JPS6221015Y2 - - Google Patents

Info

Publication number
JPS6221015Y2
JPS6221015Y2 JP12761682U JP12761682U JPS6221015Y2 JP S6221015 Y2 JPS6221015 Y2 JP S6221015Y2 JP 12761682 U JP12761682 U JP 12761682U JP 12761682 U JP12761682 U JP 12761682U JP S6221015 Y2 JPS6221015 Y2 JP S6221015Y2
Authority
JP
Japan
Prior art keywords
semiconductor device
permanent magnet
charged particles
semiconductor substrate
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12761682U
Other languages
Japanese (ja)
Other versions
JPS5931247U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12761682U priority Critical patent/JPS5931247U/en
Publication of JPS5931247U publication Critical patent/JPS5931247U/en
Application granted granted Critical
Publication of JPS6221015Y2 publication Critical patent/JPS6221015Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【考案の詳細な説明】 本考案は半導体装置に関し、特に放射線や宇宙
線等の高エネルギー荷電粒子の影響により誤動作
や特性劣化を生ずることのない半導体装置に関す
る。
[Detailed Description of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device that does not cause malfunction or characteristic deterioration due to the influence of high-energy charged particles such as radiation or cosmic rays.

近年、宇宙技術開発の進展にともない宇宙空間
で使用される半導体集積回路が多いが、これら半
導体集積回路は宇宙空間に存在する放射性粒子特
に高エネルギーの荷電粒子たとえばα線により誤
動作したり特性が劣化することがある。このため
放射線が半導体装置に入射するのを防止すべく、
従来は放射線を吸収しやすい物質を遮蔽板として
表面部に配置し放射線が半導体基板に到達しない
構造としていた。
In recent years, with the progress of space technology development, many semiconductor integrated circuits are being used in outer space, but these semiconductor integrated circuits are susceptible to malfunction or deterioration of characteristics due to radioactive particles, particularly high-energy charged particles such as alpha rays, that exist in outer space. There are things to do. Therefore, in order to prevent radiation from entering the semiconductor device,
Conventionally, a material that easily absorbs radiation was placed on the surface as a shielding plate to prevent radiation from reaching the semiconductor substrate.

しかしこの方法では構造上放射線を吸収する物
質の被覆厚さが薄いため十分な吸収効果が期待で
きない上に、半導体基板の側面や裏面から入射す
る放射線に対しては効果がなく、また半導体装置
の構造や要求される厳しい特性によつては表面に
放射線を吸収する物質を配設することができない
場合もある等の欠点があつた。
However, with this method, a sufficient absorption effect cannot be expected because the coating thickness of the material that absorbs radiation is thin due to its structure.In addition, it is not effective against radiation that enters from the side or back surface of the semiconductor substrate, and it is There are drawbacks such as the fact that depending on the structure and the strict characteristics required, it may not be possible to provide a material that absorbs radiation on the surface.

本考案は、従来の欠点を改良すべく放射線等に
よる誤動作や特性劣化を防止することができる半
導体装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that can prevent malfunctions and characteristic deterioration caused by radiation, etc., in order to improve the conventional drawbacks.

上記の目的を達成するために、本考案による半
導体装置は半導体基板とその近傍に設けた永久磁
石とを具備し、上記永久磁石による磁力線が上記
半導体基板に対してほぼ垂角に交わるように上記
永久磁石を配設するように構成し、外部から入射
する荷電粒子を反射するようにする。
In order to achieve the above object, a semiconductor device according to the present invention includes a semiconductor substrate and a permanent magnet provided near the semiconductor substrate, and the semiconductor device is arranged so that the lines of magnetic force caused by the permanent magnet intersect at a substantially perpendicular angle to the semiconductor substrate. A permanent magnet is arranged to reflect charged particles incident from the outside.

したがつて、半導体装置に入射する高エネルギ
ーの荷電粒子により半導体装置が誤動作したり特
性が劣化するのを改善することができる。
Therefore, it is possible to prevent the semiconductor device from malfunctioning or having its characteristics deteriorate due to high-energy charged particles incident on the semiconductor device.

以下、図面を参照して本考案による半導体装置
をさらに詳細に説明する。
Hereinafter, the semiconductor device according to the present invention will be described in more detail with reference to the drawings.

