JPS62209840A - Semiconductor device and manufacture of the same - Google Patents

Semiconductor device and manufacture of the same

Info

Publication number
JPS62209840A
JPS62209840A JP5212886A JP5212886A JPS62209840A JP S62209840 A JPS62209840 A JP S62209840A JP 5212886 A JP5212886 A JP 5212886A JP 5212886 A JP5212886 A JP 5212886A JP S62209840 A JPS62209840 A JP S62209840A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
element isolation
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5212886A
Other languages
Japanese (ja)
Inventor
Akihiro Hashimoto
明弘 橋本
Takeshi Kamijo
健 上條
Masao Kobayashi
正男 小林
Nozomi Watanabe
望 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5212886A priority Critical patent/JPS62209840A/en
Publication of JPS62209840A publication Critical patent/JPS62209840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form far better element isolation layers than the element isolation layers made of polyimide and obtain semiconductor elements with high reliability by a method wherein the element isolation layers are made of the material practically same as the material of the semiconductor elements. CONSTITUTION:A plurality of semiconductor elements 21 and element isolation layers 29 which are provided between the semiconductor elements 21 and isolate the semiconductor elements 21 electrically and optically are provided on a same foundation 11. The element isolation layer 29 is composed of polycrystalline layers, i.e. a P-type AlGaAs polycrystalline layer 31 and an N-type AlGaAs polycrystalline layer 33. Therefore, the wafer structure is such that a plurality of light emitting elements are provided on the foundation 11 and polycrystalline layers are provided between the light emitting elements. The resistance values of the polycrystalline layers 31 and 33 are much higher than those of the semiconductor element forming layers 21. The heat resistant properties of the polycrystalline layers 31 and 33 are much better than those of resin such as polyimide. As the element isolation layer 29 is made of the same material as that of the semiconductor element isolating layer 21, various properties such as thermal expansion of the semiconductor element and that of the element isolation layer are practically the same.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、下地上に複数の半導体素子と、これら半導
体素子を電気的・光学的に個々に分離するための素子分
離層とを具えた半導体装置及びその製造方法に関するも
のである。
[Detailed Description of the Invention] (Industrial Application Field) This invention comprises a plurality of semiconductor elements on a substrate and an element isolation layer for electrically and optically separating these semiconductor elements individually. The present invention relates to a semiconductor device and a method for manufacturing the same.

(従来の技術) 下地上に複数の半導体素子と、素子分離層とを具えた半
導体装置の一例として集積発光素子がある。以下、この
集積発光素子を例にとって、従来の半導体装置及びその
製造方法につき説明する。
(Prior Art) An integrated light emitting device is an example of a semiconductor device that includes a plurality of semiconductor devices and a device isolation layer on a base. Hereinafter, a conventional semiconductor device and its manufacturing method will be explained using this integrated light emitting device as an example.

集積発光素子は下地上に半導体素子としての発光素子を
複数個具え、又、これらの発光素子間にこれら発光素子
を電気的・光学的に分離するための素子分離層とを具え
るものであり、例えば電子式プリンタの感光体放電用光
源或いはファックスの読み取り用光源等に用いられてい
る。
An integrated light emitting device includes a plurality of light emitting devices as semiconductor devices on a base, and an element isolation layer between the light emitting devices to electrically and optically isolate the light emitting devices. It is used, for example, as a light source for discharging a photoreceptor in an electronic printer or as a light source for reading a fax machine.

以下、従来の集積発光素子について、特にその婁ヱ/+
恥鎗餡し !、f1寥工島締届消制:牛す社シ「社目し
て、簡単に説明する。
Below, we will discuss the conventional integrated light emitting device, especially its details.
Embarrassing! , f1 Kojima tightening notification system: Ushisusha ``As a company, I will briefly explain.

従来の集積発光素子の一例としては、下地の所定の複数
領域に不純物を選択的に熱拡散させて得たp−n接合領
域に発光素子が形成されていて、さらに、この発光素子
周囲の、不純物を拡散させなかった領域を素子分離層と
した構造のものがあった。この場合用いられる下地を気
相成長法によって得たエピタキシャル成長層とすること
が多い。
As an example of a conventional integrated light emitting device, a light emitting device is formed in a pn junction region obtained by selectively thermally diffusing impurities into a plurality of predetermined regions of a base, and further, There was a structure in which a region in which impurities were not diffused was used as an element isolation layer. In this case, the base used is often an epitaxially grown layer obtained by vapor phase growth.

又、他の集積発光素子としては、液相成長法によって例
えば下地上に2層及びn層を順次に成長させて得た積層
体にエツチング溝を形成し、この積層体の、前述の溝に
よって区切られた複数の領域に発光素子がそれぞれ形成
されていて、さらに、これら素子間の溝にポリイミド系
の樹脂を埋込み素子分離層とした構造のものがあった。
In addition, as another integrated light emitting element, etching grooves are formed in a laminate obtained by sequentially growing two layers and an n layer on a base by liquid phase growth, and the etching grooves are formed in the laminate by the above-mentioned grooves. There is a structure in which light emitting elements are formed in each of a plurality of divided regions, and a polyimide resin is buried in the grooves between these elements to serve as an element isolation layer.

又、有機金属気相成長法(MOCVD法)等を用いて製
造された集積発光素子もあった。このような素子は、先
ず下地上に窒化膜等から成るマスク層を設け、下地の、
このマスク層によって覆われていない領域に発光素子形
成用半導体層を選択的に成長させこれを用い発光素子を
形成する。さらに、マスク層の設けられた領域にポリイ
ミド樹脂を埋込むことによって素子分離層とした構造の
ものであった。
There were also integrated light emitting devices manufactured using metal organic chemical vapor deposition (MOCVD) or the like. In order to manufacture such an element, first a mask layer made of a nitride film or the like is provided on the base, and then the base layer is exposed.
A light emitting element forming semiconductor layer is selectively grown in the region not covered by this mask layer and is used to form a light emitting element. Furthermore, it had a structure in which an element isolation layer was formed by embedding polyimide resin in the region where the mask layer was provided.

