JPS6220986B2 - - Google Patents

Info

Publication number
JPS6220986B2
JPS6220986B2 JP5963779A JP5963779A JPS6220986B2 JP S6220986 B2 JPS6220986 B2 JP S6220986B2 JP 5963779 A JP5963779 A JP 5963779A JP 5963779 A JP5963779 A JP 5963779A JP S6220986 B2 JPS6220986 B2 JP S6220986B2
Authority
JP
Japan
Prior art keywords
methyl
reaction
glycidate
water
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5963779A
Other languages
Japanese (ja)
Other versions
JPS55153777A (en
Inventor
Katsura Kogure
Shizuo Himoto
Ikuo Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Priority to JP5963779A priority Critical patent/JPS55153777A/en
Publication of JPS55153777A publication Critical patent/JPS55153777A/en
Publication of JPS6220986B2 publication Critical patent/JPS6220986B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は3―メチル―3―(置換アリール)―
グリシド酸エステルの改良された製造法に関す
る。更に詳しくは、本発明は、従来方法でよりも
経済的に高い収量でグリシド酸エステル化合物類
を与える改良法を提供するものである。 グリシド酸エステル類から有用なカルボン酸類
を合成する方法が最近発展せしめられた。例えば
特公昭53―35067号および特公昭53―35068号各公
報によれば、一般式()で示される化合物(式
中Arは4―低級アルキルフエニル基である)か
ら抗炎症作用を有するイブプロフエン系化合物が
効率よく得られている。 芳香族ケトン類からグリシド酸エステル類を製
造することは既に知られている。例えば
「Organic Reactions」第5巻第413頁〜437頁、
特公昭47―24550号公報、特公昭53―35067号公
報、「J.prakt.Chem.」第12巻第110〜114頁
(1960)、「Indian J.Chem.」第15B巻第574頁
(1977)などの文献にアリールグリシド酸エステ
ルの合成法が記載されている。しかしながらこれ
らの方法では経済的な条件下に高収率(90%以
上)でグリシド酸エステルを得ることが難しい。
たとえば「Organic Reactions」第5巻第413頁
〜437頁の方法においては収率が70%以下であり
工業化法としては適さない。特公昭47―24550号
公報の方法においては、溶媒としてイソプロピル
アルコールそして塩基としてナトリウムイソプロ
キシドを用いてダルツエン反応を行つているが、
かかる塩基はつくりにくく、更に反応終了後にイ
ソプロピルアルコールを留去しなければならず、
操作が煩雑となる欠点を有する。特公昭53―
35067号公報の方法においては、無溶媒下にナト
リウムメトキシドを塩基として用いてダルツエン
反応を行つているが収率が80%にとどまる。「J.
Prakt.Chem.」第12巻第110〜114頁(1960)記載
の方法においてはキシレン中で金属ナトリウム粉
末を用いてダルツエン反応を行つて80%の収率で
グリシド酸エステルを得ているが、ナトリウム粉
末は危険であり、工業上好ましくない。「Indian
J.Chem.」第15B巻第574〜575頁(1977)記載の
方法においては第3級ブチルアルコール中でカリ
ウム第3級ブチラートを用いるが、カリウム第3
級ブチラートは高価であり、また反応終了後第3
級ブチルアルコールを留去しなければならず操作
が煩雑となる。 本発明者らは種々検討を重ねた結果、一般式
() Ar―COCH3 () (式中Arは反応に不活性な置換基で置換され
たアリール基を示す)で表わされるアリールメチ
ルケトンを経済的に安価なナトリウムアルコラー
ト粉末の存在下に、実質的に無水状態下で、液体
容量で少くとも3%の双極性非プロトン性の有機
溶媒を含有する非水溶性非プロトン性溶媒混合物
中でクロル酢酸エステルと反応させることによ
り、高収率で一般式() (式中Arは前記の通りでありそしてRは低級
アルキル基を示す)で表わされるグリシド酸エス
テルが得られることを見出しこの発明を完成した
ものである。 上記した一般式()の化合物におけるアリー
ル基としては、反応に不活性な1または2以上の
置換基で置換されたフエニル基およびナフチル基
が挙げられる。そしてこの反応に不活性な置換基
とは、この方法における反応を妨害しまたは反応
生成物とは反応性であつてそのために反応生成物
の収率を低下させることのないアリール基上の置
換基を意味し、これらの置換基の例としては、ハ
ロゲン例えばフツ素、アルキル基例えばt―ブチ
ル、iso―ブチル、シクロアルキル基例えばシク
ロヘキシル基、アルコキシ基例えばメトキシ基、
フエニル基、ハロゲン置換フエニル基例えばフル
オロフエニル基、フエノキシ基およびニトロ基な
どが挙げられる。 従来技術水準によれば、「Compt rend」第268
(15)巻第1403頁(1969)においてダルツエン反
応では、プロトン性溶媒が非プロトン性溶媒より
優れていることを示しまた「J.Org.Chem.」第26
巻第3170頁(1961)においてダルツエン反応では
塩基としてナトリウムよりもカリウム化合物が優
れていることを示している点からして本発明はま
さに予想外というべきである。 更に本発明によれば、従来合成困難であつたフ
エニル基が強い電子供与性基または電子吸引性基
で置換されたグリシド酸エステルの合成にも適用
でき、経済的および学術的見地からみてきわめて
優れた方法である。 本発明において使用される双極性非プロトン性
