JPS6221005B2 - - Google Patents

Info

Publication number
JPS6221005B2
JPS6221005B2 JP53050764A JP5076478A JPS6221005B2 JP S6221005 B2 JPS6221005 B2 JP S6221005B2 JP 53050764 A JP53050764 A JP 53050764A JP 5076478 A JP5076478 A JP 5076478A JP S6221005 B2 JPS6221005 B2 JP S6221005B2
Authority
JP
Japan
Prior art keywords
parts
weight
acid
acrylate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53050764A
Other languages
Japanese (ja)
Other versions
JPS54144493A (en
Inventor
Hidehisa Nakamura
Ryoichi Hori
Emiko Isomoto
Yoichi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5076478A priority Critical patent/JPS54144493A/en
Publication of JPS54144493A publication Critical patent/JPS54144493A/en
Publication of JPS6221005B2 publication Critical patent/JPS6221005B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、可撓性、弾性、耐候性、硬度、密着
性、顔料分散性等に優れた溶剤型被覆用アクリル
樹脂の製法に関するものである。 メチルメタクリレート重合体を主成分とするラ
ツカーは、透明性、光沢保持性、耐候性等に優れ
ている反面、温度変化、水分による膨潤収縮作用
によりクラツクが入りやすく、耐衝撃性、密着性
に欠陥があることが知られている。これらの欠点
を改良するため以前から高級アルカノールのアク
リレートまたはメタクリレートに一部を置換して
共重合体を可塑化する手段がよくとられている。
しかしながら、この方法では耐候性、耐クラツク
性、可撓性、弾性、密着性等の塗膜物性のバラン
スのとれたものをえることは難しい。即ち、メチ
ルメタクリレートと共重合させる高級アルカノー
ルのアクリレートまたはメタクリレートの割合を
増すに従い可撓性、耐クラツク性、塗装作業は改
良されるが、耐シンナー性、硬度が低下し、特に
耐候性、可撓性、弾性、耐クラツク性、耐シンナ
ー性等を要求される用途には不向きである。ま
た、電着用の水分散ワニスとして、アクリロニト
リル25〜50部、メタクリル酸エステル50〜75部、
メタクリル酸2〜10部を乳化共重合させたものも
知られているが、こうした単量体組成になる溶剤
型被覆用アクリル樹脂を用いて得られる塗膜は総
じて耐候性および密着性などは良好であるもの
の、塗料自体の顔料分散性が劣るという欠点を有
する。 本発明は、このような欠点を改良した溶剤型被
覆用アクリル樹脂を提供するものである。すなわ
ち、本発明は有機溶剤の存在下に、(a)n−ブチル
メタクリレート30〜99.4重量%、(b)アクリロニト
リル0.5〜30重量%、(c)不飽和酸0.1〜5重量%、
(d)不飽和結合含有ポリエステル樹脂1〜20重量
%、(e)1分子中に1ケ以上の水酸基を有する重合
性単量体0〜25重量%、および(f)前記(a)〜(e)成分
と共重合しうる他のビニル系単量体0〜69.4重量
%からなり、しかも各単量体の合計が100重量%
になる単量体混合物を共重合させることから成
る、ガラス転移点が−10℃〜40℃で、かつ、数平
均分子量が5000〜100000なる可撓性良好な溶剤型
被覆用アクリル樹脂の製造法を提供するものであ
る。 本発明のアクリル樹脂を構成する成分のうち、
(a)n−ブチルメタクリレート、(b)アクリロニトリ
ル及び、(c)不飽和酸の成分は、得られた樹脂に可
撓性、弾性、耐候性、硬度、密着性を付与するた
めに不可欠の成分であるし、他方、不飽和結合含
有ポリエステル樹脂(d)成分は顔料の分散性を改善
するために必要な成分である。これら各成分の使
用範囲は(a)n−ブチルメタクリレート30〜99.4重
量%、(b)アクリロニトリル0.5〜30重量%、(c)不
飽和酸0.1〜5重量%、(d)不飽和結合含有ポリエ
ステル樹脂1〜20重量%の範囲、好ましくは(a)30
〜97.5重量%、(b)2〜25重量%、(c)0.5〜2.5重量
%の範囲が適当である。但し、これら各必須単量
体成分の合計は常に100重量%であるものとす
る。 本発明において、不飽和酸なる語に包含される
酸成分としては(メタ)アクリル酸、イタコン
酸、フマル酸、(無水)マレイン酸の如き被覆用
樹脂に供せられる酸成分を言う。 本発明に於いては前記した(a)n−ブチルメタク
リレート、(b)アクリロニトリル、(c)不飽和酸およ
び(d)不飽和結合含有ポリエステル樹脂なる必須成
分のほかに被覆用アクリル樹脂としての塗膜性能
を改善する目的のために種々の成分を更に添加、
使用することができる。 つまり、必要によつて本発明のアクリル樹脂の
構成成分となるものとしては、(e)1分子中に1ケ
以上の水酸基を有する重合性単量体、(f)前記(a)−
(e)成分と共重合しうる他のビニル系単量体等が挙
げられる。 不飽和結合含有ポリエステル樹脂(d)としては、
数平均分子量が500〜10000の範囲にある乾性油お
よび/または半乾性油アルキツド樹脂、水酸基当
量300〜600の不飽和オイルフリーアルキツド樹脂
が使用できる。このような不飽和結合含有ポリエ
ステル樹脂の製造に使用できる多価アルコールと
しては、(ポリ)エチレングリコール、(ポリ)プ
ロピレングリコール、ネオペンチルグリコール、
1・6−ヘキサンジオール、1・3−ブチレング
リコール、1・4−ブチレングリコール、ビス
(ヒドロキシエチル)テレフタレート、水添ビス
フエノールA、トリメチロールエタン、トリメチ
ロールプロパン、グリセリン、ペンタエリスリト
ールなどがあり、1価カルボン酸及び多価カルボ
ン酸としては、フタル酸、イソフタル酸、テレフ
タル酸、ヘツト酸、トリメリツト酸、コハク酸、