(発明が解決しようとする問題点) しかしながら、従来のように素子分離層をポリイミド系
の樹脂を以って構成した場合で、かつ、この素子分離層
を発熱を伴う集積発光素子等の素子分離層として用いた
場合、発光素子からの熱によってこのポリイミドが悪影
響を受け、これがため、従来の素子分離層は半導体素子
間を電気的・光学的に分離する目的に対して充分な信頼
性が得られないという問題点があった。
(Problems to be Solved by the Invention) However, in the case where the element isolation layer is made of polyimide resin as in the past, and this element isolation layer is used to separate elements such as integrated light emitting elements that generate heat, When used as a layer, this polyimide is adversely affected by the heat from the light emitting device, which makes conventional device isolation layers insufficiently reliable for the purpose of electrically and optically isolating semiconductor devices. The problem was that it could not be done.

又、ポリイミドを発熱を伴わないような半導体装置用の
素子分離層として用いる場合でも、例えば半導体装置を
形成した後、素子分離のための溝にポリイミドを埋込ん
だり、発光素子の周囲にポリイミドを設けたりというよ
うな、別途に複雑な工程が必要であった。これがため、
半導体装置の製造コストを上げてしまうという問題点が
あった。
Furthermore, even when polyimide is used as an element isolation layer for a semiconductor device that does not generate heat, for example, after the semiconductor device is formed, polyimide is buried in a trench for element isolation, or polyimide is placed around a light emitting element. A separate and complicated process was required. Because of this,
There is a problem in that the manufacturing cost of the semiconductor device increases.

又、下地の、不純物を拡散させた領域に発光素子を形成
し不純物拡散を行わない領域を以って素子分離層を構成
する場合、不純物を拡散させた領域の大きさによって発
光素子の大きさが決定されることになる。しかし、この
拡散領域の面積等を正確に制剥することが難しく、これ
がため、特に、所定の発光面積を有した発光素子を多数
正確に配置しなければならない集積発光素子等の半導体
装置を得ることは非常に難しいという問題点があった。
In addition, when a light emitting element is formed in an underlying region where impurities are diffused and an element isolation layer is formed using a region where impurities are not diffused, the size of the light emitting element depends on the size of the region where impurities are diffused. will be determined. However, it is difficult to control the area of this diffusion region accurately, and this makes it particularly difficult to obtain semiconductor devices such as integrated light emitting devices in which a large number of light emitting devices each having a predetermined light emitting area must be precisely arranged. The problem was that it was extremely difficult.

ところで、有機金属気相成長法等を用いて選択成長をお
こなう場合、AJIGaAsについてはAIl、の混晶
比が0.3以上で、かつ、成長槽内の全圧力が10To
 r r以上となると、マスク層として用いた窒化膜等
の上には多結晶のAJZ G aAs層が成長すること
が報告されている。
By the way, when performing selective growth using organometallic vapor phase epitaxy, etc., for AJIGaAs, the mixed crystal ratio of Al is 0.3 or more, and the total pressure in the growth tank is 10To.
It has been reported that when the temperature exceeds r, a polycrystalline AJZ GaAs layer grows on the nitride film used as a mask layer.

この発明の発明者はこのような報告についても廿4 e
t31  ap P 1w  L ’a l起tス九開
聞上九偽旧玉するため種々の実験及び検討を行ったとこ
ろ、結晶成長技術を用いて半導体素子形成のための半導
体層を成長させる工程中において半導体素子の素子分離
層として実用に供する多結晶層を同時に成長させ得るこ
とを見い出した。
The inventor of this invention is also responsible for such reports.
t31 ap P 1w L'a l Origins After conducting various experiments and studies to improve the quality of the original material, we found that during the process of growing a semiconductor layer for forming a semiconductor element using crystal growth technology. We have discovered that it is possible to simultaneously grow a polycrystalline layer that can be used as an isolation layer for semiconductor devices.

従って、この出願の第一発明の目的は、複数の半導体素
子間に信頼性に優れる素子分離層を具える半導体装置を
提供することにある。
Therefore, an object of the first invention of this application is to provide a semiconductor device that includes an element isolation layer with excellent reliability between a plurality of semiconductor elements.

この出願の第二発明の目的は、所望とする形状で正確に
配置形成された複数の半導体素子と、これら素子間に信
頼性に優れる素子分離層とを具えた半導体装置を簡易に
製造する方法を提供することにある。
The object of the second invention of this application is a method for easily manufacturing a semiconductor device comprising a plurality of semiconductor elements accurately arranged and formed in a desired shape and a highly reliable element isolation layer between these elements. Our goal is to provide the following.

(問題点を解決するための手段) この出願の第一発明の目的の達成を図るため、この発明
によれば、同一下地上に設けられた複数の半導体素子と
、これら半導体素子間に設けられ各半導体素子を電気的
・光学的に分離する素子分離層とを具える半導体装置に
おいて、素子分離層を多結晶層を以って構成したことを
特徴とする特この出願の第二発明の目的の達成を図るた
め、この発明によれば、同−下地上に設けられた複数の
半導体素子と、素子分離層とを具える半導体装置を製造
するに当り、その製造工程は 下地上に、複数の窓を有するマスク層を形成すること、
同一の層成長工程において半導体素子形成層の全部又は
一部分を前述した窓から露出した前述した下地の領域の
上側に及び素子分離層用多結晶層を前述したマスク層上
に成長させることとを含むことを特徴とする。
(Means for Solving the Problems) In order to achieve the object of the first invention of this application, according to the present invention, a plurality of semiconductor elements provided on the same substrate and a plurality of semiconductor elements provided between these semiconductor elements are provided. A second object of the present invention is a semiconductor device comprising an element isolation layer that electrically and optically isolates each semiconductor element, wherein the element isolation layer is composed of a polycrystalline layer. In order to achieve the above, according to the present invention, when manufacturing a semiconductor device including a plurality of semiconductor elements provided on the same substrate and an element isolation layer, the manufacturing process includes a plurality of semiconductor devices provided on the substrate. forming a mask layer having windows of;
In the same layer growth step, all or part of the semiconductor element forming layer is grown on the above-mentioned underlying region exposed through the above-mentioned window, and a polycrystalline layer for an element isolation layer is grown on the above-mentioned mask layer. It is characterized by

