JPS62209372A - Method for live wire type measurement of constant of distribution line by current neutralizing method - Google Patents

Method for live wire type measurement of constant of distribution line by current neutralizing method

Info

Publication number
JPS62209372A
JPS62209372A JP5337186A JP5337186A JPS62209372A JP S62209372 A JPS62209372 A JP S62209372A JP 5337186 A JP5337186 A JP 5337186A JP 5337186 A JP5337186 A JP 5337186A JP S62209372 A JPS62209372 A JP S62209372A
Authority
JP
Japan
Prior art keywords
distribution line
constant
voltage
current
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5337186A
Other languages
Japanese (ja)
Inventor
Masayoshi Nakatani
中谷 眞佳
Shoichi Wada
和田 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Toko Seiki Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Toko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Toko Seiki Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP5337186A priority Critical patent/JPS62209372A/en
Publication of JPS62209372A publication Critical patent/JPS62209372A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the constant of a distribution line simply and accurately, by injecting triangular wave voltage to take out the leak current of the distribution line and transferring the constant of the distribution line to a constant element to be controlled using an auxiliary conductor. CONSTITUTION:On the way of the distribution line of a user, triangular wave voltage (e) is injected as one for testing by an injection device IT. The voltage (e) passes through the earth electrostatic capacitor and earth insulating resistor of each line to be guided to the ground and a current is refluxed through the earth resistor of second kind earth construction provided to the neutral point of a pole transformer in the secondary side thereof. At this time, an auxiliary conductor 5 is connected so that a current flows through a clamp type current transformer CT to a reverse direction to be refluxed to a constant element 6 to be controlled and, when the constant of the distribution line coincides with the value of the element 6, the interlacing magnetic flux of the current transformer CT comes to zero. A control circuit 7 is operated so as to bring detection voltage to zero. As a result, each constant of the distribution line of the user can be known on the basis of the value of the element 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、たとえば商用周波数の電圧が供給されている
低圧需要家の配線について、活線状態のままで対地絶縁
抵抗等の配線定数を測定する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention measures wiring constants such as insulation resistance to ground while the wiring is in a live state, for example, in the wiring of a low-voltage consumer to which commercial frequency voltage is supplied. Regarding how to.

(従来技術) たとえば、一般の低圧需要家配線の対地絶縁抵抗測定方
法としては、当該需要家の引込み開閉器を開放し、その
負荷側を一括して大地との間をメガ−(直流型絶縁抵抗
計)で測定する方法が従来より慣用されているが、該方
法では需要家側が一時停電状態となる不都合があり、特
に近年のようにコンピュータ類似機器を備えた需要家が
増加すると、これら機器に対する影響が大きい、また。
(Prior art) For example, to measure the ground insulation resistance of general low-voltage customer wiring, open the customer's service switch, connect the load side all together, and connect it to the earth using a megger (DC type insulation). The method of measuring with a resistance meter (resistance meter) has traditionally been used, but this method has the inconvenience of temporarily causing a power outage on the consumer side.Especially in recent years, as the number of consumers equipped with computer-like equipment has increased, these equipment It also has a large impact on.

家族構成、生活形態の変化によって昼間留守となる家゛
庭が増加しているために、一定期間ごとの測定義務の遂
行に支障をきたしているのが実情である。
The reality is that due to changes in family structure and lifestyles, the number of households where people are away during the day is increasing, which is causing problems in fulfilling the obligation to take measurements at regular intervals.

そのため活線状態のままで対地絶縁抵抗が測定できるよ
うに過去法のような方式が提案された。
For this reason, a method similar to the past method was proposed so that the insulation resistance to ground can be measured while the line is still live.

a、 零相変流器法により、クランプ形の変流器を使用
して需要家配′i!線一括の漏洩電流を測定するもの。
a. The zero-phase current transformer method uses a clamp-type current transformer to distribute electricity to customers' homes. A device that measures the leakage current of a batch of wires.

b、柱上変圧器の2次側に設けられている第2種接地工
事の接地線に直列に直流電圧を加え、そのときに流れる
漏洩電流中の直流成分と加えた直流電圧との関係から絶
縁抵抗を算出するもの。
b. From the relationship between the DC component in the leakage current flowing at that time and the applied DC voltage when applying a DC voltage in series to the grounding wire of the second type grounding work installed on the secondary side of the pole transformer. Something that calculates insulation resistance.

C0前項の直流電圧に代えて低い周波数の交流電圧を使
用するもの。
C0 Uses low frequency alternating current voltage instead of the direct current voltage mentioned in the previous section.