シユウ酸、アジピン酸、セバシン酸、安息香酸、
p−tert−ブチル安息香酸、p−ヒドロキシ安息
香酸及びその無水物がある。 また、乾性油および半乾性油には、アマニ油、
桐油、サフラワー油、脱水ヒマシ油、綿実油、大
豆油、米ぬか油などがあり、脂肪酸法により合成
する場合には、これらの油の脂肪酸およびトール
油脂肪酸を使用することができる。 不飽和ジカルボン酸には、(無水)マレイン
酸、フマル酸、イタコン酸、シトラコン酸、無水
テトラヒドロフタル酸などがある。 本発明において使用する不飽和結合含有ポリエ
ステル樹脂は、これらの原料を任意に組み合わせ
て配合計算を行ない、公知の方法で反応させれば
よいのであるが、次段階での重合性モノマー類と
のグラフト化条件を考慮した場合、乾性油およ
び/または半乾性油アルキツド樹脂の油長は30〜
80%に、不飽和オイルフリーアルキツド樹脂の不
飽和ジカルボン酸は0.5〜5重量%の範囲で使用
するのが好ましい。 こうした不飽和結合含有ポリエステル樹脂(d)の
使用量は1〜20重量%の範囲が好適である。 また、1分子中に1ケ以上の水酸基を有する重
合性単量体(e)は、主としてポリイソシアネート、
アミノプラストなどの架橋成分と併用して硬化型
塗料とした場合に必須成分として25重量%以下、
好ましくは5〜25重量%の範囲にて使用される。 単量体(e)に含まれるものとしては、β−ヒドロ
キシエチル(メタ)アクリレート、β−ヒドロキ
シプロピル(メタ)アクリレート、4−ヒドロキ
シブチル(メタ)アクリレート、トリメチロール
プロパン、グリセリンの(メタ)アクリル酸モノ
エステル等が挙げられる。 更に、前記した(a)−(e)の各成分と共重合しうる
他のビニル系単量体(f)としては、スチレン、ビニ
ルトルエン、メチル(メタ)アクリレート、エチ
ル(メタ)アクリレート、イソプロピル(メタ)
アクリレート、n−ブチルアクリレート、iso−
ブチル(メタ)アクリレート、tert−ブチル(メ
タ)アクリレート、n−オクチル(メタ)アクリ
レート、2−エチルヘキシル(メタ)アクリレー
ト、ラウリル(メタ)アクリレート、ステアリル
(メタ)アクリレート、(メチル)グリシジル(メ
タ)アクリレート、ジメチルアミノエチル(メ
タ)アクリレート、ジエチルアミノエチル(メ
タ)アクリレート等があり、これらの使用量は塗
装作業性、光沢、可撓性、硬度、耐候性、乾燥
性、耐溶剤性などの塗膜性能を使用用途に応じて
更に改良するとき、0〜69.5重量%の範囲で用い
られる。 本発明の被覆用アクリル樹脂の合成は前記した
(a)〜(f)成分を公知の技術に応じて合成することに
より容易に行うことができる。反応の際に使用す
る重合開始剤としては、アゾビスイソブチロニト
ル、ベンゾイルパーオキサイド、tert−ブチルパ
ーベンゾエート、tert−ブチルハイドロパーオキ
サイド、ジ−tert−ブチルパーオキサイド、キユ
メンハイドロパーオキサイドなどが適当であり、
樹脂を構成する成分の全体量に対して0.1〜5重
量%の範囲で使用する。ここにおいて、有機溶剤
としては、トルエン、キシレンなどの芳香族系、
酢酸エチル、酢酸ブチル、セロソルブアセテート
などのエステル系、メチルエチルケトン、メチル
イソブチルケトンなどのケトン系、ブタノール、
イソブタノール、ブチルセロソルブなどのアルコ
ール系の溶剤を単独あるいは混合溶剤が適当であ
る。 本発明の方法により得られる被覆用アクリル樹
脂の数平均分子量は5000〜100000であり、塗装後
の塗膜の肉もち感、スプレー塗装時の作業性等を
考慮した場合、5000〜40000の範囲が好ましい。 他方、本発明の方法により得られる被覆用アク
リル樹脂のガラス転移点も、該アクリル樹脂をた
とえばラツカー型および硬化型塗料となした場合
における硬化塗膜にとつて重要な因子である。そ
こで、該アクリル樹脂たるポリマー分子のセグメ
ントが固定されている状態、つまりガラス状態か
ら、このポリマー分子のセグメントが移動可能と
なる状態、つまりゴム状態へと変わる温度、すな
わちガラス転移温度は、たとえばラツカー型塗膜
にあつては0〜40℃、好ましくは5〜38℃なる範
囲内が適当であるし、たとえば硬化型塗膜にあつ
ては−10〜+30℃、好ましくは−10〜+20℃なる
範囲内が適当である。そのうち、ラツカー型塗膜
において0℃未満のガラス転移点を有するものは
常温での汚染性が極端に劣るようになるし、逆に
40℃を超えるものは伸びなどが劣るようになる。
他方、硬化型塗膜において−10℃未満のガラス転
移点を有するものは、たとえば脂肪族ポリイソシ
アネートのような軟質架橋剤との併用の場合に汚
染性が極端に劣るようになるし、逆に30℃を超え
るものは、たとえばメラミン樹脂の如き硬質架橋
剤との併用の場合に、硬化塗膜のガラス転移点そ
れ自体が40℃を超えるものとなり、極端に脆い硬
化塗膜しか与えなくなるので好ましくない。 本発明の被覆用アクリル樹脂は、前記した(a)〜
(f)成分を公知慣用の手段によつて調製されるが、
該アクリル樹脂の(重量平均分子量…………
)/(数平均分子量…………N)の比を3
〜20の範囲となるように調節するとよい。 すなわち、たとえば顔料分散性を向上せしめる
方策の一つとして顔料同志の凝集を防止するとい
う手段があるが、そのためには顔料表面への該ア
クリル樹脂の効率のよい吸着と、該アクリル樹脂
たるポリマー粒子の立体障害による凝集の防止と
が求められる。そうした方法の一つとして、本発
明者らは分子量分布の尺度であるこうした/
Nの比が上掲した範囲内にすることが有効であ
ることも見い出したのである。 /の比が3〜20の範囲にあるようにす
るには比較的高分子量の部分と比較的低分子量の
部分との量比が大きな因子となるので、これら両
部分をどのようにつくり出すかが重要なポイント
となる。一般的には、主に高分子量部分をつくり
出すには開始剤を少なくモノマー濃度の高い状態
で反応を行ない、一方、低分子量部分をつくり出
すにはその逆の反応条件で反応を行なえばよいか
ら、これら合成条件の組合わせによつて所望の
/の比になるように選択すればよい。 本発明の被覆用アクリル樹脂は、ビニル樹脂、
アルキツド樹脂、ニトロセルロース等と併用して
ラツカー型塗料としても或いは官能性モノマーを
共重合体中に含有させ、ポリイソシアネート、ア
ミノ樹脂、エポキシ樹脂等の架橋剤と併用して硬
化型塗料としても使用できる。また、塗料の形態
もクリアー塗料あるいは公知の顔料を用いてエナ
メル塗料として使用することができる。 得られた塗料はスプレー塗装、ハケ塗装、ロー