つまり、この発明の半導体装置の製造方法は、マスク層
を形成した後に行われる半導体素子形成用半導体層の成
長工程中の、この半導体素子の構造に応じた適切な層成
長工程において下地の、マスク層の窓から露出した領域
の上側に半導体素子形成層及びマスク層上に素子間分離
用の多結晶層を同時に選択的に成長させる工程を含んだ
ものである。
In other words, in the method for manufacturing a semiconductor device of the present invention, during the growth process of a semiconductor layer for forming a semiconductor element, which is performed after forming a mask layer, a layer growth process suitable for the structure of the semiconductor element is performed. This method includes the step of simultaneously and selectively growing a polycrystalline layer for element isolation on the semiconductor element forming layer and the mask layer above the region exposed through the window of the layer.

(作用) この発明の半導体装置は多結晶層から成る素子分離層を
具えている。この多結晶層の抵抗値は半導体素子形成層
のそれと比較して非常に高抵抗である。又、この多結晶
層の耐熱性はポリイミド等の樹脂のそれと比較した場合
非常に優れている。
(Function) The semiconductor device of the present invention includes an element isolation layer made of a polycrystalline layer. The resistance value of this polycrystalline layer is much higher than that of the semiconductor element forming layer. Furthermore, the heat resistance of this polycrystalline layer is extremely superior when compared to that of resins such as polyimide.

さらに、この多結晶層は半導体素子形成層と同様な材質
から成っているので、半導体素子及び素子分離層の熱膨
張率等の諸性質が実質的に同一になる。従って、多結晶
層を以って構成した素子分離層は信頼性に優れたものと
なる。
Further, since this polycrystalline layer is made of the same material as the semiconductor element forming layer, the semiconductor element and the element isolation layer have substantially the same properties such as thermal expansion coefficient. Therefore, the element isolation layer made of polycrystalline layers has excellent reliability.

又、この発明の半導体装置の製造方法によれば下地の、
マスク層の窓から露出した領域の上側に半導体素子形成
層が成長する。従って、マスク層の窓形状及び窓の配置
によって半導体素子の形状及び配置を特定することが出
来る。
Further, according to the method for manufacturing a semiconductor device of the present invention, the base layer,
A semiconductor element forming layer is grown above the region exposed through the window of the mask layer. Therefore, the shape and arrangement of the semiconductor element can be specified by the window shape and arrangement of the windows in the mask layer.

又、下地の、マスク層の窓から露出した領域の上側に半
導体素子形成層を及びマスク層上に多結晶層を同一の層
成長工程で選択的に成長させることが出来る。従って、
各半導体素子が電気的・光学的に確実に分離される。
Furthermore, it is possible to selectively grow a semiconductor element forming layer above the underlying region exposed through the window of the mask layer and a polycrystalline layer on the mask layer in the same layer growth process. Therefore,
Each semiconductor element is reliably isolated electrically and optically.

(実施例) 以下、図面を参照してこの発明の半導体装置及びその製
造方法の一例につき説明する。尚、これらの図はこの発
明が理解できる程度に概略的に示しであるにすぎず、各
構成成分の寸法、形状及び配置関係は図示例に限定され
るものではない。
(Example) Hereinafter, an example of a semiconductor device of the present invention and a method for manufacturing the same will be described with reference to the drawings. It should be noted that these drawings are only schematic representations to the extent that the present invention can be understood, and the dimensions, shapes, and arrangement relationships of each component are not limited to the illustrated examples.

又、以下の実施例を半導体装置として例えば集積発光素
子とした例で説明する。
Further, the following embodiments will be explained using an example in which a semiconductor device is, for example, an integrated light emitting device.

又、安価で強度も優れ熱伝導率が大きくかつ大型なもの
が入手出来るSi基板上にGaAs層を結晶成長させて
、例えばGaAs系の光デバイスと、Si系の電子デバ
イスとを集積することも可能となってきている(例えば
文献:アプライドフィジイクス レターズ(Appli
ed PhysicsLetters ) 、44 [
10] (1984) P、967〜969 、或いは
日刊工業新聞昭和60年9月25日「高性能の電力FE
TJ)。従って、この実施例を、放熱効果の優れた集積
発光素子を得ることが出来るよう、下地の構成成分とし
てSi基板を用いた例で説明す先ず、この発明に係る集
積発光素子の構造につき説明する。
It is also possible to integrate GaAs-based optical devices and Si-based electronic devices by crystal-growing a GaAs layer on a Si substrate, which is inexpensive, has excellent strength, has high thermal conductivity, and is available in large sizes. (For example, literature: Applied Physics Letters (Appli
ed Physics Letters), 44 [
10] (1984) P, 967-969, or Nikkan Kogyo Shimbun September 25, 1985, “High-performance electric power FE
TJ). Therefore, this embodiment will be explained using an example in which a Si substrate is used as the base component so that an integrated light emitting device with excellent heat dissipation effect can be obtained. First, the structure of the integrated light emitting device according to the present invention will be explained. .

第1図はこの発明に係る集積発光素子の要部を示す断面
図であり、図面が複雑化するのを回避するため断面を示
すハツチングを省略して示したものである。
FIG. 1 is a sectional view showing a main part of an integrated light emitting device according to the present invention, and hatching indicating the cross section is omitted to avoid complicating the drawing.