溶媒としてはジメチルホルムアミド、ジエチルホ
ルムアミド、ジメチルアセトアミド、ジメチルス
ルホキシド、テトラメチレンスルホキシド、テト
ラメチレンスルホン、などが挙げられるが、ジメ
チルホルムアミドおよびジメチルスルホキシドが
経済上好ましい。反応速度面からは、非水溶性非
プロトン性溶媒に対して液体容量で少くとも約8
%のジメチルホルムアミドあるいはジメチルスル
ホキシドを含有するのが好ましい。 反応混合物の水溶性成分からグリシド酸エステ
ル溶液を分離する容易さのためには、グリシド酸
エステル生成反応媒体としては、ジメチルホルム
アミド、ジエチルホルムアミド、ジメチルアセト
アミド、テトラメチレンスルホン、テトラメチレ
ンスルホキシドまたはジメチルスルホキシドと非
水溶性非プロトン性有機液体希釈剤との組合せを
使用するのが好ましい。反応体に対する唯一の溶
媒媒質として双極性非プロトン性物質を使用でき
るが、好ましくは混合物中で主容量割合を占める
ような非水溶性非プロトン性有機液体によつて双
極性の非プロトン物質を希釈するのが好ましい。 非水溶性非プロトン性溶媒としては、ベンゼ
ン、トルエン、キシレンおよびジイソプロピルエ
ーテルのような非水溶性有機溶媒が挙げられる。
反応温度は有機溶媒が液体状態に保持できる温度
でよいが、−5℃から5℃で反応を実施するのが
好ましい。 反応時間は双極性の非プロトン性溶媒量および
反応温度に左右されるが、おおむね10時間以内に
反応を完結することができる。ナトリウムアルコ
ラートとしてはナトリウムメチラート粉末または
ナトリウムエチラート粉末が経済上好ましい。ク
ロル酢酸エステルおよびナトリウムアルコラート
はそれぞれアリールメチルケトン1モルに対して
2.0〜3.0のモル比で使用するのが好適である。 上述のようにして得られたグリシド酸エステル
は高純度であり、このまま反応中間体として使用
できる。 表1は、本発明によつて得られたグリシド酸エ
ステルの代表例の赤外吸収スペクトルおよび核磁
気共嗚スペクトルのデータを示したものである。
The present invention provides 3-methyl-3-(substituted aryl)-
This invention relates to an improved method for producing glycidic acid esters. More specifically, the present invention provides an improved process for providing glycidic acid ester compounds in economically higher yields than conventional processes. Recently, methods have been developed to synthesize useful carboxylic acids from glycidic acid esters. For example, according to Japanese Patent Publication No. 53-35067 and Japanese Patent Publication No. 53-35068, ibuprofen, which has an anti-inflammatory effect, is produced from a compound represented by the general formula (in which Ar is a 4-lower alkyl phenyl group). The system compounds are efficiently obtained. It is already known to produce glycidic acid esters from aromatic ketones. For example, "Organic Reactions" Vol. 5, pp. 413-437,
Special Publication No. 47-24550, Publication No. 53-35067, "J.prakt.Chem." Vol. 12, pp. 110-114 (1960), "Indian J.Chem." Vol. 15B, p. 574 ( A method for synthesizing arylglycidate esters is described in literature such as (1977). However, with these methods, it is difficult to obtain glycidic acid esters in high yield (90% or more) under economic conditions.
For example, the method described in "Organic Reactions" Vol. 5, pages 413 to 437 has a yield of 70% or less and is not suitable as an industrialization method. In the method disclosed in Japanese Patent Publication No. 47-24550, the Dalzen reaction is carried out using isopropyl alcohol as a solvent and sodium isoprooxide as a base.
Such a base is difficult to make, and furthermore, the isopropyl alcohol must be distilled off after the reaction is completed.
It has the disadvantage that the operation is complicated. Tokuko Showa 53-
In the method of Publication No. 35067, the Dalzen reaction is carried out without a solvent using sodium methoxide as a base, but the yield remains at 80%. "J.