ラー塗装など通常行なわれている塗装方法によつ
て塗装することができ、硬化の際の方法として
も、常温乾燥、強制乾燥、焼付乾燥、遠赤外乾燥
など適宜な方法が選択できる。 本発明によつて得られる被覆用アクリル樹脂
は、耐候性、耐クラツク性、硬度、密着性、可撓
性等の性能にバランスのとれたものであるが、特
に可撓性が良好であるところに特徴がある。 次に実施例により、本発明を具体的に説明する
が、本発明は実施例に記載するところに限定され
るものではない。 例中の「部」は、「重量部」を示す。 参考例 1 (不飽和結合含有ポリエステル樹脂の製造) 撹拌機、温度計、エアーコンデンサーおよび窒
素導入管を備えた4つ口フラスコに、アマニ油
500部、グリセリン105.8部及びリサージ0.125部
を仕込み、240℃で1時間エステル交換した後200
℃に冷却し、そこへグリセリン82.4部及び無水フ
タル酸364.1部を加えて230℃で10時間窒素気流中
で反応させた。 生成物を有機溶剤としての不揮発分50%に希釈
し、ガードナー粘度(25℃)B−C、酸価3.6、
数平均分子量8800、油長50%のアマニ油アルキツ
ド樹脂溶液を得た。 参考例 2 (不飽和結合含有ポリエステル樹脂の製造) 撹拌機、温度計、エアーコンデンサーおよび窒
素導入管を備えた4つ口フラスコにイソフタル酸
440部、アジピン酸177.5部、ネオペンチルグリコ
ール361部、トリメチロールプロパン181.3部及び
無水マレイン酸15部を仕込み、窒素気流中で220
℃で約10時間反応させて酸価8、OH価132、水
酸基当量425及び数平均分子量1600の樹脂を得
た。これをトルエン:酢酸ブチル=50:50(重量
比)の混合有機溶剤で不揮発分60%に希釈する
と、ガードナー粘度H、酸価4.8、OH価79.2、色
数2であつた。 実施例 1 まず、n−ブチルメタクリレート400部、アク
リロニトリル100部、メチルメタクリレート100
部、エチルアクリレート260部、メタクリル酸10
部からなる単量体混合物950部を調製しておき、
これを撹拌機、温度計、コンデンサーおよび窒素
ガス導入管を備えた4つ口フラスコにトルエンの
950部、上記の単量体混合物の300部、参考例1の
アルキド樹脂溶液の100部、およびベンゾイルパ
ーオキサイド1部を仕込み、80℃に昇温し、80℃
で2時間保持したのち、残りの単量体混合物650
部、ベンゾイルパーオキサイド10部を4時間で滴
下し、滴下終了後そのまま8時間保持して、不揮
発分49.1%、ガードナー粘度Z、Tg26℃、数平
均分子量17000、/N=5.2の重合体を得た。 実施例 2 まず、n−ブチルメタクリレート400部、アク
リロニトリル100部、スチレン180部、n−ブチル
アクリレート210部、メタクリル酸10部からなる
単量体混合物900部を調製しておいて、実施例1
と同様の反応容器にトルエンの933部、上記の単
量体混合物の400部、参考例2で得られたオイル
フリーアルキド樹脂の167部およびベンゾイルパ
ーオキサイド1部を仕込み、80℃に昇温し、80℃
で2時間保持したのち、残りの単量体混合物500
部、ベンゾイルパーオキサイド10部を4時間で滴
下し、滴下終了後そのまま8時間保持して不揮発
分50.5%、ガードナー粘度X、Tg17℃、数平均
分子量15000、/N=6.5の重合体を得た。 実施例 3 予めn−ブチルメタクリレート450部、アクリ
ロニトリル100部、β−ヒドロキシエチルメタク
リレート92部、メチルメタクリレート100部、n
−ブチルアクリレート198部およびメタクリル酸
10部からなる単量体混合物の950部を調製してお
き、実施例1と同様の反応容器に、参考例1のア
ルキド樹脂の100部、トルエンの950部、上記の単
量体混合物の300部およびベンゾイルパーオキサ
イドの1.0部を仕込んで80℃に昇温させ、同温度
に2時間保持したのち、残りの単量体混合物の
650部およびベンゾイルパーオキサイドの10部を
4時間で滴下し、滴下終了後もそのまま8時間保
持した処、不揮発分50.5%、ガードナー粘度Z2
Tg15℃、数平均分子量23000になる重合体が得ら
れた。 実施例 4 予めn−ブチルメタクリレート720部、メチル
メタクリレート100部、アクリロニトリル150部お
よびメタクリル酸10部からなる単量体混合物の
980部を調製しておき、実施例1と同様の反応容
器に、参考例1のアルキド樹脂の40部、トルエン
の980部、上記の単量体混合物の300部およびベン
ゾイルパーオキサイドの1.0部を仕込んで80℃に
昇温して同温度に2時間保持したのち、残りの単
量体混合物の680部とベンゾイルパーオキサイド
の10部とを4時間で滴下し、滴下終了後もそのま
ま8時間保持した処、不揮発分50.2%、ガードナ
ー粘度Z1、Tg38℃、数平均分子量20000、/
=4.0なる重合体が得られた。 実施例 5 予めn−ブチルメタクリレート590部、メチル
メタクリレート150部、アクリロニトリル100部お
よびメタクリル酸10部からなる単量体混合物の
850部を調製しておき、実施例1と同様の反応容
器に、参考例1のアルキド樹脂の300部、トルエ
ンの850部、上記の単量体混合物の300部およびベ
ンゾイルパーオキサイドの1.0部を仕込んで80℃
に昇温させて同温度に2時間保持したのち、残り
の単量体混合物の550部とベンゾイルパーオキサ
イドの10部とを4時間で滴下し、滴下終了後もそ
のまま8時間保持した処、不揮発分50.6%、ガー
ドナー粘度X、Tg35℃、数平均分子量18000、
/=4.9なる重合体が得られた。 比較例 1 アクリロニトリル400部、エチルメタクリレー
ト600部およびメタクリル酸50部からなる単量体
混合物の1050部を用いるように変更させた以外
は、実施例1と同様にして不揮発分51.3%、ガー
ドナー粘度Z3、Tg83℃、数平均分子量21000なる
対照用の重合体を得た。 比較例 2 メチルメタクリレート658部、n−ブチルアク
リレート332部およびメタクリル酸10部からなる
単量体混合物の1000部を用いるように変更させた
以外は、実施例1と同様にして不揮発分50.6%、
ガードナー粘度Z1、Tg30℃、数平均分子量23000
なる対照用の混合物を得た。 比較例 3 アクリロニトリル150部、メチルメタクリレー
ト508部、n−ブチルアクリレート332部およびメ
タクリル酸10部からなる単量体混合物の1000部を
用いるように変更させた以外は、実施例1と同様
にして不揮発分50.3%、ガードナー粘度Z−Z1