第1図において、11は下地を示しこの実施例の場合下
地11をn型のSi(シリコン)基板13と、このn型
シリコン基板13の上に成長させたn型GaAsM15
とを以って構成する。下地をこのような構成とした場合
、GaAs基板より熱伝導率が大きなSi基板によって
、下地上に形成する発光素子からの熱を効率的に放熱す
ることが出来る。
In FIG. 1, reference numeral 11 indicates a base, and in this embodiment, the base 11 is an n-type Si (silicon) substrate 13 and an n-type GaAsM 15 grown on this n-type silicon substrate 13.
It consists of: When the base has such a configuration, the heat from the light emitting elements formed on the base can be efficiently radiated by the Si substrate, which has a higher thermal conductivity than the GaAs substrate.

又、この下地のn型GaAs層15の上側面には、所望
とする複数の発光素子形成位置に窓17をそれぞれ有し
たマスク層19を具えている。又、下地の、複数の窓1
7によって露出された領域の上側には発光素子となる半
導体素子形成層21をそれぞ柄日÷プ1.Xイ +ハ電
鯰ふ1づI→−ハ平1言l舎婁工必成層21を下地側か
ら順に設けたn型GaAs単結晶層23と、n型AlG
aAs単結晶層25と、p型Aj2 G a A s単
結晶層27とを以って構成しである。
Further, on the upper side surface of the underlying n-type GaAs layer 15, a mask layer 19 is provided, each having a window 17 at a plurality of desired light emitting element forming positions. Also, multiple windows 1 in the base
On the upper side of the area exposed by 7, a semiconductor element forming layer 21 which will become a light emitting element is placed at a thickness of 1. An n-type GaAs single-crystal layer 23 and an n-type AlG
It is composed of an aAs single crystal layer 25 and a p-type Aj2 Ga As single crystal layer 27.

又、マスク層19の上側には各発光素子21をそれぞれ
電気的・光学的に分離するための素子分離層として多結
晶層29を具えていて、この実施例ではこの多結晶層2
9をマスク層19側から順に設けたp型Aj2 G a
 A s多結晶層31と、n型AJ2 G a A s
多結晶層33とを以って構成しである。
Further, a polycrystalline layer 29 is provided above the mask layer 19 as an element isolation layer for electrically and optically isolating each light emitting element 21, and in this embodiment, this polycrystalline layer 2
9 are provided in order from the mask layer 19 side.
As polycrystalline layer 31 and n-type AJ2 Ga As
It is composed of a polycrystalline layer 33.

従って、下地11上に複数の発光素子と、これら発光素
子間に多結晶層とを具えたウェハ構造となる。
Therefore, a wafer structure is obtained that includes a plurality of light emitting elements on the base 11 and a polycrystalline layer between these light emitting elements.

尚、このウェハ構造において、各発光素子のリーク電流
・リーク光を防止して素子の特性を良好とするため、n
型AjlG a A s単結晶層25及びp型AM G
 a A s単結晶層27の接合面の下地からの位置と
、p型AitG a A s多結晶層31の上側表面の
下地からの位置とを実質的に同位置とするのが好適であ
る。又、ステップカバレージの問題(詳細は後述する)
を軽減するため、p型AlGaAs単結晶層27の上側
表面と、n型入J2GaAs多結晶層33の上側表面と
が実質的に連続した平坦面となるよう構成するのが好適
である。
In addition, in this wafer structure, in order to prevent leakage current and leakage light from each light emitting element and improve the characteristics of the element, n
Type AjlG a As single crystal layer 25 and p type AM G
It is preferable that the position of the bonding surface of the a As single crystal layer 27 from the base is substantially the same as the position of the upper surface of the p-type AitGa As polycrystalline layer 31 from the base. Also, the problem of step coverage (details will be explained later)
In order to reduce this, it is preferable to configure the upper surface of the p-type AlGaAs single crystal layer 27 and the upper surface of the n-type J2GaAs polycrystalline layer 33 to form a substantially continuous flat surface.

又、各発光素子のp型AILGaAs単結晶層27の一
部表面領域と、p型電極(後述する)とを接続するため
の接続窓35を所定位置に複数個有した絶縁膜37を、
上述の連続した平坦面であるp型AfLGaAs単結晶
層27の表面と、n型AfiGaAs多結晶層33の表
面とに亘って具えている。
Further, an insulating film 37 having a plurality of connection windows 35 at predetermined positions for connecting a partial surface region of the p-type AIL GaAs single crystal layer 27 of each light emitting element and a p-type electrode (described later) is provided.
It is provided over the surface of the p-type AfLGaAs single crystal layer 27 and the surface of the n-type AfiGaAs polycrystalline layer 33, which are the above-mentioned continuous flat surfaces.

さらに、この絶縁膜37上にp型電極39を、又、シリ
コン基板13の下側面にn型電極41を具えて、この集
積発光素子を構成する。
Further, a p-type electrode 39 is provided on the insulating film 37, and an n-type electrode 41 is provided on the lower surface of the silicon substrate 13 to constitute this integrated light emitting device.

次に、第2図(A)〜(E)を参照してこの発明に係る
集積発光素子の製造方法の一例につき説明する。尚、こ
れらの図において第1図と同一の構成成分については同
一の符号を付して示しである。
Next, an example of a method for manufacturing an integrated light emitting device according to the present invention will be described with reference to FIGS. 2(A) to 2(E). In these figures, the same components as in FIG. 1 are designated by the same reference numerals.

先ず、有機金属気相成長法(MOCVD法)によってn
型St基板13上にエピタキシャルn型GaAs層15
を数μmの層厚に形成する。次に、好適な方法によって
このGaAs層15上に窒化膜或いは酸化膜を例えば2
000人の厚さに成膜した後、フォトリソグラフィー及
びエツチング技術によってこの膜の複数の発光素子形成
予定領域に窓17をそれぞれ形成して第2図(A)に示
すようなウェハ構造を得る。尚、この窓17によ、つて
下地11の一部領域が露出されると共に、残存した膜の
部分によってマスク層19を形成することが出来る。
First, by metal organic chemical vapor deposition (MOCVD), n
Epitaxial n-type GaAs layer 15 on type St substrate 13
is formed to a layer thickness of several μm. Next, a nitride film or an oxide film is formed on the GaAs layer 15 by a suitable method.
After forming a film to a thickness of 1,000 mm, windows 17 are formed in each of the regions where a plurality of light emitting elements are to be formed using photolithography and etching techniques to obtain a wafer structure as shown in FIG. 2(A). Note that through this window 17, a part of the base 11 is exposed, and a mask layer 19 can be formed using the remaining film portion.