In the method described in ``Prakt. Sodium powder is dangerous and industrially undesirable. “Indian
J. Chem., Vol. 15B, pp. 574-575 (1977) uses potassium tert-butyrate in tertiary-butyl alcohol;
Butyrate is expensive, and after the completion of the reaction, the third
Butyl alcohol must be distilled off, making the operation complicated. As a result of various studies, the present inventors discovered an aryl methyl ketone represented by the general formula () Ar-COCH 3 () (wherein Ar represents an aryl group substituted with a substituent inert to the reaction). In the presence of economically inexpensive sodium alcoholate powder, under substantially anhydrous conditions, in a water-insoluble aprotic solvent mixture containing at least 3% by liquid volume of a dipolar aprotic organic solvent. By reacting with chloroacetate, the general formula () can be obtained in high yield. The present invention was completed by discovering that a glycidic acid ester represented by the formula (wherein Ar is as described above and R represents a lower alkyl group) can be obtained. Examples of the aryl group in the compound of general formula () above include phenyl groups and naphthyl groups substituted with one or more substituents inert to the reaction. And substituents inert to this reaction are substituents on the aryl group that interfere with the reaction in this process or are reactive with the reaction product and do not thereby reduce the yield of the reaction product. and examples of these substituents include halogen such as fluorine, alkyl groups such as t-butyl, iso-butyl, cycloalkyl groups such as cyclohexyl, alkoxy groups such as methoxy,
Examples include phenyl group, halogen-substituted phenyl group, such as fluorophenyl group, phenoxy group, and nitro group. According to the prior art level, "Compt rend" No. 268
(15), p. 1403 (1969), showed that protic solvents are superior to aprotic solvents in the Dalzene reaction, and also ``J.Org.Chem.'' No. 26
Vol. 3170 (1961) shows that potassium compounds are superior to sodium as bases in the Daltzen reaction, so the present invention is truly unexpected. Furthermore, the present invention can be applied to the synthesis of glycidic acid esters in which the phenyl group is substituted with a strong electron-donating group or an electron-withdrawing group, which has been difficult to synthesize in the past, and is extremely excellent from an economic and academic standpoint. This is a method. The dipolar aprotic solvent used in the present invention includes dimethylformamide, diethylformamide, dimethylacetamide, dimethylsulfoxide, tetramethylene sulfoxide, tetramethylene sulfone, etc., with dimethylformamide and dimethylsulfoxide being economically preferred. In terms of reaction rate, the liquid volume relative to the water-insoluble aprotic solvent is at least about 8
% of dimethylformamide or dimethyl sulfoxide. For ease of separating the glycidate ester solution from the aqueous components of the reaction mixture, dimethylformamide, diethylformamide, dimethylacetamide, tetramethylene sulfone, tetramethylene sulfoxide, or dimethyl sulfoxide may be used as the glycidate ester-forming reaction medium. Preferably, a combination with a water-insoluble aprotic organic liquid diluent is used. Although the dipolar aprotic substance can be used as the sole solvent medium for the reactants, it is preferably diluted by a water-insoluble aprotic organic liquid which accounts for the major volume proportion in the mixture. It is preferable to do so. Water-insoluble aprotic solvents include water-insoluble organic solvents such as benzene, toluene, xylene and diisopropyl ether.
The reaction temperature may be a temperature at which the organic solvent can be kept in a liquid state, but it is preferable to carry out the reaction at -5°C to 5°C. Although the reaction time depends on the amount of dipolar aprotic solvent and the reaction temperature, the reaction can be completed within about 10 hours. As the sodium alcoholate, sodium methylate powder or sodium ethylate powder is economically preferred. Chloroacetic ester and sodium alcoholate each per mole of aryl methyl ketone.