Tg30℃、数平均分子量24000なる重合体を得た。 以上のようにして得られた共重合体を試験した
結果を表−1及び表−2に示す。 〔塗膜性能についての試験〕 各重合体100部に対して顔料含有率が40%とな
るように酸化チタンを秤取し、これにシンナ−
(キシレン:酢酸ブチル=50:50)40部、ガラス
ビーズ250部を加えてサンドミルで1時間混練
し、この後ガラスビーズを過してベースとし
た。 このベースを更にシンナーで希釈し、フオード
カツプNo.4で18〜20秒となるように粘度を調整
し、これをブリキ板に塗装し、常温にて1週間乾
装した。 但し、実施例5については硬化剤として「バー
ノツクDN−950」(大日本インキ化学工業社製、
ポリイソシアネート)をOH/NCO=1.0(当量
比)になるように使用し、塗装したのち、同様な
乾燥条件(常温にて1週間)で処理した。
The present invention relates to a method for producing an acrylic resin for solvent-based coatings that has excellent flexibility, elasticity, weather resistance, hardness, adhesion, pigment dispersibility, etc. Lacquers whose main component is methyl methacrylate polymer have excellent transparency, gloss retention, and weather resistance, but they tend to crack due to temperature changes and swelling and shrinking effects due to moisture, and have defects in impact resistance and adhesion. It is known that there is. In order to improve these drawbacks, a method of plasticizing the copolymer by partially substituting higher alkanol with acrylate or methacrylate has been widely used.
However, with this method, it is difficult to obtain a coating film with well-balanced physical properties such as weather resistance, crack resistance, flexibility, elasticity, and adhesion. That is, as the proportion of higher alkanol acrylate or methacrylate copolymerized with methyl methacrylate is increased, flexibility, crack resistance, and painting workability are improved, but thinner resistance and hardness are decreased, and in particular, weather resistance and flexibility are improved. It is unsuitable for applications that require strength, elasticity, crack resistance, thinner resistance, etc. In addition, as a water-dispersed varnish for electrodeposition, 25 to 50 parts of acrylonitrile, 50 to 75 parts of methacrylic acid ester,
Products made by emulsion copolymerization of 2 to 10 parts of methacrylic acid are also known, but coatings obtained using solvent-based coating acrylic resins with such a monomer composition generally have good weather resistance and adhesion. However, it has the disadvantage that the pigment dispersibility of the paint itself is poor. The present invention provides an acrylic resin for solvent-based coating that has improved these drawbacks. That is, in the present invention, in the presence of an organic solvent, (a) n-butyl methacrylate 30 to 99.4% by weight, (b) acrylonitrile 0.5 to 30% by weight, (c) unsaturated acid 0.1 to 5% by weight,
(d) 1 to 20% by weight of an unsaturated bond-containing polyester resin, (e) 0 to 25% by weight of a polymerizable monomer having one or more hydroxyl groups in one molecule, and (f) the above (a) to ( Consists of 0 to 69.4% by weight of other vinyl monomers that can be copolymerized with component e), and the total amount of each monomer is 100% by weight.