次に、MOCVD法によってマスク層19を含む下地1
1上にGaAs単結晶層の成長を行う。この成長工程に
おいてGaAs層はマスク層19上には実質的に成長し
ない。従って、下地11の、窓17によって露出された
領域上のみに選択的に所望の厚みにGaAs単結晶層2
3を成長させることが出来る。この実施例の場合、Ga
As単結晶層23の厚みを1μm程度とした。
Next, a base layer 1 including a mask layer 19 is formed by MOCVD.
A GaAs single crystal layer is grown on 1. In this growth step, the GaAs layer does not substantially grow on the mask layer 19. Therefore, the GaAs single crystal layer 2 is selectively formed to a desired thickness only on the region of the base 11 exposed by the window 17.
3 can be grown. In this example, Ga
The thickness of the As single crystal layer 23 was approximately 1 μm.

続いて、A2の混晶比を0.4程度としてMOrυn 
Sr±t″#レーでi刑AD(”、口Δq(1)鈷具局
のm長を行う。このような混晶率での成長工程において
、Ai G a A s層はマスク層19上には実質的
に成長しない。従って、GaAs単結晶層23上のみに
n型AJ! G a A s単結晶層25を選択的に成
長させることが出来る(第2図(B))。尚、この実施
例の場合このn型AItG a A s層25の成長を
成長槽の全圧力を0.1〜ITorrとし、原料のI1
1/V比をモル比で10〜30とした結晶成長条件で行
った。又、このn型AI1.G a A s層25の層
厚が2μmとなるまで成長させた。
Next, the mixed crystal ratio of A2 was set to about 0.4, and MOrυn
The m length of the hook AD('', mouth Δq(1)) is performed with Sr±t''#ray.In the growth process with such a mixed crystal ratio, the AiGaAs layer is formed on the mask layer 19. Therefore, the n-type AJ!GaAs single crystal layer 25 can be selectively grown only on the GaAs single crystal layer 23 (FIG. 2(B)). In this embodiment, the n-type AItGaAs layer 25 is grown at a total pressure of 0.1 to ITorr in the growth tank, and at a temperature of I1 of the raw material.
The crystal growth was performed under conditions where the 1/V ratio was set to 10 to 30 in terms of molar ratio. Moreover, this n-type AI1. The GaAs layer 25 was grown to a thickness of 2 μm.

続いて、 A4の混晶比を0.2〜0.3程度としてM
OCVD法によってn型AILG a A s層の成長
を行う。このような混晶率での成長工程において下地1
1の、窓17から露出した領域の上側に対応するn型へ
ILG a A s単結晶層25上にはp型AMGaA
s層は単結晶として成長し、一方、マスク層19上には
p型AILGaAs層は多結晶として成長する。又、n
型AJ!Ga−As単結晶層25と、p型+II G 
a A s単結晶層27とで発光素子の発光に寄与する
p−n接合を構成する。このように同一の層成長工程に
おいて発光素子形成層の一部であるp型AItG a 
A s単結晶層27を下地11の、窓17から露出した
領域の上側に成長させることが出来ると共に、素子分離
層としてのp型lGaAs多結晶層31をマスク層上に
それぞれ選択的に成長させることが出来る。
Next, the mixed crystal ratio of A4 was set to about 0.2 to 0.3, and M
An n-type AILG a As layer is grown by OCVD. In the growth process with such a mixed crystal ratio, the base 1
1, p-type AMGaA is formed on the n-type ILG a As single crystal layer 25 corresponding to the upper side of the region exposed from the window 17.
The s-layer grows as a single crystal, while the p-type AILGaAs layer grows as a polycrystal on the mask layer 19. Also, n
Type AJ! Ga-As single crystal layer 25 and p-type +II G
The a As single crystal layer 27 constitutes a pn junction that contributes to light emission of the light emitting element. In this way, in the same layer growth process, p-type AItGa, which is a part of the light emitting element forming layer,
The As single crystal layer 27 can be grown on the upper side of the region exposed through the window 17 of the base 11, and the p-type lGaAs polycrystalline layer 31 as an element isolation layer can be selectively grown on the mask layer. I can do it.

さらに、この成長工程においてマスク層19上にp型A
iLGaAs多結晶層31が成長する速度の方が、n型
Ajl G a A s単結晶層25上にp型AnGa
As単結晶層27が成長する速度よりも大きい。従って
、この実施例の場合p型A1GaAs多結晶層31の厚
みを3μm程度となるまで成長させると、このP型へI
tG a A s多結晶層31の上側表面と、上述した
p−n接合面との位置が同じ位置となり、従って、第2
図(C)に示すようなウェハ構造を得ることが出来る。
Furthermore, in this growth process, p-type A is formed on the mask layer 19.
The iLGaAs polycrystalline layer 31 grows at a faster rate than the p-type AnGa
This is faster than the growth rate of the As single crystal layer 27. Therefore, in this embodiment, if the p-type A1GaAs polycrystalline layer 31 is grown to a thickness of about 3 μm, the P-type I
The upper surface of the tG a As polycrystalline layer 31 and the above-mentioned p-n junction surface are at the same position, so the second
A wafer structure as shown in Figure (C) can be obtained.

次に、好適な方法によってp型AiLG a A s単
結晶層27上のみに例えば窒化膜からなるマスクパター
ン43を形成する。
Next, a mask pattern 43 made of, for example, a nitride film is formed only on the p-type AiLG a As single crystal layer 27 by a suitable method.