It is preferred to use a molar ratio of 2.0 to 3.0. The glycidic acid ester obtained as described above has high purity and can be used as it is as a reaction intermediate. Table 1 shows data on infrared absorption spectra and nuclear magnetic resonance spectra of representative examples of glycidic acid esters obtained according to the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】 次に、本発明による実施例を掲げる。ただし本
発明はこれらによつて限定されるものではない。 実施例 1 3―メチル―3―(6―メトキシ―2―ナフチ
ル)―グリシド酸メチル 6―メトキシ―2―アセチルナフタレン100g
(0.50モル)およびクロロ酢酸メチル119.3g
(1.10モル)をベンゼン1000mlに溶解させ、ジメ
チルスルホキシド50mlを加え、次いで0〜3℃で
1.5時間を要して、ナトリウムメチラート粉末
59.4g(1.10モル)を添加した。添加終了後0〜
3℃で30分間撹拌しそして反応液を水中に注い
だ、酢酸エチル800mlを加えて抽出を行い、抽出
液を水および飽和食塩水で順次洗い、そして無水
硫酸ナトリウムで乾燥した。溶媒を減圧留去しそ
して3―メチル―3―(6―メトキシ―2―ナフ
チル)―グリシド酸メチル(トランス・シス混合
物)の結晶136gを得た。収率は定量的であつ
た。 元素分析(C16H16O4として) 実測値: 70.69% 6.05% 計算値: 70.57% 5.92% 実施例 2 3―メチル―3―(4―イソブチルフエニル)
―グリシド酸エチル 4―イソブチルアセトフエノン8.8g(0.05モ
ル)およびクロル酢酸エチル12.3g(0.1モル)
をトルエン90mlに溶解し、ジエチルホルムアミド
10mlを加え、そして0〜3℃でナトリウムエチラ
ート粉末6.8g(0.1モル)を―2〜3℃で30分間
を要して添加した。同温で30分間撹拌した後反応
液を水中に注ぎ、次いでトルエン抽出を行つた。
抽出液を水および飽和食塩水で順次洗い、無水硫
酸ナトリウムで乾燥した。トルエンを減圧留去し
て油状の3―メチル―3―(4―イソブチルフエ
ニル)―グリシド酸エチル13.0gを得た。収率
99.2%(理論値)。 元素分析(C16H22O3として) 実測値: 73.40% 8.35% 計算値: 73.25% 8.45% 実施例 3 3―メチル―3―(4―第3級ブチルフエニ
ル)―グリシド酸エチル 4―第3級ブチルアセトフエノン8.8g(0.05
モル)、クロル酢酸エチル12.3g(0.1モル)、キ
シレン90ml、テトラメチレンスルホキシド7mlお
よびナトリウムエチラート粉末6.8g(0.1モル)
から実施例2と同様な操作を行い、3―メチル―
3―(4―第3級ブチルフエニル)―グリシド酸
エチル13.1gを得た。収率は定量的であつた。 元素分析(C16H22O3として) 実測値: 73.19% 8.50% 計算値: 73.25% 8.45% 実施例 4 3―メチル―3―(4―ニトロフエニル)―グ
リシド酸メチル 4―ニトロアセトフエノン13.9g(0.0843モ
ル)、クロル酢酸メチル20g(0.185モル)、ジメ
チルスルホキシド15mlおよびベンゼン150mlの撹
拌混合物中に−2〜1℃でナトリウムメチラート
粉末10g(0.185モル)を1時間を要して徐々に
加えた。添加終了後0〜3℃で30分間撹拌しそし
て水および酢酸エチルを加えた。有機層を分取
し、水および飽和食塩水で順次洗いそして無水硫
酸ナトリウムで乾燥した。有機溶媒を減圧下に留
去して油状の3―メチル―3―(4―ニトロフエ
ニル)―グリシド酸メチル18.2g(91.2%)を得
た。 元素分析(C11H11NO5として) 実測値: 55.80% 4.56% 6.01% 計算値: 55.69% 4.67% 5.91% 実施例 5 3―メチル―3―(3―ニトロフエニル)―グ
リシド酸メチル 3―ニトロアセトフエノン7.0g、ナトリウム
メチラート粉末5.0g、クロル酢酸メチル10.0
g、ベンゼン95mlおよびジメチルホルムアミド5
mlから実施例4と同様な操作を行つて油状の3―
メチル―3―(3―ニトロフエニル)―グリシド
酸メチル9.5gを得た。収率94.5%(理論値)。 元素分析(C11H11NO5として) 実測値: 55.56% 4.54% 5.80% 計算値: 55.59% 4.67% 5.91% 実施例 6 3―メチル―3―(2―ニトロフエニル)―グ
リシド酸メチル 2―ニトロアセトフエノン5.0g、ナトリウム
メチラート粉末3.6g、クロル酢酸メチル7.2g、
ベンゼン100mlおよびジメチルスルホキシド5ml
から実施例4と同様な操作を行つて油状の3―メ
チル―3―(2―ニトロフエニル)―グリシド酸
メチル6.7gを得た。収率93.3%(理論値)。 元素分析(C11H11NO5として) 実測値: 55.51% 4.60% 6.02% 計算値: 55.69% 4.67% 5.91% 実施例 7 3―メチル―3―(4―シクロヘキシルフエニ
ル)―グリシド酸メチル 4―シクロヘキシルアセトフエノン10.1g、ク
ロル酢酸メチル10.9g、ジメチルスルホキシド10
mlおよびトルエン100mlの撹拌混合物中に−2〜