A method for producing an acrylic resin for solvent-based coatings with good flexibility and a glass transition point of -10°C to 40°C and a number average molecular weight of 5,000 to 100,000, which comprises copolymerizing a monomer mixture of It provides: Among the components constituting the acrylic resin of the present invention,
The components (a) n-butyl methacrylate, (b) acrylonitrile, and (c) unsaturated acid are essential components for imparting flexibility, elasticity, weather resistance, hardness, and adhesion to the resulting resin. On the other hand, the unsaturated bond-containing polyester resin component (d) is a necessary component for improving the dispersibility of the pigment. The usage range of each of these components is (a) n-butyl methacrylate 30-99.4% by weight, (b) acrylonitrile 0.5-30% by weight, (c) unsaturated acid 0.1-5% by weight, (d) unsaturated bond-containing polyester. Resin ranges from 1 to 20% by weight, preferably (a)30
A suitable range is 97.5% by weight, (b) 2-25% by weight, and (c) 0.5-2.5% by weight. However, the total of each of these essential monomer components shall always be 100% by weight. In the present invention, the acid component included in the term unsaturated acid refers to acid components provided in coating resins such as (meth)acrylic acid, itaconic acid, fumaric acid, and (anhydrous) maleic acid. In addition to the above-mentioned essential components of (a) n-butyl methacrylate, (b) acrylonitrile, (c) unsaturated acid, and (d) unsaturated bond-containing polyester resin, the present invention also includes an acrylic resin for coating. Further addition of various components for the purpose of improving membrane performance.
can be used. That is, as necessary, the constituent components of the acrylic resin of the present invention include (e) a polymerizable monomer having one or more hydroxyl groups in one molecule, (f) the above-mentioned (a)-
Examples include other vinyl monomers that can be copolymerized with component (e). As the unsaturated bond-containing polyester resin (d),
Drying oil and/or semi-drying oil alkyd resins having a number average molecular weight in the range of 500 to 10,000 and unsaturated oil-free alkyd resins having a hydroxyl equivalent weight of 300 to 600 can be used. Polyhydric alcohols that can be used to produce such unsaturated bond-containing polyester resins include (poly)ethylene glycol, (poly)propylene glycol, neopentyl glycol,
1,6-hexanediol, 1,3-butylene glycol, 1,4-butylene glycol, bis(hydroxyethyl) terephthalate, hydrogenated bisphenol A, trimethylolethane, trimethylolpropane, glycerin, pentaerythritol, etc. Monovalent carboxylic acids and polyvalent carboxylic acids include phthalic acid, isophthalic acid, terephthalic acid, hettic acid, trimellitic acid, succinic acid,
Oxalic acid, adipic acid, sebacic acid, benzoic acid,
Examples include p-tert-butylbenzoic acid, p-hydroxybenzoic acid and its anhydride. Additionally, drying and semi-drying oils include linseed oil,
Examples include tung oil, safflower oil, dehydrated castor oil, cottonseed oil, soybean oil, rice bran oil, etc. When synthesizing by the fatty acid method, fatty acids of these oils and tall oil fatty acids can be used. Unsaturated dicarboxylic acids include (anhydrous) maleic acid, fumaric acid, itaconic acid, citraconic acid, and tetrahydrophthalic anhydride. The unsaturated bond-containing polyester resin used in the present invention can be obtained by calculating the composition of any combination of these raw materials and reacting them by a known method, but the grafting with polymerizable monomers in the next step Considering the drying conditions, the oil length of drying oil and/or semi-drying oil alkyd resin is from 30 to
80%, the unsaturated dicarboxylic acid of the unsaturated oil-free alkyd resin is preferably used in the range of 0.5 to 5% by weight. The amount of the unsaturated bond-containing polyester resin (d) used is preferably in the range of 1 to 20% by weight. In addition, the polymerizable monomer (e) having one or more hydroxyl groups in one molecule is mainly polyisocyanate,
25% by weight or less as an essential component when used in combination with a crosslinking component such as aminoplast to make a curable paint.
It is preferably used in a range of 5 to 25% by weight. Monomer (e) includes β-hydroxyethyl (meth)acrylate, β-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, trimethylolpropane, glycerin (meth)acrylate. Examples include acid monoesters. Furthermore, other vinyl monomers (f) that can be copolymerized with each of the components (a) to (e) described above include styrene, vinyltoluene, methyl (meth)acrylate, ethyl (meth)acrylate, and isopropyl. (meta)
Acrylate, n-butyl acrylate, iso-
Butyl (meth)acrylate, tert-butyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, (methyl)glycidyl (meth)acrylate , dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, etc., and the amount of these used depends on coating film performance such as coating workability, gloss, flexibility, hardness, weather resistance, drying property, and solvent resistance. When it is further improved depending on the intended use, it is used in a range of 0 to 69.5% by weight. The synthesis of the acrylic resin for coating of the present invention is as described above.
