a self-propelled vehicle as described in paragraph 2.
JP61051744A 1986-03-10 1986-03-10 Self-propelled vehicle Pending JPS62210174A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61051744A JPS62210174A (en) 1986-03-10 1986-03-10 Self-propelled vehicle
US07/022,934 US4778024A (en) 1986-03-10 1987-03-06 Automatic guided vehicle
GB08705448A GB2188294A (en) 1986-03-10 1987-03-09 Automatic guided vehicle
KR1019870002110A KR930001761B1 (en) 1986-03-10 1987-03-10 Automatic guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051744A JPS62210174A (en) 1986-03-10 1986-03-10 Self-propelled vehicle

Publications (1)

Publication Number Publication Date
JPS62210174A true JPS62210174A (en) 1987-09-16

Family

ID=12895430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051744A Pending JPS62210174A (en) 1986-03-10 1986-03-10 Self-propelled vehicle

Country Status (1)

Country Link
JP (1) JPS62210174A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109414A (en) * 1987-10-22 1989-04-26 Meidensha Corp Control method for direction turnover of unmanned vehicle
JPH03212710A (en) * 1990-01-17 1991-09-18 Toyota Autom Loom Works Ltd Steering device
US5901805A (en) * 1995-11-02 1999-05-11 Japan Tobacco Inc. Automatically guided vehicle
JP2008143449A (en) * 2006-12-13 2008-06-26 Nihon Bisoh Co Ltd Working machine lifting and supporting truck device for structure and its operation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109414A (en) * 1987-10-22 1989-04-26 Meidensha Corp Control method for direction turnover of unmanned vehicle
JPH03212710A (en) * 1990-01-17 1991-09-18 Toyota Autom Loom Works Ltd Steering device
US5901805A (en) * 1995-11-02 1999-05-11 Japan Tobacco Inc. Automatically guided vehicle
JP2008143449A (en) * 2006-12-13 2008-06-26 Nihon Bisoh Co Ltd Working machine lifting and supporting truck device for structure and its operation method

Similar Documents

Publication Publication Date Title
KR930001761B1 (en) Automatic guided vehicle
JPS62210174A (en) Self-propelled vehicle
JP3463783B2 (en) Traveling vehicle
JP3385838B2 (en) Steering control system for a simple automatic guided vehicle
JPH042127Y2 (en)
JP3313241B2 (en) Ackerman steering mechanism
JP3199203B2 (en) Spin turn method of automatic guided vehicle
JPH057226B2 (en)
JPS6323032B2 (en)
JPH0637188B2 (en) Moving machine
JP2715177B2 (en) Moving car
JPS6285723A (en) Driving mechanism for omnidirectional moving vehicle
JP2593074B2 (en) Traveling trolley
JPS62210172A (en) Self-propelled vehicle
JPH09142399A (en) Space probe traveling vehicle
JP2533151Y2 (en) Traveling trolley in automatic welding equipment
JPS6319391B2 (en)
JPS5967165A (en) Driverless truck
JPS62113655A (en) Travel car associated with magnetic adsorbing wheel
JPH0737131Y2 (en) Obstacle detection device for transport vehicles
JPH0417447B2 (en)
JP2004135428A (en) Apparatus and method for controlling traveling of electrical industrial vehicle
JP2578199Y2 (en) On-board equipment for mechanical parking equipment
JPH0630379Y2 (en) Self-propelled robot work range expansion mechanism
JPS62210171A (en) Self-propelled vehicle