1℃でナトリウムメチラート粉末5.4gを1時間
を要して徐々に加えた。添加終了後0〜3℃で30
分間撹拌しそして水中に注いだ。トルエン抽出を
行い、抽出液を水および飽和食塩水で順次洗い、
そして無水硫酸ナトリウムで乾燥した。トルエン
を減圧下に留去して油状の3―メチル―3―(4
―シクロヘキシルフエニル)―グリシド酸メチル
13.1gを得た。収率95.5%(理論値)。 元素分析(C17H22O3として) 実測値: 74.26% 7.99% 計算値: 74.42% 8.08% 実施例 8 3―メチル―3―(4′―フルオロ―4―ビフエ
ニリル)―グリシド酸メチル 4′―フルオロ―4―アセチルビフエニル21.4
g、クロル酢酸メチル21.7g、ベンゼン200mlお
よびジメチルスルホキシド20mlの撹拌混合液中に
−2〜2℃でナトリウムメチラート粉末10.8gを
1時間を要して徐々に加えた。添加終了後−1〜
2℃で30分間撹拌し、次いで水中に注いだ。ベン
ゼン抽出を行い、抽出液を水および飽和食塩水で
順次洗い、無水硫酸ナトリウムで乾燥した。ベン
ゼンを減圧下に留去して粉末状の3―メチル―3
―(4′―フルオロ―4―ビフエニリル)―グリシ
ド酸メチル27.1gを得た。収率94.6%(理論
値)。融点68.6〜70.2℃。 元素分析(C17H15FO3として) 実測値: 71.16% 5.11% 計算値: 71.32% 5.28% 実施例 9 3―メチル―3―(2―フルオロ―4―ビフエ
ニリル)―グリシド酸メチル 2―フルオロ―4―アセチルビフエニル10.7
g、クロル酢酸メチル10.8g、ナトリウムメチラ
ート粉末5.4g、ジメチルスルホキシド10mlおよ
びベンゼン100mlから実施例8と同様な操作を行
つて3―メチル―3―(2―フルオロ―4―ビフ
エニリル)―グリシド酸メチル13.6gを得た。収
率94.8g(理論値)。 元素分析(C17H15FO3として) 実測値: 71.40% 5.41% 計算値: 71.32% 5.28% 実施例 10 3―メチル―3―(4―ビフエニリル)―グリ
シド酸メチル 4―アセチルビフエニル19.6g、クロル酢酸メ
チル21.7g、ナトリウムメチラート粉末10.8g、
ジメチルスルホキシド20mlおよびベンゼン200ml
から実施例8と同様な操作を行つて粉末状の3―
メチル―3―(4―ビフエニリル)―グリシド酸
メチル25.8gを得た。収率96.1%(理論値)。融
点74.7〜77.0℃ 元素分析(C17H16O3として) 実測値: 75.95% 5.89% 計算値: 76.10% 6.01% 実施例 11 3―メチル―3―(4―メトキシフエニル)―
グリシド酸メチル 4―メトキシアセトフエノン7.5g、クロル酢
酸メチル16.3g、テトラメチレンスルホン16gお
よびベンゼン100mlの撹拌混合液中に−2゜〜2
℃でナトリウムメチラート粉末8.1gを1時間を
要して徐々に加えた。添加終了後−2゜〜0℃で
30分間撹拌し、次いで水中に注いだ。ベンゼン抽
出を行い、抽出液を水および飽和食塩水で順次洗
い、無水硫酸ナトリウムで乾燥した。ベンゼンを
減圧下に留去して油状の3―メチル―3―(4―
メトキシフエニル)―グリシド酸メチル10.4gを
得た。収率93.7%(理論値)。 元素分析(C12H14O4として) 実測値: 64.69% 6.26% 計算値: 64.85% 6.35% 実施例 12 3―メチル―3―(3―フエノキシフエニル)
―グリシド酸メチル 3―フエノキシアセトフエノン21.2g、クロル
酢酸メチル32.6g、ナトリウムメチラート粉末
16.2g、ジメチルスルホキシド20mlおよびベンセ
ン200mlから実施例11と同様な操作を行つて油状
の3―メチル―3―(3―フエノキシフエニル)
―グリシド酸メチル27.0gを得た。収率95.2%
(理論値)。 元素分析(C17H16O4として) 実測値: 71.71% 5.80% 計算値: 71.82% 5.67% 実施例 13 3―メチル―3―(4―イソブチルフエニル)
―グリシド酸メチル 4―イソブチルアセトフエノン17.6g、クロル
酢酸メチル21.7g、ジメチルスルホキシド10mlお
よびキシレン100mlの撹拌混合液中に−2〜2℃
でナトリウムメチラート粉末10.8gを1時間を要
して徐々に加えた。添加終了後−2〜2℃で30分
間撹拌し、反応液を水中に注いだ。キシレンで抽
出を行い、抽出液を水および飽和食塩水で順次洗
い、無水硫酸ナトリウムで乾燥した。キシレンを
減圧下に留去して油状の3―メチル―3―(4―
イソブチルフエニル)―グリシド酸メチル23.9g
を得た。収率96.2%(理論値)。 元素分析(C15H20O3として) 実測値: 72.41% 8.01% 計算値: 72.55% 8.12%
[Table] Next, examples according to the present invention are listed. However, the present invention is not limited thereto. Example 1 Methyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate 100 g of 6-methoxy-2-acetylnaphthalene
(0.50 mol) and methyl chloroacetate 119.3 g
(1.10 mol) was dissolved in 1000 ml of benzene, added with 50 ml of dimethyl sulfoxide, and then heated at 0-3℃.