This can be easily accomplished by synthesizing components (a) to (f) according to known techniques. Polymerization initiators used in the reaction include azobisisobutyronitrile, benzoyl peroxide, tert-butyl perbenzoate, tert-butyl hydroperoxide, di-tert-butyl peroxide, kyumene hydroperoxide, etc. is appropriate,
It is used in an amount of 0.1 to 5% by weight based on the total amount of components constituting the resin. Here, examples of organic solvents include aromatic solvents such as toluene and xylene;
Ester types such as ethyl acetate, butyl acetate, and cellosolve acetate, ketone types such as methyl ethyl ketone and methyl isobutyl ketone, butanol,
Alcohol solvents such as isobutanol and butyl cellosolve alone or in combination are suitable. The number average molecular weight of the coating acrylic resin obtained by the method of the present invention is 5,000 to 100,000, and when considering the firmness of the paint film after painting, workability during spray painting, etc., the range is 5,000 to 40,000. preferable. On the other hand, the glass transition temperature of the coating acrylic resin obtained by the method of the invention is also an important factor for the cured coating when the acrylic resin is used, for example, in lacquer-type and curable coatings. Therefore, the glass transition temperature, which is the temperature at which the polymer molecule segments of the acrylic resin change from a fixed state, that is, a glass state, to a state where these polymer molecule segments can move, that is, a rubber state, is, for example, a glass transition temperature. For mold coatings, the appropriate range is 0 to 40°C, preferably 5 to 38°C; for example, for curable coatings, it is -10 to +30°C, preferably -10 to +20°C. Within this range is appropriate. Among these, Lutzker-type coatings with a glass transition point of less than 0°C have extremely poor staining properties at room temperature;
If the temperature exceeds 40℃, the elongation will be poor.
On the other hand, a cured coating film with a glass transition point of less than -10°C has extremely poor staining properties when used in combination with a soft crosslinking agent such as an aliphatic polyisocyanate; If the temperature exceeds 30°C, the glass transition point of the cured coating film itself will exceed 40°C when used in combination with a hard crosslinking agent such as melamine resin, which is preferable since the cured coating film will only be extremely brittle. do not have. The acrylic resin for coating of the present invention has the above-mentioned (a) to
Component (f) is prepared by known and commonly used means,
(Weight average molecular weight of the acrylic resin...
)/(number average molecular weight...... N ) ratio is 3
It is best to adjust it so that it is in the range of ~20. That is, for example, one of the measures to improve pigment dispersibility is to prevent pigments from agglomerating together, but in order to do this, it is necessary to efficiently adsorb the acrylic resin to the pigment surface and to absorb the polymer particles that are the acrylic resin. Prevention of aggregation due to steric hindrance is required. As one such method, the present inventors have used these /
It has also been found that it is effective to keep the N ratio within the above range. In order for the ratio of / to be in the range of 3 to 20, the ratio of the relatively high molecular weight part to the relatively low molecular weight part is a major factor, so how to create both parts is a major factor. This is an important point. Generally speaking, to create a high molecular weight part, the reaction should be carried out with less initiator and high monomer concentration, while to create a low molecular weight part, the reaction should be carried out under the opposite reaction conditions. A desired ratio of / may be selected by combining these synthesis conditions. The acrylic resin for coating of the present invention includes vinyl resin,
Used in combination with alkyd resin, nitrocellulose, etc. as a lacquer-type paint, or by incorporating a functional monomer into the copolymer and used in combination with a crosslinking agent such as polyisocyanate, amino resin, epoxy resin, etc. as a curable paint. can. Furthermore, the paint can be used as a clear paint or an enamel paint using known pigments. The resulting paint can be applied using commonly used methods such as spray painting, brush painting, and roller painting, and can be cured using drying at room temperature, forced drying, baking drying, and far infrared rays. An appropriate method such as drying can be selected. The acrylic resin for coating obtained by the present invention has well-balanced properties such as weather resistance, crack resistance, hardness, adhesion, and flexibility, and has particularly good flexibility. There are characteristics. Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to what is described in the Examples. "Parts" in the examples indicate "parts by weight." Reference Example 1 (Manufacture of unsaturated bond-containing polyester resin) Add linseed oil to a four-necked flask equipped with a stirrer, thermometer, air condenser, and nitrogen inlet tube.
500 parts, 105.8 parts of glycerin, and 0.125 parts of Resurge, and after transesterifying at 240℃ for 1 hour,
The mixture was cooled to .degree. C., and 82.4 parts of glycerin and 364.1 parts of phthalic anhydride were added thereto, followed by reaction at 230.degree. C. for 10 hours in a nitrogen stream. The product was diluted to 50% non-volatile content as an organic solvent, Gardner viscosity (25°C) B-C, acid number 3.6,
A linseed oil alkyd resin solution with a number average molecular weight of 8800 and an oil length of 50% was obtained. Reference Example 2 (Production of unsaturated bond-containing polyester resin) Isophthalic acid was placed in a four-necked flask equipped with a stirrer, thermometer, air condenser, and nitrogen inlet tube.
440 parts of adipic acid, 177.5 parts of adipic acid, 361 parts of neopentyl glycol, 181.3 parts of trimethylolpropane, and 15 parts of maleic anhydride were charged, and the mixture was heated to 220 parts in a nitrogen stream.
The reaction was carried out at a temperature of about 10 hours to obtain a resin having an acid value of 8, an OH value of 132, a hydroxyl equivalent of 425, and a number average molecular weight of 1,600. When this was diluted to a non-volatile content of 60% with a mixed organic solvent of toluene:butyl acetate=50:50 (weight ratio), it had a Gardner viscosity of H, an acid value of 4.8, an OH value of 79.2, and a color number of 2. Example 1 First, 400 parts of n-butyl methacrylate, 100 parts of acrylonitrile, 100 parts of methyl methacrylate
parts, ethyl acrylate 260 parts, methacrylic acid 10 parts
950 parts of a monomer mixture consisting of 950 parts of
Add toluene to a four-necked flask equipped with a stirrer, thermometer, condenser, and nitrogen gas inlet tube.