第1図は永久磁石の近傍における磁力線の状態
の一例を示す。図において1は永久磁石を表わ
し、このような磁場は磁気鏡といわれている。こ
こでは一般にある磁場強度B0において磁力線に
対してαの角度cm2入射した荷電粒子は最大の磁場
強度をBmとすると、 sinα≧B/Bm を満足する荷電粒子は反射されてしまう。ただ
し、磁場強度Bmにおける荷電粒子の回転半径が
永久磁石の半径より小さいことが必要条件であ
る。
FIG. 1 shows an example of the state of magnetic lines of force in the vicinity of a permanent magnet. In the figure, 1 represents a permanent magnet, and such a magnetic field is called a magnetic mirror. Here, in general, charged particles that are incident at a certain magnetic field strength B 0 at an angle α cm 2 with respect to the lines of magnetic force will be reflected if the maximum magnetic field strength is Bm and satisfies sinα≧B 0 /Bm. However, a necessary condition is that the radius of rotation of the charged particles at the magnetic field strength Bm is smaller than the radius of the permanent magnet.

例えば、地球上では地球磁場により1ガウス程
度の磁場が存在するのでB0=1ガウスとしBm=
1000ガウスの永久磁石を使用すれば、sinα
1000すなわちα≧0.057となり、磁力線に対して
0.057度以上の角度で入射した荷電粒子は反射さ
れてしまう。
For example, on Earth, there is a magnetic field of about 1 Gauss due to the earth's magnetic field, so B 0 = 1 Gauss, and Bm =
If you use a 1000 Gauss permanent magnet, sinα
1000, that is, α≧0.057, and for the magnetic field lines
Charged particles that are incident at an angle greater than 0.057 degrees will be reflected.

第2図は、本考案による半導体装置の断面図を
示す。図において、1は永久磁石、2は半導体装
置、3は半導体基板を表わす。永久磁石1は第1
図のような着磁状態であるとし、永久磁石の磁場
強度の最大値を1000ガウス、半導体基板裏面の近
傍における磁場強度を800ガウスとすれば、半導
体装置の上面より入射した荷電粒子は第1図の説
明と同様に、基板の垂直線に対して0.057度以上
の角度で入射した荷電粒子は反射されてしまう。
裏面より入射した荷電粒子は垂直線に対して
0.072度以上の角度で入射した荷電粒子は、半導
体基板の裏面に到達するまでに反射されてしま
う。第1図と同様に、最大磁場強度および半導体
基板裏面における磁場強度において、荷電粒子の
回転半径が永久磁石の半径よりも小さい事が必要
である。
FIG. 2 shows a cross-sectional view of a semiconductor device according to the present invention. In the figure, 1 represents a permanent magnet, 2 represents a semiconductor device, and 3 represents a semiconductor substrate. Permanent magnet 1 is the first
Assuming that the magnetized state is as shown in the figure, and the maximum magnetic field strength of the permanent magnet is 1000 Gauss, and the magnetic field strength near the back surface of the semiconductor substrate is 800 Gauss, charged particles incident from the top surface of the semiconductor device are Similar to the explanation in the figure, charged particles that are incident at an angle of 0.057 degrees or more with respect to the vertical line of the substrate will be reflected.
Charged particles incident from the back surface are aligned with the vertical line.
Charged particles that are incident at an angle of 0.072 degrees or more are reflected before reaching the back surface of the semiconductor substrate. Similar to FIG. 1, the radius of rotation of the charged particles must be smaller than the radius of the permanent magnet at the maximum magnetic field strength and the magnetic field strength on the back surface of the semiconductor substrate.

以上の説明より半導体装置に入射する荷電粒子
は、超高エネルギー荷電粒子及び半導体装置のほ
とんど垂直線に沿つて入射した荷電粒子を除き、
反射されてしまう。またほとんど垂直線に沿つて
入射した荷電粒子は、半導体基板の厚さを最短距
離として通過する為、半導体基板に与える影響は
最小であり、ほとんど無視できる。
From the above explanation, charged particles that enter the semiconductor device, except for ultra-high energy charged particles and charged particles that enter almost perpendicular to the semiconductor device,
It will be reflected. Furthermore, charged particles that are incident almost vertically pass through the thickness of the semiconductor substrate as the shortest distance, so their influence on the semiconductor substrate is minimal and can be almost ignored.

第2図のように、半導体基板の上部近傍に該基
板に平行に永久磁石を配置した構造の半導体装置
は、放射線または高エネルギー荷電粒子が半導体
基板に入射することにより、半導体装置が誤動作
を起したり特性が劣化することを著しく改善す
る。
As shown in Figure 2, a semiconductor device with a structure in which a permanent magnet is placed near the top of a semiconductor substrate and parallel to the substrate can cause malfunctions when radiation or high-energy charged particles enter the semiconductor substrate. Significantly improves the deterioration of properties.