しかし、a引力式のものは単相3線式配電方式の場合は
、接地線の両側電圧が逆相であるため互いに打消し合っ
て検出できない欠陥を持ち、また単相2線式配電の場合
には非接地側電線の漏洩のみしか検出できず、接地側電
線の絶縁抵抗は類推するの他はなく、全線一括でメガ−
により測定する正規の測定とは理論的にも一致しない致
命的な欠陥を包蔵している。
However, in the case of a single-phase three-wire power distribution system, the a-attraction type has a defect that cannot be detected because the voltages on both sides of the grounding wire are in opposite phases, canceling each other out, and in the case of a single-phase two-wire power distribution system. Since leakage can only be detected in the non-grounded wire, the insulation resistance of the grounded wire can only be estimated by analogy, and all wires can be measured at once.
It contains a fatal flaw that is not theoretically consistent with the regular measurement made by .

また、b、c項方式は柱上変圧器2次側に接がる全配電
線一括の値しか求められず、絶縁不良が屋外配電線に原
因があるか、若しくは何れかの需要家屋内配線に起因す
るかの特定ができないため目的を達し得ない。
In addition, the b and c methods can only calculate the value for all distribution lines connected to the secondary side of the pole transformer, and it is possible to determine whether the insulation failure is caused by the outdoor distribution line or by any customer's indoor wiring. The purpose cannot be achieved because it is not possible to identify the cause of the problem.

そこで第8図に示すように、対象とする低圧需要家への
配電線一括でクランプ式注入器1を用いて商用I、1波
と異る高い周波数の正弦波電圧を直列に注入し、この注
入器1の近傍で同様に配電線一括で電磁結合した検出用
クランプ式変流器2により取出した電流のうち該注入周
波成分のみを抽出する方法も発表されている。この場合
、測定しようとする対地回路として書直すと第9図に示
す等価回路となるが、電鯨側配電線一括の対地インピー
ダンスに較べて接地抵抗RGが甚だ小さいため第9図回
路は更に第10図回路に置換えることができる。
Therefore, as shown in Fig. 8, a sine wave voltage with a high frequency different from the commercial I, 1 wave is injected in series using a clamp-type injector 1 to the distribution lines to the target low-voltage consumers. A method has also been announced in which only the injected frequency component is extracted from the current taken out by a detection clamp type current transformer 2 that is electromagnetically coupled to the distribution line in the vicinity of the injector 1. In this case, when rewritten as the ground circuit to be measured, the equivalent circuit shown in Fig. 9 is obtained, but since the ground resistance RG is extremely small compared to the ground impedance of the power distribution line on the electric whale side, the circuit in Fig. 9 is It can be replaced with the circuit shown in Figure 10.

尚、第8図乃至第10図において、 RsO’  Rs
l” s2は他需要家の配電線を含めた電源側各線の対
地絶縁抵抗、CsO’  Cs□” s2は同じく電源
側各線の対地静電容量、R6は中性点の接地抵抗、 R
PO、R、Rは対象需要家配線の各線の対地絶縁!!!
2 抵抗、C,C,、、Cは同じく対地静電容量、柁   
        12 Z  Z は電源側の各線間負荷インピーダンス、sl
’  s2 2、、.2  は対象需要家の各線間インピーダンス。
In addition, in FIGS. 8 to 10, RsO' Rs
l"s2 is the insulation resistance to ground of each line on the power supply side including distribution lines of other customers, CsO'Cs□"s2 is the capacitance to ground of each line on the power supply side, R6 is the grounding resistance of the neutral point, R
PO, R, R are the ground insulation of each line of the target customer's wiring! ! !
2 Resistance, C, C, , C is the ground capacitance, 柁
12 Z Z is the load impedance between each line on the power supply side, sl
' s2 2,,. 2 is the impedance between each line of the target customer.

マ1.マ2は各線間商用周波電圧、マロは注入電圧。Ma1. MA2 is the commercial frequency voltage between each line, MARO is the injection voltage.

e、は検出電圧、 i、、i、i  は需要家配線21
!2 の各線に流れる注入電流である。
e is the detected voltage, i, , i, i is the customer wiring 21
! This is the injection current flowing through each line of 2.

このとき C+C+C雪 C(lb) ZI   Fil   !!rJ    x但し R;
全線一括対地絶縁抵抗 C;全線一括対地静電容量 ! と表わし、重畳の理により注入電流のみを分離して考え
ると、注入電圧の角速度をωで表わしてと書くことがで
きる。
At this time, C+C+C snow C(lb) ZI Fil! ! rJ xHowever, R;
All wires collectively ground insulation resistance C; All lines collectively ground capacitance! If we consider only the injected current separately according to the principle of superposition, we can write the angular velocity of the injected voltage as ω.