950 parts, 300 parts of the above monomer mixture, 100 parts of the alkyd resin solution of Reference Example 1, and 1 part of benzoyl peroxide were charged, and the temperature was raised to 80°C.
After holding for 2 hours at
10 parts of benzoyl peroxide was added dropwise over 4 hours, and after the completion of the dropwise addition, the polymer was maintained for 8 hours to obtain a polymer with non-volatile content of 49.1%, Gardner viscosity Z, Tg of 26°C, number average molecular weight of 17000, / N = 5.2. Ta. Example 2 First, 900 parts of a monomer mixture consisting of 400 parts of n-butyl methacrylate, 100 parts of acrylonitrile, 180 parts of styrene, 210 parts of n-butyl acrylate, and 10 parts of methacrylic acid was prepared.
933 parts of toluene, 400 parts of the above monomer mixture, 167 parts of the oil-free alkyd resin obtained in Reference Example 2, and 1 part of benzoyl peroxide were placed in a reaction vessel similar to the above, and the temperature was raised to 80°C. ,80℃
After holding for 2 hours, the remaining monomer mixture 500
10 parts of benzoyl peroxide was added dropwise over 4 hours, and after the dropwise addition was completed, the polymer was kept for 8 hours to obtain a polymer with non-volatile content of 50.5%, Gardner viscosity X, Tg 17°C, number average molecular weight 15000, / N = 6.5. . Example 3 450 parts of n-butyl methacrylate, 100 parts of acrylonitrile, 92 parts of β-hydroxyethyl methacrylate, 100 parts of methyl methacrylate, n
-198 parts of butyl acrylate and methacrylic acid
Prepare 950 parts of a monomer mixture consisting of 10 parts, and add 100 parts of the alkyd resin of Reference Example 1, 950 parts of toluene, and 300 parts of the above monomer mixture to the same reaction vessel as in Example 1. 1 part of the monomer mixture and 1.0 part of benzoyl peroxide were charged, the temperature was raised to 80°C, kept at the same temperature for 2 hours, and then the remaining monomer mixture was added.
650 parts of benzoyl peroxide and 10 parts of benzoyl peroxide were added dropwise over a period of 4 hours, and the mixture was kept for 8 hours after the addition was complete. Non-volatile content was 50.5%, Gardner viscosity Z 2
A polymer with a Tg of 15°C and a number average molecular weight of 23,000 was obtained. Example 4 A monomer mixture consisting of 720 parts of n-butyl methacrylate, 100 parts of methyl methacrylate, 150 parts of acrylonitrile and 10 parts of methacrylic acid was prepared in advance.
Prepare 980 parts, and add 40 parts of the alkyd resin of Reference Example 1, 980 parts of toluene, 300 parts of the above monomer mixture, and 1.0 part of benzoyl peroxide to the same reaction vessel as in Example 1. After charging and raising the temperature to 80℃ and keeping it at the same temperature for 2 hours, 680 parts of the remaining monomer mixture and 10 parts of benzoyl peroxide were added dropwise over 4 hours, and the temperature was maintained for 8 hours even after the dropwise addition was completed. Then, non-volatile content 50.2%, Gardner viscosity Z 1 , Tg 38℃, number average molecular weight 20000, /
= 4.0 was obtained. Example 5 A monomer mixture consisting of 590 parts of n-butyl methacrylate, 150 parts of methyl methacrylate, 100 parts of acrylonitrile and 10 parts of methacrylic acid was prepared in advance.
Prepare 850 parts, and add 300 parts of the alkyd resin of Reference Example 1, 850 parts of toluene, 300 parts of the above monomer mixture, and 1.0 part of benzoyl peroxide to the same reaction vessel as in Example 1. Prepare and heat to 80℃
After raising the temperature to 2 hours and keeping it at the same temperature for 2 hours, 550 parts of the remaining monomer mixture and 10 parts of benzoyl peroxide were added dropwise over 4 hours. min 50.6%, Gardner viscosity X, Tg35℃, number average molecular weight 18000,
A polymer with /=4.9 was obtained. Comparative Example 1 Same as Example 1 except that 1050 parts of a monomer mixture consisting of 400 parts of acrylonitrile, 600 parts of ethyl methacrylate and 50 parts of methacrylic acid was used, non-volatile content 51.3%, Gardner viscosity Z 3 , a control polymer having a Tg of 83°C and a number average molecular weight of 21,000 was obtained. Comparative Example 2 Same as Example 1, except that 1000 parts of a monomer mixture consisting of 658 parts of methyl methacrylate, 332 parts of n-butyl acrylate, and 10 parts of methacrylic acid was used, with a non-volatile content of 50.6%,
Gardner viscosity Z 1 , Tg30℃, number average molecular weight 23000
A control mixture was obtained. Comparative Example 3 A nonvolatile sample was prepared in the same manner as in Example 1, except that 1000 parts of a monomer mixture consisting of 150 parts of acrylonitrile, 508 parts of methyl methacrylate, 332 parts of n-butyl acrylate, and 10 parts of methacrylic acid was used. min 50.3%, Gardner viscosity Z−Z 1 ,
A polymer with a Tg of 30°C and a number average molecular weight of 24,000 was obtained. The results of testing the copolymers obtained as described above are shown in Tables 1 and 2. [Test on coating film performance] Titanium oxide was weighed out so that the pigment content was 40% based on 100 parts of each polymer, and thinner was added to it.
