JPS6220911A - Thrust bearing - Google Patents

Thrust bearing

Info

Publication number
JPS6220911A
JPS6220911A JP60159329A JP15932985A JPS6220911A JP S6220911 A JPS6220911 A JP S6220911A JP 60159329 A JP60159329 A JP 60159329A JP 15932985 A JP15932985 A JP 15932985A JP S6220911 A JPS6220911 A JP S6220911A
Authority
JP
Japan
Prior art keywords
sliding surface
thrust bearing
bearing plate
rotating
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60159329A
Other languages
Japanese (ja)
Other versions
JPH0424573B2 (en
Inventor
Shotaro Mizobuchi
庄太郎 溝淵
Yoshiichi Kimura
芳一 木村
Katsumi Sasaki
勝美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP60159329A priority Critical patent/JPS6220911A/en
Priority to US06/894,776 priority patent/US4699525A/en
Priority to DE8686109491T priority patent/DE3673278D1/en
Priority to EP86109491A priority patent/EP0209808B1/en
Priority to KR1019860005748A priority patent/KR960000987B1/en
Priority to CN86105825.9A priority patent/CN1005351B/en
Publication of JPS6220911A publication Critical patent/JPS6220911A/en
Publication of JPH0424573B2 publication Critical patent/JPH0424573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To form a uniform liquid film made of a lubricant, by installing a core material in a ceramics disc having formed a spiral groove on both sides between a rotary shaft end part and the fixed side. CONSTITUTION:A rotary support plate 2 is locked to an end of a rotary shaft 1, while an outer surface of a bearing plate 3 or a ceramics disc is set up, in taction, in this rotary support plate 2, and a disclike fixed support plate 5 as a sliding surface member at the fixed side is set up, in taction, in the backside opposite to a surface touching the rotary support plate of the bearing plate 3. In the center of the said backside of the bearing plate 3 and the center of the surface opposed to the bearing plate 3 of the fixed support plate 5, there is provided with each of semispheric concave parts 4 and 6, and a small ball 7 as a core material is inset in these concave parts. Doing like this, the bearing plate is tiltable freely so that a uniform liquid film of a lubricant is formed in an accurate manner.

Description

【発明の詳細な説明】 〔発明の目的〕 「産業上の利用分野」 本発明は動圧効果を利用した正逆転可能なスラスト軸受
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] "Industrial Application Field" The present invention relates to a thrust bearing that is capable of forward and reverse rotation using dynamic pressure effects.

「従来の技術」 従来、例えば水中ポンプや水中モータを駆動する際、配
線ミスのためポンプ軸を逆方向に回転させる場合がある
。モして室軸型ポンプ等にあっては、自重分のスラスト
荷重が軸受に負荷されることになる。この場合逆回転に
対して負荷能力のあるスラスト軸受を用いる必要がある
"Prior Art" Conventionally, for example, when driving a submersible pump or a submersible motor, the pump shaft may be rotated in the opposite direction due to a wiring error. In the case of a chamber shaft type pump, etc., a thrust load equal to the pump's own weight is applied to the bearing. In this case, it is necessary to use a thrust bearing that has a load capacity for reverse rotation.

正逆回転可能なスラスト軸受としてはテイルテイングパ
ツドを用いた浮動型スラスト軸受がある。
As a thrust bearing that can rotate forward and backward, there is a floating type thrust bearing that uses tailing pads.

又、最新の提案としては特願昭よに一/311’f7り
号のスラスト軸受の発明がある。該発明は表面に、正転
時に動圧効果を生じさせる方向に形成されたスパイラル
溝を、また裏面には、逆回転時に動圧効果を生じさせる
方向に形成されたスパイラル溝をそれぞれ設けた硬質材
料からなる中間板を、一方が回転し他方が固定された対
向する1個の受板の間に介在させたことを特徴とするス
ラスト軸受であって、回転軸の正逆転例れの状態におい
ても動圧効果により同様にスラスト荷重を担持てき、不
作動側の軸受面は吸引力が生じ軸受は強力に固定される
作用があり、従来のテイルテイングパッドを用いた浮動
型のスラスト軸受に比較して動力損失が3分の/以下で
あって摩擦損失熱が少く、温度上昇が少なく特に冷却を
考慮する必要がない特徴がある。
In addition, the latest proposal is the invention of a thrust bearing in Japanese Patent Application No. 1/311'f7. The invention provides a hard material having spiral grooves formed on the front surface in a direction that produces a dynamic pressure effect during forward rotation, and spiral grooves formed on the back surface in a direction that produces a hydrodynamic pressure effect during reverse rotation. A thrust bearing characterized in that an intermediate plate made of a material is interposed between opposing receiving plates, one of which rotates and the other of which is fixed, and the bearing does not move even when the rotating shaft is in the forward or reverse direction. Due to the pressure effect, the thrust load can be carried in the same way, and the bearing surface on the non-operating side generates suction force, which has the effect of strongly fixing the bearing, compared to the conventional floating type thrust bearing that uses tailing pads. It has the characteristics that the power loss is 3 minutes or less, the frictional loss heat is small, the temperature rise is small, and there is no need to particularly consider cooling.