次に、A2の混晶比をP型A4 G a A s層27
の混晶比よりも小さくし成長槽の圧力を1〜10Tor
rとして、MOCVD法によってマスクパターン43を
含むウェハ上にn型AlGaAs層の成長を行う。この
成長工程において、p型ALGaAs層31上にはn型
Af1.G a A s層は多結晶として成長し、一方
、マスクパターン43上には実質的に成長しない。従っ
て、p型JIGaAs多結晶層31上のみにn型AJ2
 G a A s多結晶層33を選択的に成長させるこ
とが出来る。尚、′このn型へIlG a A s多結
晶層33の成長をこの層33の上側表面がp型AfLG
aAs単結晶層27の上側表面と同じ高さとなるまで成
長させることによって、表面が層27と層33とが実質
的に連続した平坦面で構成された第2図(D)に示すよ
うなウェハ構造を得ることが出来る。このような平坦面
を構成しておけば、例えばこれらの層27及び33と、
これら層の上に絶縁膜37を介して形成するp型電極3
9との絶縁を行う際のステップカバレージの問題を軽減
することが出来る。
Next, the mixed crystal ratio of A2 is changed to P type A4 Ga As layer 27
The mixed crystal ratio is made smaller than the mixed crystal ratio of
As step r, an n-type AlGaAs layer is grown on the wafer including the mask pattern 43 by MOCVD. In this growth step, n-type Af1. The G a As layer grows as a polycrystal, while it does not substantially grow on the mask pattern 43 . Therefore, n-type AJ2 is formed only on p-type JIGaAs polycrystalline layer 31.
The GaAs polycrystalline layer 33 can be selectively grown. Note that the growth of this n-type IlGaAs polycrystalline layer 33 is performed when the upper surface of this layer 33 is p-type AfLG.
By growing the aAs single crystal layer 27 to the same height as the upper surface thereof, a wafer as shown in FIG. structure can be obtained. If such a flat surface is configured, for example, these layers 27 and 33,
A p-type electrode 3 formed on these layers with an insulating film 37 interposed therebetween.
The problem of step coverage when performing insulation with 9 can be reduced.

次に、マスクパターン43を除去し、続いて、好適な方
法によってウェハ上に例えば窒化膜を形成する。次に、
各発光素子のp型/l G a A s単結晶層27の
一部を露出するため、この窒化膜に接続窓35を形成す
ると共に、残存した窒化膜の部分で絶縁膜37を構成し
て第2図(E)に示すようなウェハ構造を得る。
Next, the mask pattern 43 is removed, and then, for example, a nitride film is formed on the wafer by a suitable method. next,
In order to expose a part of the p-type/l GaAs single crystal layer 27 of each light emitting element, a connection window 35 is formed in this nitride film, and an insulating film 37 is formed using the remaining nitride film. A wafer structure as shown in FIG. 2(E) is obtained.

次に、例えば蒸着によってこの絶縁膜37上に接続窓3
5を介してp型An G a A s層27と接続され
る例えばZn−Auから成るP型電極39を形成する。
Next, a connection window 3 is formed on this insulating film 37 by, for example, vapor deposition.
A P-type electrode 39 made of, for example, Zn--Au is formed to be connected to the p-type AnGaAs layer 27 via 5.

さらに、Si基板13の下側面に例えばAu−Ge−N
iから成るn型電極41を形成して第1図に示したよう
なこの発明に係る集積発光素子を製造することが出来る
Further, on the lower side of the Si substrate 13, for example, Au-Ge-N
By forming an n-type electrode 41 consisting of i, an integrated light emitting device according to the present invention as shown in FIG. 1 can be manufactured.

尚、上述した実施例をこの発明の範囲内の好ましい特定
の条件の下で説明したが、それは単なる例示にすぎない
ものであり、この発明がこの実施例にのみ限定されるも
のでないこと明らかである。
Although the above-mentioned embodiments have been described under specific preferred conditions within the scope of the present invention, they are merely illustrative, and it is clear that the present invention is not limited only to these embodiments. be.

例えば、上述した実施例は有機金属気相成長法佑づ゛d
番斗口汗亘去(う;÷ 1 ! しh(口日久h\1.
j fp−イ1へスGaAs、八ILG a A sを
用いた半導体装置及びその製造方法につき説明した。し
かし、この発明は選択成長が可能であり、かつ、マスク
層上に高抵抗値を有する多結晶層を成長させることが出
来る結晶成長技術及び結晶材料であれば良い。
For example, the embodiments described above are based on metal-organic vapor phase epitaxy.
Bantoguchi sweat passing away (U; ÷ 1! Shih (mouth Hikyu h\1.
A semiconductor device using 1GaAs and 8ILGaAs and a method for manufacturing the same have been described. However, the present invention may be applied to any crystal growth technique and crystal material that allows selective growth and allows growth of a polycrystalline layer having a high resistance value on a mask layer.

例えば、結晶成長技術としては上述した実施例で用いた
MOCVD法の代わりに分子線エピタキシャル成長法(
MBE法)を用い、成長条件をこのMBE法に適した条
件とした場合も実施例と同様な効果が期待できる。又、
結晶材料としてはInP系、InGaP系、又1nGa
AsP系等が考えられる。
For example, as a crystal growth technique, molecular beam epitaxial growth (
The same effect as in the example can be expected even when using the MBE method and setting the growth conditions to conditions suitable for this MBE method. or,
Crystal materials include InP, InGaP, and 1nGa.
AsP type etc. can be considered.