40 parts of xylene:butyl acetate = 50:50 and 250 parts of glass beads were added and kneaded in a sand mill for 1 hour, after which the glass beads were passed through to form a base. This base was further diluted with thinner, and the viscosity was adjusted to 18 to 20 seconds using a food cup No. 4. This was applied to a tin plate and dried for one week at room temperature. However, in Example 5, "Burnock DN-950" (manufactured by Dainippon Ink Chemical Industries, Ltd.,
Polyisocyanate) was used so that OH/NCO=1.0 (equivalent ratio), and after painting, it was treated under the same drying conditions (1 week at room temperature).

〔顔料の分散性についての試験〕[Test on pigment dispersibility]

各重合体100部に対し、表−2に記載の顔料含
有率(PWC)となるように顔料を秤取し、これ
にシンナー40部、ガラスビーズ250部を加えてサ
ンドミルで1〜3時間混練し、この後ガラスビー
ズを過して色ベースを得た。
For 100 parts of each polymer, weigh out the pigment so that it has the pigment content (PWC) listed in Table 2, add 40 parts of thinner and 250 parts of glass beads, and knead in a sand mill for 1 to 3 hours. After this, glass beads were passed through to obtain a color base.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 有機溶剤の存在下に、(a)n−ブチルメタクリ
レートの30〜99.4重量%と、(b)アクリロニトリル
の0.5〜30重量%と、(c)不飽和酸の0.1〜5重量%
と、(d)不飽和結合含有ポリエステル樹脂の1〜20
重量%と、(e)1分子中に1ケ以上の水酸基を有す
る重合性単量体の0〜25重量%と、(f)前記(a)〜(e)
成分と共重合しうる他のビニル系単量体の0〜
69.4重量%とからなり、しかも各単量体の合計が
100重量%なる単量体混合物を共重合させること
により、ガラス転移点が−10℃〜40℃で、かつ、
数平均分子量が5000〜100000なる共重合体を得る
ことを特徴とする、可撓性良好なる被覆用アクリ
ル樹脂の製造法。
1 In the presence of an organic solvent, (a) 30-99.4% by weight of n-butyl methacrylate, (b) 0.5-30% by weight of acrylonitrile, and (c) 0.1-5% by weight of an unsaturated acid.
and (d) 1 to 20 of the unsaturated bond-containing polyester resin.
(e) 0 to 25% by weight of a polymerizable monomer having one or more hydroxyl groups in one molecule; and (f) the above (a) to (e).
0 to 0 of other vinyl monomers that can be copolymerized with the component.
69.4% by weight, and the total of each monomer is
By copolymerizing a monomer mixture of 100% by weight, the glass transition point is -10°C to 40°C, and
A method for producing an acrylic resin for coating with good flexibility, characterized by obtaining a copolymer having a number average molecular weight of 5,000 to 100,000.
JP5076478A 1978-05-01 1978-05-01 Preparation of coating acrylic resin having improved flexibility Granted JPS54144493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5076478A JPS54144493A (en) 1978-05-01 1978-05-01 Preparation of coating acrylic resin having improved flexibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5076478A JPS54144493A (en) 1978-05-01 1978-05-01 Preparation of coating acrylic resin having improved flexibility

Publications (2)

Publication Number Publication Date
JPS54144493A JPS54144493A (en) 1979-11-10
JPS6221005B2 true JPS6221005B2 (en) 1987-05-11

Family

ID=12867892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5076478A Granted JPS54144493A (en) 1978-05-01 1978-05-01 Preparation of coating acrylic resin having improved flexibility

Country Status (1)

Country Link
JP (1) JPS54144493A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151209B2 (en) * 2007-03-29 2013-02-27 Dic株式会社 Laminate having a primer and a resin coating film comprising the primer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125490A (en) * 1975-03-04 1976-11-01 Mitsubishi Electric Corp Aprocess for preparing solderable aqueous varnish dispersion for use i n electrodeposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125490A (en) * 1975-03-04 1976-11-01 Mitsubishi Electric Corp Aprocess for preparing solderable aqueous varnish dispersion for use i n electrodeposition

Also Published As

Publication number Publication date
JPS54144493A (en) 1979-11-10

Similar Documents

Publication Publication Date Title
JPH032915B2 (en)
JP2749028B2 (en) Method for providing a composite coating on a substrate
EP0588560B1 (en) A curable resin composition, a coating composition and a process for forming a coating film
JP2863076B2 (en) Curable resin composition, coating composition and coating film forming method
JPH0246071B2 (en)
US7138465B2 (en) Polymer-modified resins
JPH07286138A (en) Coating composition
JP2006505639A (en) Powder coating composition
CA2354826C (en) Low temperature curing powder coating for producing reduced gloss, weatherable coatings
US4278575A (en) Modified acrylic copolymer and coating composition comprising such copolymer
JPS6155160A (en) Paint resin composition
JPS6221005B2 (en)
WO1992001748A1 (en) Thermosetting polyester powder coating compositions containing glycidyl methacrylate copolymers as the crosslinking agent
US20030225217A1 (en) Thermosetting powder coating composition
CA2187371C (en) Mar resistant coating composition
WO1994011122A1 (en) Water-borne compositions comprising half esters of anhydride polymers crosslinked by epoxies
EP2342244B1 (en) Aqueous coating composition
US5959040A (en) Film-forming composition suitable for use as a monocoat
JPS6340226B2 (en)
JPH0412299B2 (en)
JPS6223990B2 (en)
JP3014196B2 (en) Resin composition for paint
JPH0672215B2 (en) Paint
JPH0311283B2 (en)
JPH06166741A (en) Curable resin composition, paint composition and method for forming coating film