(発明が解決しようとする問題点) しかるに絶縁抵抗を求めるために、注入電流i!のうち
注入電圧マロと同相の成分を取出すべく(2)式の値を
同期スイッチングして得られる平均値電流 ■は となるが、対地静電容量C2対地絶縁抵抗Rは何!  
                  Iれも対象需要
家ごとに異なる値であり、また接地抵抗RGは接地ごと
にその値を異にするから、一定の比率として取扱うこと
ができず、したがって誤差を避けることができない、特
に需要家配線亘長の増大や金属管内配線の普及によって
対地静電容量Cが大きくなり最大0 、31LFにも達
すること! があるので、そのl#響による誤差は無視できなくなっ
ている。
(Problem to be solved by the invention) However, in order to find the insulation resistance, the injection current i! The average current (2) obtained by synchronously switching the values of equation (2) to extract the component in phase with the injected voltage Malo is, but what is the ground capacitance C2 and the ground insulation resistance R?
Since both values differ depending on the target customer, and the value of the ground resistance RG differs depending on the ground, it cannot be treated as a fixed ratio, and therefore errors cannot be avoided. Due to the increase in wiring length and the spread of wiring inside metal pipes, the ground capacitance C increases and reaches a maximum of 0.31LF! Therefore, the error due to the l# sound cannot be ignored.

そのため既に発表されたこの方式も製品化されるに至っ
ていないのが実情である。
Therefore, the reality is that this method, which has already been announced, has not yet been commercialized.

本発明は以上の点に鑑み、活線状態にある低圧需要家ご
との配線一括対地絶縁抵抗等の配電線定数を簡易に知る
ことのできる測定方法を提供することを目的とする。
In view of the above points, it is an object of the present invention to provide a measuring method that can easily determine distribution line constants such as wiring bulk insulation resistance to ground for each low-voltage customer in a live line state.

(問題を解決するための手段) 本発明は、測定対象の配電線にクランプ式注入器を用い
試験電圧として三角波電圧を注入して該配電線の漏洩電
流をクランプ式変流器で検出すると共に、配電線の各定
数に対応する被制御定数要素を含んだ補助線によってク
ランプ式変流器の2次側に逆方向Tf、流を流し、該ク
ランプ式変流器の検出電圧が零となるように上記被制御
定数要素を制御して、配電線のもつ定数を被制御定数要
素に移し取る電流中和法による活線式配電線定数測定方
法を特徴とする。
(Means for Solving the Problem) The present invention uses a clamp-type injector to inject a triangular wave voltage as a test voltage into the distribution line to be measured, and detects leakage current in the distribution line with a clamp-type current transformer. , a reverse direction Tf flows through the secondary side of the clamp-type current transformer through an auxiliary line containing controlled constant elements corresponding to each constant of the distribution line, and the detected voltage of the clamp-type current transformer becomes zero. The present invention is characterized by a live-line distribution line constant measuring method using a current neutralization method in which the controlled constant element is controlled as described above and the constant of the distribution line is transferred to the controlled constant element.

(実施例) 以下、本発明の方法を第1図乃至第7図を用いて説明す
る。
(Example) Hereinafter, the method of the present invention will be explained using FIGS. 1 to 7.

第1図は本発明の原理を示すブロック図であり、 TS
は柱上変圧器の2次巻線、 Wt 、W2.W3は対象
需要家配線、ITは試験電圧を注入するためのクランプ
式注入器、3は該クランプ式注入器ITに三角波電圧を
供給する三角波電圧発生回路、CTは対地漏洩電流を検
出するためのクランプ式変流器、4はクランプ式変流器
CTの2次電圧を取出す検出回路、5はクランプ式変流
器CTに逆方向電流を流すための電流中和用補助線、8
は補助55につながれた被制御定1&要素、7はクラン
プ式変流器CTの2次′心圧が零となる方向へ被制御定
数要素6を制御する回路、RRRは対地絶縁抵抗、 C
A。
FIG. 1 is a block diagram showing the principle of the present invention, and TS
are the secondary windings of the pole transformer, Wt, W2. W3 is the target customer wiring, IT is a clamp type injector for injecting the test voltage, 3 is a triangular wave voltage generation circuit that supplies a triangular wave voltage to the clamp type injector IT, and CT is for detecting ground leakage current. Clamp type current transformer, 4 is a detection circuit for extracting the secondary voltage of the clamp type current transformer CT, 5 is a current neutralizing auxiliary line for flowing reverse current to the clamp type current transformer CT, 8
is the controlled constant element 1 & element connected to the auxiliary 55, 7 is a circuit that controls the controlled constant element 6 in the direction where the secondary core pressure of the clamp type current transformer CT becomes zero, RRR is the ground insulation resistance, and C
A.

A’   N’   B CM、CBは対地静電容量、R8は接地抵抗である。A' N' B CM and CB are ground capacitances, and R8 is a ground resistance.

本発明の理解を容易にするため、まず第1図の概略を説
明する。
In order to facilitate understanding of the present invention, the outline of FIG. 1 will first be explained.