又、上述した実施例のn型Si基板をp型Si基板とし
各層の導電型を反対導電型とすることも可能ではあるが
、p塑成いはn型の導電型に拘らず、Si基板を用いた
場合はこの基板上に設けられ実施例で示したn型GaA
s層15はこの層にSiが拡散することによってn型と
なる。従って、p型Si基板を用いた場合は例えばp型
電極を設ける位置等を考慮する必要がある。
It is also possible to use the n-type Si substrate in the above-mentioned embodiment as a p-type Si substrate and make the conductivity type of each layer the opposite conductivity type. is used, the n-type GaA shown in the example is provided on this substrate.
The s-layer 15 becomes n-type due to the diffusion of Si into this layer. Therefore, when a p-type Si substrate is used, it is necessary to consider, for example, the position where the p-type electrode is provided.

又、上述した実施例は下地をn型Siと、n型GaAs
層とを以って構成した例につき説明した、しかし、放熱
効果は低減するが、下地をGaAs基板を以って構成し
た場合でもこの発明の効果が期待出来る。この場合、実
施例で用いたn型GaAs層15を設けなくとも半導体
装置の形成は可能である。さらに、導電型を実施例とは
反対の導電型とすることも容易に行える。
Further, in the above-mentioned embodiment, the base is made of n-type Si and n-type GaAs.
Although the explanation has been given on an example in which the base is made of a GaAs substrate, the effects of the present invention can be expected even if the base is made of a GaAs substrate, although the heat dissipation effect is reduced. In this case, it is possible to form a semiconductor device without providing the n-type GaAs layer 15 used in the embodiment. Furthermore, the conductivity type can be easily changed to the opposite conductivity type to that in the embodiment.

又、上述した実施例では半導体素子形成層の一部の層と
、多結晶層とを同一層成長工程で成長させた例で説明し
た。しかし、例えば半導体素子形成層を単一層としこの
層と、多結晶層とを同一の層成長工程で成長させ、然る
後、この半導体形成層に例えばFET等を作製するよう
な応用も考えられる。又、この発明は他の半導体素子例
えば上述したFETは勿論のこと、整流用ダイオード、
若しくはpinフォトダイオード等を多数集積した半導
体装置に応用することも可能である。又、この発明を多
種類の半導体素子を同一の下地上に集積させた半導体装
置に応用しても勿論良い。
Further, in the above-described embodiments, a part of the semiconductor element forming layer and a polycrystalline layer are grown in the same layer growth process. However, it is also possible to consider an application in which, for example, the semiconductor element formation layer is a single layer, this layer and a polycrystalline layer are grown in the same layer growth process, and then, for example, an FET or the like is manufactured in this semiconductor formation layer. . The present invention also applies to other semiconductor devices such as the above-mentioned FET, as well as rectifying diodes,
Alternatively, it is also possible to apply the present invention to a semiconductor device in which a large number of pin photodiodes and the like are integrated. Furthermore, the present invention may of course be applied to a semiconductor device in which many types of semiconductor elements are integrated on the same substrate.

(発明の効果) 上述した説明からも明らかなように、この発明の半導体
装置によれば、素子分離層を半導体素子を構成する材料
と実質的に同一の材質の多結晶層で構成しである。従っ
て、この発明に係る素子分離層の耐熱性等の特性が従来
のポリイミドを用いた素子分離層と比較した場合非常に
優れたものとなる。これがため、信頼性に優れた半導体
素子を得ることが出来る。
(Effects of the Invention) As is clear from the above description, according to the semiconductor device of the present invention, the element isolation layer is composed of a polycrystalline layer made of substantially the same material as the material constituting the semiconductor element. . Therefore, the properties such as heat resistance of the device isolation layer according to the present invention are extremely superior when compared with conventional device isolation layers using polyimide. Therefore, a semiconductor element with excellent reliability can be obtained.

又、この発明の半導体装置の製造方法によれば、マスク
層の窓形状及び窓の配置によって半導体素子の形状及び
配置を特定することが出来る。
Further, according to the method of manufacturing a semiconductor device of the present invention, the shape and arrangement of the semiconductor element can be specified by the window shape and arrangement of the windows in the mask layer.

又、従来から行われているフォトエツチング技術によっ
てこのマスク層のパターニングを精度良く行うことが出
来る。
Moreover, the patterning of this mask layer can be performed with high precision using a conventional photoetching technique.

さらに、下地の、マスク層の窓から露出した領域の上側
に半導体素子形成層を及びマスク層上に素子分離層とし
ての多結晶層を同一の層成長工程で選択的に成長させる
ことが出来る。
Furthermore, it is possible to selectively grow a semiconductor element forming layer above the underlying region exposed through the window of the mask layer and a polycrystalline layer as an element isolation layer on the mask layer in the same layer growth process.