第3図、第4図は本考案の他の実施例を示して
いる。第3図においては、永久磁石3を半導体半
導体2の上面に密着させて配置した実施例であ
り、第4図においては、永久磁石3を半導体装置
2の上下両面に配置した実施例である。ともに高
エネルギー荷電粒子の入射を反射する効果が大で
あり、かつ半導体装置とは独立して永久磁石を配
置できる利点がある。
3 and 4 show other embodiments of the present invention. 3 shows an embodiment in which the permanent magnets 3 are arranged in close contact with the upper surface of the semiconductor device 2, and FIG. 4 shows an embodiment in which the permanent magnets 3 are arranged on both the upper and lower surfaces of the semiconductor device 2. Both have a great effect of reflecting incident high-energy charged particles, and have the advantage that the permanent magnet can be arranged independently of the semiconductor device.

以上の説明から明らかなように、本考案による
半導体装置は外部より入射する高エネルギーの荷
電粒子が半導体基板に入射し難い構造となつてい
る。特に比較的低いエネルギーの荷電粒子が多く
入射する宇宙空間で使用する半導体装置において
実用的効果を発揮する。
As is clear from the above description, the semiconductor device according to the present invention has a structure that makes it difficult for high-energy charged particles incident from the outside to enter the semiconductor substrate. This is especially effective in semiconductor devices used in outer space, where many charged particles of relatively low energy are incident.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は永久磁石近傍における磁束の状態を示
す図、第2図は本考案による半導体装置の断面
図、第3図、第4図は本考案による半導体装置の
他の実施例の断面図である。 1……永久磁石、2……半導体装置、3……半
導体基板。
FIG. 1 is a diagram showing the state of magnetic flux in the vicinity of a permanent magnet, FIG. 2 is a cross-sectional view of a semiconductor device according to the present invention, and FIGS. 3 and 4 are cross-sectional views of other embodiments of a semiconductor device according to the present invention. be. 1...Permanent magnet, 2...Semiconductor device, 3...Semiconductor substrate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 半導体基板とその近傍に設けた永久磁石とを具
備し、上記永久磁石による磁力線が上記半導体基
板に対してほぼ垂直に交わるように上記永久磁石
を配設したことを特徴とする半導体装置。
1. A semiconductor device comprising a semiconductor substrate and a permanent magnet provided near the semiconductor substrate, the permanent magnet being arranged so that lines of magnetic force caused by the permanent magnet intersect substantially perpendicularly to the semiconductor substrate.
JP12761682U 1982-08-24 1982-08-24 semiconductor equipment Granted JPS5931247U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12761682U JPS5931247U (en) 1982-08-24 1982-08-24 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12761682U JPS5931247U (en) 1982-08-24 1982-08-24 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS5931247U JPS5931247U (en) 1984-02-27
JPS6221015Y2 true JPS6221015Y2 (en) 1987-05-28

Family

ID=30289781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12761682U Granted JPS5931247U (en) 1982-08-24 1982-08-24 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5931247U (en)

Also Published As

Publication number Publication date
JPS5931247U (en) 1984-02-27

Similar Documents

Publication Publication Date Title
JP2005514797A (en) Wall member for magnetic shield room and magnetic shield room
EP0353911A3 (en) Flux spreading thin film magnetic devices
JPS6221015Y2 (en)
CN85103498A (en) The permanent-magnet of magnetic field of high uniformity
US3927397A (en) Bias field apparatus for magnetic domain memory device
US3860325A (en) Electric field displacing type optical isolator
JP2837595B2 (en) Amorphous magnetic shield plate and magnetic shield method
US4884235A (en) Micromagnetic memory package
JP2008306094A (en) Magnetic memory and manufacturing method of same
JPS61176199A (en) Magnetic shield
JPS6191598A (en) Radiation shielding body
JPH0513250A (en) Reactor device for vehicle
JPS6020232Y2 (en) Magnetic shield structure of magnetic bubble device
JP2910765B1 (en) Mounting structure of radiation shielding window
JPS6314499A (en) Electromagnetic shielding material
JPS5990997A (en) Magnetic shielding container
JPS63164500A (en) Wave dark room
US4058801A (en) Field access method for bubble memories
JPS5987687A (en) Magnetic bubble memory device
JP3124975B2 (en) Pulse charged particle orbit deflector
JPS58184799U (en) electromagnet device
JPS5896713A (en) Transformer
JPS6285499A (en) Magnetic shielding material
JP2945158B2 (en) Deflection magnet for charged particle devices
JPS61190775A (en) Magnetic bubble memory element