低圧配電線から需要家に接がる配電線の途中に図示のよ
うに注入器ITを結合させて試験電圧を注入すると、そ
の配電線の各線に同じ値で誘起した注入電圧eは、各線
の持つ対地静電容量および対地絶縁抵抗を通って大地に
導かれ、柱上変圧器2次側の中性点に設けられた第2種
接地工事の接地抵抗を通って電流を還流させる。このと
き補助線にも同じ注入電圧が誘起するが、この補助線5
を電流がクランプ式変流器CTを逆方向に流れて被制御
定数要素8を還流するように繋げておけば、配電線を還
流する電流の作用を打消すので、配電線の持つ定数と被
制御定数要素6の値が一致すればクランプ式変流器CT
の鎖交磁束は相殺されてゼロとなり、当然に検出電圧も
ゼロとなる。したかって、検出電圧を監視し之がゼロと
なるように制御回路7を働かせ、被制御定数を自動調整
して検出電圧のゼロ点を求めれば、被制御定数要素6は
対象需要家配線の各定数と同じ値になり、被制御定数要
素Bの値を知ることによって逆に需要家配線の各定数を
知ることができる。
When a test voltage is injected by connecting the injector IT to the middle of the distribution line connecting the low-voltage distribution line to the consumer as shown in the figure, the injection voltage e induced at the same value in each line of the distribution line will be The current is led to the earth through the ground capacitance and ground insulation resistance, and is circulated through the ground resistance of the second type grounding work installed at the neutral point of the secondary side of the pole transformer. At this time, the same injection voltage is induced in the auxiliary line, but this auxiliary line 5
If the current flows through the clamp type current transformer CT in the opposite direction and is connected so that it circulates through the controlled constant element 8, the effect of the current flowing back through the distribution line will be canceled, so the constant of the distribution line and the controlled constant element 8 will be canceled. If the values of control constant element 6 match, the clamp type current transformer CT
The interlinkage magnetic flux of is canceled out and becomes zero, and naturally the detected voltage also becomes zero. Therefore, if the control circuit 7 is operated so that the detected voltage is monitored and becomes zero, and the controlled constant is automatically adjusted to find the zero point of the detected voltage, the controlled constant element 6 becomes each of the target customer's wiring. It becomes the same value as the constant, and by knowing the value of the controlled constant element B, it is possible to conversely know each constant of the consumer wiring.

更に詳述すると、活線式絶縁抵抗計のクランプ式注入器
を用いて測定対象需要家の低圧配線に三角波電圧e(t
52図に示す)を加えたとき、その等価回路は第3図に
よって示される。ただし、r ;対象需要家低圧配線の 冨 全線一括対地絶縁抵抗 R;中性点接地抵抗 C;対象需要家低圧配線の ! 全線一括対地静電容量 e;注入三角波電圧 マ :クランプ式検出器の検出電圧 である。
To explain in more detail, a triangular wave voltage e(t
52), the equivalent circuit is shown in FIG. However, r; the total wire-to-ground insulation resistance R of the target customer's low-voltage wiring; the neutral point grounding resistance C; the target customer's low-voltage wiring! All line collective ground capacitance e; Injected triangular wave voltage ma: Detection voltage of the clamp type detector.

このとき q、cに蓄植される電荷 ! i :rを流れる電流 と表わすと q=cri               (1)! 
 ! であるから R(dg +i)+ri dt     x −CrRJ工+(r +R)i w e      (
2)xxxdt   xx なる電圧方程式が成立つ、そこで e = E(F −1) (2T≧t≧0)     
 (3)と表わすと(2)は と書替えられるから更に と置換えて演算子式に直し ’ = R4−F’  q+ a (pT−1)(5)
x  I  ! を解いて i=了■「ココ(2(tづ)手工 ! !       α X (2ε−cxt−−−”” ) )     (6
a)l  ε 一αt (1−(1+αT)ε  )       (8b)を
得る。
At this time, the charges stored in q and c! If i: r is expressed as a flowing current, then q=cri (1)!
! Therefore, R(dg +i)+ridt x -CrRJ+(r +R)i w e (
2) The voltage equation xxxdt xx holds true, where e = E(F -1) (2T≧t≧0)
When expressed as (3), (2) can be rewritten as , so replace it with further and convert it into an operator expression:' = R4-F' q+ a (pT-1) (5)
x I! Solve i=Complete ■ "Here (2 (tzu) handiwork! !! α X (2ε-cxt---"" ) ) (6
a) l ε −αt (1−(1+αT)ε ) (8b) is obtained.

したがって検出器を通る電流は i+ (!J−i+ c rlij dt    x x dt (rc「−丁]「:「 (を−丁 +  Cr  −(
l+aT)Cr  ε−(xtx 、      xx
     xxl゛αt  −αt−−−2αT)) +2ct (2ε    1  ε −αT +t−(1−αT)(r−R) Ce   )  (7
)xp    x である。
Therefore, the current through the detector is i+ (!J-i+ cr rlij dt
l+aT)Cr ε-(xtx, xx
xxl゛αt −αt−−2αT)) +2ct (2ε 1 ε −αT +t−(1−αT)(r−R) Ce ) (7
)xpx.