Sodium methylate powder takes 1.5 hours
59.4g (1.10mol) was added. 0~ after addition
The mixture was stirred at 3° C. for 30 minutes, and the reaction solution was poured into water. 800 ml of ethyl acetate was added to perform extraction. The extract was washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain 136 g of crystals of methyl 3-methyl-3-(6-methoxy-2-naphthyl)-glycidate (trans-cis mixture). The yield was quantitative. Elemental analysis (as C 16 H 16 O 4 ) C H actual value: 70.69% 6.05% Calculated value: 70.57% 5.92% Example 2 3-Methyl-3-(4-isobutylphenyl)
-Ethyl glycidate 4-isobutylacetophenone 8.8g (0.05 mol) and ethyl chloroacetate 12.3g (0.1 mol)
Dissolve in 90ml of toluene and add diethylformamide.
10ml and at 0-3°C 6.8g (0.1 mol) of sodium ethylate powder were added over 30 minutes at -2-3°C. After stirring at the same temperature for 30 minutes, the reaction solution was poured into water, and then extracted with toluene.
The extract was washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. Toluene was distilled off under reduced pressure to obtain 13.0 g of oily ethyl 3-methyl-3-(4-isobutylphenyl)-glycidate. yield
99.2% (theoretical value). Elemental analysis (as C 16 H 22 O 3 ) C H actual value: 73.40% 8.35% Calculated value: 73.25% 8.45% Example 3 3-Methyl-3-(4-tertiary butylphenyl)-ethyl glycidate 4- Tertiary butylacetophenone 8.8g (0.05
12.3 g (0.1 mol) of ethyl chloroacetate, 90 ml of xylene, 7 ml of tetramethylene sulfoxide and 6.8 g (0.1 mol) of sodium ethylate powder
From 3-methyl-
13.1 g of ethyl 3-(4-tert-butylphenyl)-glycidate was obtained. The yield was quantitative. Elemental analysis (as C 16 H 22 O 3 ) C H actual value: 73.19% 8.50% Calculated value: 73.25% 8.45% Example 4 Methyl 3-methyl-3-(4-nitrophenyl)-glycidate 4-nitroacetophene 10 g (0.185 mol) of sodium methylate powder was added over 1 hour at -2 to 1°C in a stirred mixture of 13.9 g (0.0843 mol) of sodium chloride, 20 g (0.185 mol) of methyl chloroacetate, 15 ml of dimethyl sulfoxide and 150 ml of benzene. Added gradually. After the addition was complete, the mixture was stirred for 30 minutes at 0-3°C and water and ethyl acetate were added. The organic layer was separated, washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. The organic solvent was distilled off under reduced pressure to obtain 18.2 g (91.2%) of oily methyl 3-methyl-3-(4-nitrophenyl)-glycidate. Elemental analysis (as C 11 H 11 NO 5 ) C H N actual value: 55.80% 4.56% 6.01% calculated value: 55.69% 4.67% 5.91% Example 5 Methyl 3-methyl-3-(3-nitrophenyl)-glycidate 3-nitroacetophenone 7.0g, sodium methylate powder 5.0g, methyl chloroacetate 10.0g
g, benzene 95 ml and dimethylformamide 5
ml, perform the same operation as in Example 4 to obtain an oily 3-
9.5 g of methyl-3-(3-nitrophenyl)-glycidate was obtained. Yield 94.5% (theoretical value). Elemental analysis (as C 11 H 11 NO 5 ) C H N actual value: 55.56% 4.54% 5.80% calculated value: 55.59% 4.67% 5.91% Example 6 Methyl 3-methyl-3-(2-nitrophenyl)-glycidate 2-nitroacetophenone 5.0g, sodium methylate powder 3.6g, methyl chloroacetate 7.2g,
100ml benzene and 5ml dimethyl sulfoxide
The same operation as in Example 4 was performed to obtain 6.7 g of oily methyl 3-methyl-3-(2-nitrophenyl)-glycidate. Yield 93.3% (theoretical value). Elemental analysis (as C 11 H 11 NO 5 ) C H N actual value: 55.51% 4.60% 6.02% calculated value: 55.69% 4.67% 5.91% Example 7 3-Methyl-3-(4-cyclohexylphenyl)-glyside Methyl acid 4-cyclohexylacetophenone 10.1g, methyl chloroacetate 10.9g, dimethyl sulfoxide 10
ml and in a stirred mixture of 100 ml of toluene.