これがため、所望とする形状で正確に配置形成された複
数の半導体素子と、これら素子間に信頼性に優れる素子
分離層とを具えた半導体装置を簡易に製造する方法を提
供することが出来る。
Therefore, it is possible to provide a method for easily manufacturing a semiconductor device including a plurality of semiconductor elements accurately arranged and formed in a desired shape and a highly reliable element isolation layer between these elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体装置の一例である集積発光素
子の要部を示す断面図、 第2図(A)〜(E)はこの発明の半導体装置の製造方
法を説明するため、半導体装置を集積発光素子とした場
合の製造工程図である。 11−・・下地、      13−n型Si基板15
−−−n型GaAs層、 17−・・窓19・・・マス
ク層 21−・・半導体素子形成層(発光素子)23・・・n
型GaAs単結晶層 25−−−n型Aj2GaAs単結晶層27−p型AI
LG a A s単結晶層29−・・素子分離層 31−p型AILG a A s多結晶層33−−−n
型AJ!GaAs多結晶層35−・・接続窓、    
 37−・・絶縁膜39−p型電極、    41−n
型電極43−・・マスクパターン。 特許出願人    沖電気工業株式会社tI:下地  
         3/: P型A孜ね、Asり紹^層
/3:’72型S+:、幕板3371型Ae6LAS9
)mrBfits:’rt型眞As1i  、   3
5:#瀬宝I7: 冬ミ              
    37. 李色縁月莫/’?、77.71t  
        R−P”l電に2I:里導体業テ形へ
層    4/:n型電柚23、n型craAs ’4
’A西厘 25:  ’7L現IAleaAs学秀り謂υ曾27:
 P型AICraハ5単1g5,42qニー!i、5イ
)・□(1)明(l蔦S啄−1)この発明にイ系り算才
1!光t+の宇gN鉾&1図この!@lニイβ算1ろ5
うt索±の製這工、不呈国ホ2図
FIG. 1 is a sectional view showing a main part of an integrated light emitting device which is an example of a semiconductor device of the present invention, and FIGS. It is a manufacturing process diagram when used as an integrated light emitting device. 11--base, 13-n-type Si substrate 15
---N-type GaAs layer, 17-...Window 19...Mask layer 21-...Semiconductor element forming layer (light emitting element) 23...n
Type GaAs single crystal layer 25--n type Aj2GaAs single crystal layer 27-p type AI
LG a As single crystal layer 29 --- element isolation layer 31 - p-type AILG a As polycrystal layer 33 ---n
Type AJ! GaAs polycrystalline layer 35--connection window,
37--Insulating film 39-p-type electrode, 41-n
Type electrode 43--mask pattern. Patent applicant Oki Electric Industry Co., Ltd. tI: Shimoji
3/: P type A Kei, Asri introduction ^ layer/3: '72 type S+:, Curtain plate 3371 type Ae6LAS9
) mrBfits:'rt type Shin As1i, 3
5: #Seho I7: Winter Mi
37. Li color engetsu mo/'? , 77.71t
R-P"l electric ni 2I: Sato conductor industry TE type layer 4/: n-type electric yuzu 23, n-type craAs '4
'A Xilin 25: '7L Current IAleaAs Gakushui 27:
P type AI Cra ha 5 single 1g 5,42q knee! i, 5 i)・□(1) Akira (l Tsuta S 啄-1) I-kei Arisanzai 1 for this invention! Hikari t+'s UgN Hoko & 1 figure this! @lni β calculation 1 ro 5
Figure 2: Craftsmanship of treadmills, country of non-existence

Claims (2)

【特許請求の範囲】[Claims] (1)同一下地上に設けられた複数の半導体素子と、こ
れら半導体素子間に設けられ各半導体素子を分離する素
子分離層とを具える半導体装置において、 素子分離層を多結晶層を以って構成したことを特徴とす
る半導体装置。
(1) In a semiconductor device comprising a plurality of semiconductor elements provided on the same substrate and an element isolation layer provided between these semiconductor elements to isolate each semiconductor element, the element isolation layer is formed using a polycrystalline layer. What is claimed is: 1. A semiconductor device comprising:
(2)同一下地上に設けられた複数の半導体素子と、こ
れら半導体素子間に設けられ各半導体素子を分離する素
子分離層とを具える半導体装置を製造するに当り、 下地上に複数の窓を有するマスク層を形成すること、 同一の層成長工程において半導体素子形成層の全部又は
一部分を前記窓から露出した前記下地の領域の上側に及
び素子分離層用多結晶層を前記マスク層上に成長させる
こと を含むことを特徴とする半導体装置の製造方法。
(2) When manufacturing a semiconductor device including a plurality of semiconductor elements provided on the same substrate and an element isolation layer provided between these semiconductor elements to separate each semiconductor element, a plurality of windows are provided on the substrate. In the same layer growth step, all or part of the semiconductor element formation layer is formed above the region of the base exposed through the window, and a polycrystalline layer for element isolation layer is formed on the mask layer. A method of manufacturing a semiconductor device, the method comprising growing a semiconductor device.
JP5212886A 1986-03-10 1986-03-10 Semiconductor device and manufacture of the same Pending JPS62209840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5212886A JPS62209840A (en) 1986-03-10 1986-03-10 Semiconductor device and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5212886A JPS62209840A (en) 1986-03-10 1986-03-10 Semiconductor device and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS62209840A true JPS62209840A (en) 1987-09-16

Family

ID=12906232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5212886A Pending JPS62209840A (en) 1986-03-10 1986-03-10 Semiconductor device and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS62209840A (en)

Similar Documents

Publication Publication Date Title
US6492193B1 (en) Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlayer structure
JP2954743B2 (en) Method for manufacturing semiconductor light emitting device
JP5642970B2 (en) Method and associated apparatus for depositing epitaxial thermoelectric films with reduced crack and / or surface defect density
JPH10321911A (en) Method for manufacturing epitaxial layer of compound semiconductor on single-crystal silicon and light-emitting diode manufactured therewith
EP0423535B1 (en) Semiconductor device made by an epitaxial growth technique and method for the making of the same
US8956960B2 (en) Method for stress reduced manufacturing semiconductor devices
JPS62209840A (en) Semiconductor device and manufacture of the same
JPH04233277A (en) Transistor provided with layer of cubic boron nitride
US6291328B1 (en) Opto-electronic device with self-aligned ohmic contact layer
JP3164478B2 (en) Semiconductor device and method of manufacturing the same
JPS6212916B2 (en)
JPH03268360A (en) Semiconductor device
EP0082325B1 (en) Semiconductor device comprising a metallic conductor
US20220359196A1 (en) Method for manufacturing semiconductor element, and semiconductor device
JPS62134965A (en) Manufacture of semiconductor device
JP2748925B2 (en) Bipolar transistor and method of manufacturing the same
JP2760505B2 (en) Method for manufacturing PIN diode
CN114846589A (en) Method for manufacturing semiconductor element and semiconductor device
JPS5832792B2 (en) semiconductor equipment
JP2585642B2 (en) Method for manufacturing semiconductor device
CN113745268A (en) Monolithic integrated Hall circuit
JP2927636B2 (en) Method of manufacturing ohmic electrode
JPH05218495A (en) Manufacture of semiconductor light emitting element
JPS63116475A (en) Led array and manufacture thereof
JPH04322477A (en) Manufacture of semiconductor light-emitting device