この′Iヒ涼は検出器を還流してその1次電流11とな
り、その2次巻線に検出電圧マを誘起する。いま検出器
について 磁路平均長        交 磁路平均断面積      S 実効透磁率        色 2次ala         N 2次実効負担抵抗     R2 2次電流         12 鎖交全磁束数       φ と表わすことにすると φ−K(i、−Ni2)              
(8)K=  4エエ主              
 (8a)立 であり、また マーN −”  −Ri              
 (9)t22 であるから之等を整理して −αt (1+(EC(1÷aT)(r  −R)  ε   
 )        (1G)x          
  !  p が求められる。そこで と置直して(lO)式を解き が得られるが r >> R#R(lla) !!p であるから、この条件を入れて(11)を書直すととな
る。しかるに繰返し波形においてはマt=o ”−マt
=27            (12a)でなければ
ならないから、之によって積分定数Aを定めると とぼる。
This 'I current circulates through the detector and becomes its primary current 11, which induces a detection voltage in its secondary winding. Now, regarding the detector, average length of magnetic path Average cross-sectional area of alternating magnetic path S Effective magnetic permeability Color Secondary ala N Secondary effective burden resistance R2 Secondary current 12 Total number of interlinked magnetic fluxes If expressed as φ, then φ-K(i, -Ni2)
(8) K = 4e main
(8a) is erect and also merN −” −Ri
(9) Since t22, rearranging the above, −αt (1+(EC(1÷aT)(r −R) ε
) (1G)x
! p is required. Therefore, we can solve the equation (lO) by rearranging it as r >>R#R(lla)! ! Since p, we can rewrite (11) by including this condition. However, in a repetitive waveform, mat = o ” - mat
=27 (12a) Therefore, we can determine the integral constant A by this.

ここで第4図に示すように、r 、R、Cに夫々!  
  x     ! 対応するところのr 、R、Cなる3種類の被制CC 御定数要素を設は之によって検出器に逆電流を流し、電
流中和法を適用することを考えて見よう。
Here, as shown in FIG. 4, r, R, and C, respectively!
x! Let us consider that three types of CC control constant elements, corresponding to r, R, and C, are set to cause a reverse current to flow through the detector, and a current neutralization method is applied.

逆電流を流したとき積出電圧マは −5,1゜ で与えられる。When reverse current flows, the output voltage is -5,1° is given by

測定を開始するとき rc=lOO(15a) R−0(15b) C=O(15C) から出発する。これは(13)式の状態である。When starting measurement rc=lOO(15a) R-0 (15b) C=O(15C) Depart from. This is the state of equation (13).

(13)式の第1項について注入三角波電圧eの偏向時
刻で。から一定時間Tcだけ経過した時刻τ。
For the first term of equation (13), at the deflection time of the injection triangular wave voltage e. A time τ when a certain period of time Tc has elapsed since then.

まで積分して見ると 口“ =口l+ε  )+−ε 一2αT   2 −α     C α      O −α丁 ・T (1+ ε−2”)+ L(C0−1)   (
1B)Cα となるから之がゼロとなる条件は である。
Integrating up to
1B) The condition for Cα to be zero is .

もう一度説明すると(13)式によっても与えられる検
出電圧マは第5図上部に示すような波形の電圧であり、
之は第5図下部に示すような1曲線で表わす絶縁抵抗r
に反比例する成分と、 C曲線型          
                   αで表わす減
衰定数αなる成分およびCβ曲線で表わす減衰定数βな
る成分とから成立っているが、このうちrに反比例する
成分は第5図の斜線部分! で示すように曲線の立上り時刻で。から一定時間Tが経
過した時刻で まで積分平均すると正負打CC 消し合ってゼロとなることが(lea)式で判る。した
がって之を満足する一定時間Tだけ検出電圧マをスイッ
チングして積分電圧を求めれば、その積分電圧には絶縁
抵抗rに関わる成分は含まれず、! 専ら静電容量Cのみに関わる積分電圧が得られる。
To explain again, the detected voltage given by equation (13) is a voltage with a waveform as shown in the upper part of Fig. 5,
This is the insulation resistance r expressed by a single curve as shown in the lower part of Figure 5.
A component that is inversely proportional to , and a C curve type
It consists of a damping constant α component represented by α and a damping constant β component represented by the Cβ curve, among which the component that is inversely proportional to r is the shaded part in Figure 5! At the rise time of the curve as shown in . It can be seen from equation (lea) that if we integrate and average until a certain time T has elapsed from then, the positive and negative strokes CC cancel each other out and become zero. Therefore, if the integrated voltage is obtained by switching the detection voltage m for a certain period of time T that satisfies the following, the integrated voltage will not include any component related to the insulation resistance r, and! An integrated voltage exclusively related to capacitance C is obtained.

そこで、この積分電圧の存在を検出したとき(15c)
式の状態からCを増加する方向に制御するに とによってCの動作を打消す、その動作は第6! 図に示すブロック図のような回路によって行われるが、
それを説明すると次のようになる。
Therefore, when the presence of this integrated voltage is detected (15c)
The operation of C is canceled by controlling C in the direction of increasing from the state of the equation, and that operation is the 6th! This is done by a circuit like the block diagram shown in the figure.
The explanation is as follows.