At 1° C., 5.4 g of sodium methylate powder was gradually added over a period of 1 hour. 30 at 0-3℃ after addition
Stir for a minute and pour into water. Perform toluene extraction, wash the extract sequentially with water and saturated saline,
It was then dried with anhydrous sodium sulfate. Toluene was distilled off under reduced pressure to obtain oily 3-methyl-3-(4
-cyclohexylphenyl)-methyl glycidate
13.1g was obtained. Yield 95.5% (theoretical value). Elemental analysis (as C 17 H 22 O 3 ) C H actual value: 74.26% 7.99% Calculated value: 74.42% 8.08% Example 8 Methyl 3-methyl-3-(4'-fluoro-4-biphenylyl)-glycidate 4'-Fluoro-4-acetylbiphenyl 21.4
10.8 g of sodium methylate powder was gradually added over 1 hour at -2 to 2° C. to a stirred mixture of 21.7 g of methyl chloroacetate, 200 ml of benzene and 20 ml of dimethyl sulfoxide. After addition -1~
Stir for 30 minutes at 2°C and then pour into water. Benzene extraction was performed, and the extract was washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. Benzene is distilled off under reduced pressure to obtain powdered 3-methyl-3.
27.1 g of methyl -(4'-fluoro-4-biphenylyl)-glycidate was obtained. Yield 94.6% (theoretical value). Melting point 68.6-70.2℃. Elemental analysis (as C 17 H 15 FO 3 ) C H actual value: 71.16% 5.11% Calculated value: 71.32% 5.28% Example 9 Methyl 3-methyl-3-(2-fluoro-4-biphenylyl)-glycidate 2 -Fluoro-4-acetylbiphenyl10.7
g, 10.8 g of methyl chloroacetate, 5.4 g of sodium methylate powder, 10 ml of dimethyl sulfoxide and 100 ml of benzene to obtain 3-methyl-3-(2-fluoro-4-biphenylyl)-glycidic acid. 13.6 g of methyl was obtained. Yield 94.8g (theoretical value). Elemental analysis (as C 17 H 15 FO 3 ) C H actual value: 71.40% 5.41% Calculated value: 71.32% 5.28% Example 10 Methyl 3-methyl-3-(4-biphenylyl)-glycidate 4-acetylbiphenyl 19.6g, methyl chloroacetate 21.7g, sodium methylate powder 10.8g,
20ml dimethyl sulfoxide and 200ml benzene
Then, the same operation as in Example 8 was performed to obtain powdered 3-
25.8 g of methyl-3-(4-biphenylyl)-glycidate was obtained. Yield 96.1% (theoretical value). Melting point 74.7-77.0°C Elemental analysis (as C 17 H 16 O 3 ) C H actual value: 75.95% 5.89% Calculated value: 76.10% 6.01% Example 11 3-Methyl-3-(4-methoxyphenyl)-
Methyl glycidate -2° to 2% in a stirred mixture of 7.5 g of 4-methoxyacetophenone, 16.3 g of methyl chloroacetate, 16 g of tetramethylene sulfone, and 100 ml of benzene.
8.1 g of sodium methylate powder was slowly added over a period of 1 hour. -2° to 0°C after addition
Stir for 30 minutes and then pour into water. Benzene extraction was performed, and the extract was washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. Benzene was distilled off under reduced pressure to obtain oily 3-methyl-3-(4-
10.4 g of methyl (methoxyphenyl)-glycidate was obtained. Yield 93.7% (theoretical value). Elemental analysis (as C 12 H 14 O 4 ) C H actual value: 64.69% 6.26% Calculated value: 64.85% 6.35% Example 12 3-Methyl-3-(3-phenoxyphenyl)
-Methyl glycidate 3-phenoxyacetophenone 21.2g, methyl chloroacetate 32.6g, sodium methylate powder
Oily 3-methyl-3-(3-phenoxyphenyl) was obtained by carrying out the same operation as in Example 11 from 16.2 g, dimethyl sulfoxide 20 ml and benzene 200 ml.
-27.0g of methyl glycidate was obtained. Yield 95.2%
(Theoretical value). Elemental analysis (as C 17 H 16 O 4 ) C H actual value: 71.71% 5.80% Calculated value: 71.82% 5.67% Example 13 3-Methyl-3-(4-isobutylphenyl)
-Methyl glycidate In a stirred mixture of 17.6 g of 4-isobutylacetophenone, 21.7 g of methyl chloroacetate, 10 ml of dimethyl sulfoxide and 100 ml of xylene at -2 to 2°C
Then, 10.8 g of sodium methylate powder was gradually added over a period of 1 hour. After the addition was completed, the mixture was stirred at -2 to 2°C for 30 minutes, and the reaction solution was poured into water. Extraction was performed with xylene, and the extract was washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. Xylene was distilled off under reduced pressure to obtain oily 3-methyl-3-(4-
isobutylphenyl)-methyl glycidate 23.9g
I got it. Yield 96.2% (theoretical value). Elemental analysis (as C 15 H 20 O 3 ) C H actual value: 72.41% 8.01% Calculated value: 72.55% 8.12%

Claims (1)

【特許請求の範囲】 1 一般式() Ar―COCH3 () (式中Arは反応に不活性な置換基で置換され
たアリール基を示す)で表わされるアリールメチ
ルケトンをナトリウムアルコラート粉末の存在下
に、実質的に無水状態下で、液体容量で少くとも
3%の双極性非プロトン性の有機溶媒を含有する
非水溶性非プロトン性溶媒混合物中でクロル酢酸
エステルと反応させることからなる、一般式
() (式中Arは反応に不活性な置換基で置換され
たアリール基を示しそしてRは低級アルキル基を
示す)で表わされる3―メチル―3―(置換アリ
ール)―グリシド酸エステルの改良された製造
法。
[Claims] 1 Aryl methyl ketone represented by the general formula () Ar-COCH 3 () (in the formula, Ar represents an aryl group substituted with a substituent inert to the reaction) in the presence of sodium alcoholate powder under substantially anhydrous conditions with a chloroacetic ester in a water-insoluble aprotic solvent mixture containing at least 3% by liquid volume of a dipolar aprotic organic solvent; General formula () (In the formula, Ar represents an aryl group substituted with a substituent inert to the reaction, and R represents a lower alkyl group.) Manufacturing method.