スイッチング回路8に与えられた検出電圧は。The detection voltage given to the switching circuit 8 is:

ここで前述したような時間巾Tのスイッチングを施され
、さらに積分回路3によって平均化されて静電容量C−
Cに比例した直流電圧となる。こx      x の電圧は比較回路10.11において正の検出水準電圧
または負の検出水準電圧と比較され、雨水準電圧間の範
囲から外れたときはアップダウン計数回路12に駆動用
のクロックパルスを供給する。このとき正側へ外れたと
きはアップダウン計数回路は加算計数動作を行い、逆に
負側へ外れたときは減算動作を行う、計数回路の出力は
順次に判別記憶素子13に与えられ、信号を与えられた
チャンネルのスイッチング機構の状態を判別した上で加
算または減算するように動作し、その状態を記憶しその
信号をスイッチング機構14に4えて保持させる。
Here, switching is performed with the time width T as described above, and the capacitance C- is further averaged by the integrating circuit 3.
The DC voltage is proportional to C. The voltage x supply At this time, when the value deviates to the positive side, the up/down counting circuit performs an addition counting operation, and conversely, when the value deviates to the negative side, it performs a subtraction operation.The output of the counting circuit is sequentially given to the discrimination storage element 13, and the signal It operates to add or subtract after determining the state of the switching mechanism of the given channel, memorize the state, and cause the switching mechanism 14 to input and hold the signal.

被制御定数要素8は29〜2°に比例する値の静電容量
によって構成されており、スイッチング機構14の保持
されているチャンネルの要素が選択的に外部端子C9土
間に接がれる。
The controlled constant element 8 is constituted by a capacitance having a value proportional to 29 to 2 degrees, and the element of the channel held by the switching mechanism 14 is selectively connected to the external terminal C9.

これらの結果、Cの動作がCの補償動作によっCI て打消され、積分電圧が先述の雨水準電圧の範囲内に落
着いたところで動作が停止する。このとき当然 C’v  C,(17) となっている。
As a result, the operation of C is canceled out by the compensation operation of C, and the operation stops when the integrated voltage falls within the range of the rain level voltage mentioned above. At this time, naturally C'v C, (17) is obtained.

したがって(14)式は ・CC2ε−l−−213T)(r−六)!     
 ε と書替えられる。このとき(+5b)式によって、この
式の第3項中の第2項はゼロとなる筈であるが、逆方向
電流(中和のための補償電流)を流す回路には僅かなが
ら抵抗および誘導リアクタンスが存在し、そのため小さ
い値ではあるが同項による極めて高速で変化する成分が
波形の立上り部分に負の電圧となって表れる。そこで、
印加三角波電圧の偏向点の直前と直後の電圧を取出して
比較すれば前述の高速パルス成分の有無を知ることかで
きる。即ち、第7図に示すように三角波電圧の偏向点の
直前のサンプリング指令パルスφlと、直後のサンプリ
ング指令φ2によって、夫々の検出電圧瞬時値をサンプ
ルホールドし、その値を比較すれば高速パルス成分を検
知できるから、先述した静・這容量の補償と全く同様の
回路と方法で接地抵抗Rを被制御定数要素R8によって
補償すること! ができる。
Therefore, equation (14) is -CC2ε-l--213T)(r-6)!
It can be rewritten as ε. At this time, according to equation (+5b), the second term in the third term of this equation should be zero, but there is a small amount of resistance and induction in the circuit that flows the reverse current (compensation current for neutralization). There is a reactance, and therefore, although the value is small, a component that changes extremely quickly due to this term appears as a negative voltage at the rising edge of the waveform. Therefore,
By extracting and comparing the voltages immediately before and after the deflection point of the applied triangular wave voltage, it is possible to determine the presence or absence of the aforementioned high-speed pulse component. That is, as shown in FIG. 7, the instantaneous detected voltage values are sampled and held using the sampling command pulse φl immediately before the deflection point of the triangular wave voltage and the sampling command φ2 immediately after, and by comparing the values, the high-speed pulse component can be determined. can be detected, so compensate the grounding resistance R using the controlled constant element R8 using the same circuit and method as the static capacitance compensation described above! I can do it.

このようにして補償が終了したとき R〜 Ro(19) ! となっているから、(17)式と併せ考えると(14)
式のC,Cに比例する成分、即ち第2項および第3! 
   C 項は消滅し、rに反比例する成分のみが残留して! いる。
When the compensation is completed in this way, R~Ro(19)! Therefore, when considered in conjunction with equation (17), (14)
The components proportional to C and C in the equation, i.e. the second term and the third !
The C term disappears, and only the component inversely proportional to r remains! There is.

そこで今度は第7図に示すように三角波電圧の半径の終
了直前にφ3なるサンプリング指令によって別のサンプ
ルホールド回路に検出電圧の瞬時値を保持させると、そ
の値は(14)式の第1項にt −27(20) を入れたイtとなるから となっている。この値を検出したら静電容量および接地
抵抗の場合と全く同様な方法で絶縁抵抗を補償でき r   ”t  ro(21) ! となった時点で補償動作は完了する。
Therefore, as shown in Fig. 7, if another sample and hold circuit is made to hold the instantaneous value of the detected voltage by a sampling command φ3 just before the end of the radius of the triangular wave voltage, the value will be the first term of equation (14). This is because t is obtained by adding t −27 (20) to . Once this value is detected, the insulation resistance can be compensated for in exactly the same manner as for capacitance and ground resistance, and the compensation operation is completed when r ``tro(21)!'' is reached.

これらの結果、補償動作が終了した時点で検出器の検出
電圧は殆どゼロとなり、対象需要家の対地絶縁抵抗、対
地静電容量および配電線中性点の接地抵抗は、被制御3
要素に写し取られたことになり、このうち対地絶縁抵抗
は被制御定数要素の値を別に測ることによって知ること
ができる。
As a result, the detected voltage of the detector becomes almost zero when the compensation operation is completed, and the ground insulation resistance, ground capacitance, and ground resistance of the distribution line neutral point of the target customer are reduced to 3.
The insulation resistance to ground can be found by separately measuring the value of the controlled constant element.

(効果) 以上詳述したように本発明は、第8図方法のように配電
線に正弦波電圧を注入し、クランプ式変流器により取出
した電流のうち注入周波成分のみを抽出するものとは異
なり、三角波電圧を注入して配電線の漏洩電流をクラン
プ式変流器で取出すと共に、配′rrt線の各定数に対
応する被制御定数要素を含んだ補助線によってクランプ
式変流器の2次側に逆電流を流し、該クランプ式変流器
の検出電圧が零となるように被制御定数要素を制御して
、配電線のもつ定数を被制御定数要素に移し取るように
したから、求めようとする配電線の定数。
(Effects) As detailed above, the present invention injects a sinusoidal voltage into the distribution line as in the method shown in Figure 8, and extracts only the injected frequency component of the current taken out by the clamp type current transformer. The difference is that a triangular wave voltage is injected and the leakage current in the distribution line is taken out by a clamp type current transformer, and the clamp type current transformer is extracted by an auxiliary line containing controlled constant elements corresponding to each constant of the distribution line. By flowing a reverse current to the secondary side and controlling the controlled constant element so that the detected voltage of the clamp type current transformer becomes zero, the constant of the distribution line is transferred to the controlled constant element. , the constant of the distribution line to be determined.

たとえば絶縁抵抗を簡易に、そして正確に測定すること
ができる。
For example, insulation resistance can be easily and accurately measured.

しかも、この方法は検出器を通る電流を中和してその零
点を検出する方法であるため、検出器の繰返し使用によ
る磁気回路の再現特性や磁気回路その他に付随している
非直線性の影響を全く受けないため、極微量の検出のた
めの高増巾にも精度が損なわれない。
Furthermore, since this method neutralizes the current passing through the detector and detects its zero point, the effects of the reproducibility characteristics of the magnetic circuit due to repeated use of the detector and the nonlinearity associated with the magnetic circuit etc. Since it is not subjected to any interference, accuracy is not compromised even at high amplification for detecting extremely small amounts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる活線式配電線定数測定方法の原
理を説明するためのブロック図、第2図は配電線に注入
する三角波電圧の波形図、第3図は三角波電圧注入時の
等価回路、第4図は第1図の等価回路、第5図はクラン
プ式変流器の検出電圧波形とその分解波形図、第6図は
被制御定数要素の制御例を説明するためのブロック図、
第7図は検出電圧波形とサンプリング指令のための信号
波形図である。 第8図は従来提案された活線対地絶縁抵抗測定法の概念
図、第9図は第8図の等価回路、第10図は第9図を更
に簡略化した等価回路である。 IT・・・クランプ式注入器 CT・・・クランプ式変流器 「 C・・・配電線定数 x、x r、C・・・被制御定数要素 CC 5・・・補助線 特許出願人   関西電力株式会社 東光精機株式会社 代 理 人   弁理士 鈴江 孝− 第1図 柱I変圧外 第2図 第3図 第4図 第6図 第7図 第8図
Fig. 1 is a block diagram for explaining the principle of the live-line distribution line constant measurement method according to the present invention, Fig. 2 is a waveform diagram of the triangular wave voltage injected into the distribution line, and Fig. 3 is a waveform diagram of the triangular wave voltage injection. Equivalent circuit, Fig. 4 is the equivalent circuit of Fig. 1, Fig. 5 is a detection voltage waveform of a clamp type current transformer and its decomposed waveform diagram, and Fig. 6 is a block diagram for explaining an example of control of controlled constant elements. figure,
FIG. 7 is a diagram of detected voltage waveforms and signal waveforms for sampling commands. FIG. 8 is a conceptual diagram of a conventionally proposed live wire-to-ground insulation resistance measurement method, FIG. 9 is an equivalent circuit of FIG. 8, and FIG. 10 is an equivalent circuit that is further simplified from FIG. 9. IT...Clamp type injector CT...Clamp type current transformer C...Distribution line constant x, x r, C...Controlled constant element CC 5...Auxiliary line patent applicant Kansai Electric Power Company Toko Seiki Co., Ltd. Representative Patent Attorney Takashi Suzue - Figure 1 Pillar I Transformer Outside Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)測定対象の配電線にクランプ式注入器を用い試験
電圧として三角波電圧を注入して該配電線の漏洩電流を
クランプ式変流器で検出すると共に、配電線の各定数に
対応する被制御定数要素を含んだ補助線によってクラン
プ式変流器の2次側に逆方向電流を流し、該クランプ式
変流器の検出電圧が零となるように上記被制御定数要素
を制御して、配電線のもつ定数を被制御定数要素に移し
取る電流中和法による活線式配電線定数測定方法。
(1) Inject a triangular wave voltage as a test voltage into the distribution line to be measured using a clamp-type injector, detect the leakage current of the distribution line with a clamp-type current transformer, and A reverse current is caused to flow through the secondary side of the clamp type current transformer through an auxiliary line including a control constant element, and the controlled constant element is controlled so that the detected voltage of the clamp type current transformer becomes zero, A live-wire distribution line constant measurement method using the current neutralization method, which transfers the constant of the distribution line to a controlled constant element.
JP5337186A 1986-03-11 1986-03-11 Method for live wire type measurement of constant of distribution line by current neutralizing method Pending JPS62209372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5337186A JPS62209372A (en) 1986-03-11 1986-03-11 Method for live wire type measurement of constant of distribution line by current neutralizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5337186A JPS62209372A (en) 1986-03-11 1986-03-11 Method for live wire type measurement of constant of distribution line by current neutralizing method