JP5963779A 1979-05-17 1979-05-17 Improved method of preparation of 3-methyl-3-(substituted phenyl)-glycidic ester Granted JPS55153777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5963779A JPS55153777A (en) 1979-05-17 1979-05-17 Improved method of preparation of 3-methyl-3-(substituted phenyl)-glycidic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5963779A JPS55153777A (en) 1979-05-17 1979-05-17 Improved method of preparation of 3-methyl-3-(substituted phenyl)-glycidic ester

Publications (2)

Publication Number Publication Date
JPS55153777A JPS55153777A (en) 1980-11-29
JPS6220986B2 true JPS6220986B2 (en) 1987-05-11

Family

ID=13118933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5963779A Granted JPS55153777A (en) 1979-05-17 1979-05-17 Improved method of preparation of 3-methyl-3-(substituted phenyl)-glycidic ester

Country Status (1)

Country Link
JP (1) JPS55153777A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499294A (en) * 1983-01-21 1985-02-12 Mcneilab, Inc. Process for production of methyl 2-tetradecylgycidate
JPS63264473A (en) * 1988-03-22 1988-11-01 Nisshin Flour Milling Co Ltd Production of glycidic acid

Also Published As

Publication number Publication date
JPS55153777A (en) 1980-11-29

Similar Documents

Publication Publication Date Title
JPH10279506A (en) Production of bishydroxymethyl compound
KR101158132B1 (en) Manufacture of vitamin b6
JP4805941B2 (en) Process for producing 1,4-dialkyl-2,3-diol-1,4-butanedione
JP3337311B2 (en) Novel oxo-titanium complex, method for producing the same, and method for producing β-hydroxyketone or α-hydroxycarboxylic acid ester using the complex
JP2009512630A (en) Preparation method of epoxy compound and aldehyde
JPS6220986B2 (en)
EP0153701B1 (en) Process for the preparation of optically active alpha-arylalkanoic acids
JP2000169425A (en) Production of 2-alkyl-3-hydroxybenzoic acid
JP2001252570A (en) Chiral rare earth metallic catalyst and asymmetric aldol reaction process
JP3276707B2 (en) Method for producing optically active β-hydroxyketone
JP3537708B2 (en) Asymmetric aldol reaction method
JP3847653B2 (en) Chiral zirconium catalyst and anti-selective asymmetric aldol reaction method
Youn et al. Highly diastereoselective additions of methoxyallene and acetylenes to chiral α-keto amidesElectronic supplementary information (ESI) available: synthesis and spectroscopic data for 4b, 5g, 6b and 7b. See http://www. rsc. org/suppdata/cc/b1/b100355k
WO1996029295A1 (en) Process for preparing asymmetric compound by using metal complex
JP4639368B2 (en) Process for producing optically active β-hydroxycarbonyl compound
US6780812B2 (en) Chiral lead catalyst and method of asymmetric aldol reaction
JPH05286902A (en) Production of alpha-chloro-beta-ketoester derivative
JP4005168B2 (en) Process for producing optically active 2-aryloxypropionic acid
GB2088354A (en) Preparation of a-pivaloyl acetic esters
JP2710837B2 (en) Method for producing optically active β-hydroxythioester
JPH0723356B2 (en) Process for producing 4,4-disulfonylbutanoic acid esters
EP1756029B1 (en) Novel compounds, the preparation and the use thereof for a regiospesific synthesis of perfluor(alkyl) group heterocycles
CN116947768A (en) Enantiomerically pure planar chiral dibenzodiazo-suberone compound, and preparation method and application thereof
JPH0315616B2 (en)
KR20050116388A (en) Synthesis of 2-chloromethyl-6-methylbenzoic acid esters