Publications (1)

Publication Number Publication Date
JPS62209372A true JPS62209372A (en) 1987-09-14

Family

ID=12940952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5337186A Pending JPS62209372A (en) 1986-03-11 1986-03-11 Method for live wire type measurement of constant of distribution line by current neutralizing method

Country Status (1)

Country Link
JP (1) JPS62209372A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396444A (en) * 1977-02-02 1978-08-23 Tokyo Electric Power Co Inc:The Measuring device for ground resistance
JPS57135373A (en) * 1981-02-16 1982-08-20 Showa Electric Wire & Cable Co Ltd Power supply device for measuring electric power apparatus
JPS58198765A (en) * 1981-12-14 1983-11-18 Toyo Commun Equip Co Ltd Simple measuring method of insulation resistance of live wire circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396444A (en) * 1977-02-02 1978-08-23 Tokyo Electric Power Co Inc:The Measuring device for ground resistance
JPS57135373A (en) * 1981-02-16 1982-08-20 Showa Electric Wire & Cable Co Ltd Power supply device for measuring electric power apparatus
JPS58198765A (en) * 1981-12-14 1983-11-18 Toyo Commun Equip Co Ltd Simple measuring method of insulation resistance of live wire circuit

Similar Documents

Publication Publication Date Title
US5481198A (en) Method and device for measuring corrosion on a portion of a metallic path carrying an undetermined load current
KR100778089B1 (en) System and method for acquiring underground lv networks configured with plural transformers in the urban area
US20100131215A1 (en) Insulation monitoring system & insulation detecting method for electric power supply system
JPS6238930B2 (en)
CN110988636B (en) Insulation detection method and device for capacitor voltage transformer
CN109655719A (en) A kind of selection method of single-phase grounded malfunction in grounded system of low current
WO1990011532A1 (en) Monitoring electric cables
Leitloff et al. Detection of resistive single‐phase earth faults in a compensated power‐distribution system
EP1018027A1 (en) Method for the location of a high-resistance earth fault in a power distribution system on the basis of current measurements
JP7039149B2 (en) Failure point distance detector
KR20060015349A (en) On-line pinpointing method of electric leakage for low voltage power cable
JPS62209372A (en) Method for live wire type measurement of constant of distribution line by current neutralizing method
KR101989459B1 (en) Apparatus and method for measuring leakage current of three-phase four-wire type power line
Sarmiento et al. Survey of low ground electrode impedance measurements
JPH0473755B2 (en)
CN113671315A (en) ITn power supply insulation fault positioning method based on proportional differential principle
KR101954924B1 (en) Uninterruptible insulation resistance measurement system and method
KR102220329B1 (en) Apparatus for measuring leakage current in low voltage electric power lines and method thereof
JP3424374B2 (en) Lightning arrester leakage current sensor
FI108166B (en) Wiring failure detection in the power grid
RU2556332C1 (en) Leakage current monitor in load of single-phase rectifier
KR100802094B1 (en) Electrical measurement meter
RU2249226C2 (en) Method of measuring remoteness of single-phase short circuit in three-phase power line
KR200386320Y1 (en) Electrical measurement meter
JP3622171B2 (en) Earth leakage detection device