「発明が解決しようとする問題点」 テイルテイングパッドを用いた浮動型のスラスト軸受で
は軸方向の長さが大きく、機械装置例えば水中ポンプに
用いるとポンプの縦長を大きくしてしまう。そしてテイ
ルテイングパッドとスラスト板との摺動面での発生熱が
大きいために充分な冷却を考慮しなければならず、冷却
と潤滑を兼用する液体を大量に必要とする。そして構成
部品も多く、特にテイルテイングパッドの製作は工数の
か\るものであり、スラスト軸受のコストに占める割合
は大である。
``Problems to be Solved by the Invention'' A floating thrust bearing using a tailing pad has a large length in the axial direction, and when used in a mechanical device such as a submersible pump, the vertical length of the pump becomes large. Since a large amount of heat is generated on the sliding surface between the tailing pad and the thrust plate, sufficient cooling must be taken into consideration, and a large amount of liquid is required for both cooling and lubrication. There are many component parts, especially the manufacturing of the tailing pad, which requires a large number of man-hours and accounts for a large proportion of the cost of the thrust bearing.

上記した特願昭!;t−/J’14’7!;号に係わる
スラスト軸受はこのようなテイルテイングパット1を用
いた浮動型スラスト軸受の欠点はなく、安価で軸方向寸
法が短かく、部品点数は少い。そしてテイルテイングパ
ッドを用いるスラスト軸受よりも極めて大きな負荷能力
を持ち、軸受外。
The special request mentioned above! ;t-/J'14'7! The thrust bearing according to the above issue does not have the disadvantages of the floating type thrust bearing using the tailing pad 1, is inexpensive, has a short axial dimension, and has a small number of parts. And it has a much larger load capacity than a thrust bearing that uses a tailing pad, and is outside the bearing.

径も小さくなる特徴を有するが、回転軸が正逆転時に中
間板(以下軸受板という)が半径方向に移動してしまう
ことがある。そのため軸受外周に軸受板がずれないよう
に軸受板外周と近接して軸受板の動きを阻止する部材を
固設する必要がある。そこで正逆転時に軸受板がずれる
と該軸受板外周は抵抗を受け、軸受損失が増大するし、
軸受が正常位置で作動せず動圧が充分発生できないとい
う問題が生じる。
Although the diameter is also small, the intermediate plate (hereinafter referred to as a bearing plate) may move in the radial direction when the rotating shaft rotates forward or reverse. Therefore, it is necessary to fix a member close to the outer periphery of the bearing plate to prevent movement of the bearing plate so that the bearing plate does not shift. Therefore, if the bearing plate shifts during forward and reverse rotation, the outer periphery of the bearing plate will receive resistance, increasing bearing loss.
A problem arises in that the bearing does not operate in its normal position and sufficient dynamic pressure cannot be generated.

又、先願発明の軸受板は半径方向に脱出することを防止
する部材はあるが横軸の回転軸に用いると不作動時に軸
受板がずれてしまい、軸受板外周が軸受板を半径方向の
動きを阻止する部材に摺擦するために横型の回転軸を有
する機械に使用できない。
In addition, although the bearing plate of the prior invention has a member that prevents it from coming off in the radial direction, if it is used on a horizontal rotating shaft, the bearing plate will shift during non-operation, and the outer periphery of the bearing plate will prevent the bearing plate from radially moving away. It cannot be used in machines that have a horizontal rotating shaft because it rubs against a member that prevents movement.

本発明は上記先願の発明の改良に係わるもので軸受板が
ずれることなく、正逆転動作を行うことのできる動圧ス
ラスト軸受を提供することを目的とするものである。
The present invention relates to an improvement on the invention of the earlier application, and an object of the present invention is to provide a hydrodynamic thrust bearing that can perform forward and reverse operations without the bearing plate shifting.

〔発明の構成〕[Structure of the invention]

「問題点を解決するための手段」 本願第1発明は回転軸の軸端部に設けられた回転側摺動
面部材の軸直角の摺動面とこの摺動面に対向する固定側
摺動面部材の摺動面との間に、両面に夫々の面側から見
て互に逆方向のスパイラル溝を形成したセラミックス円
板を回転側摺動面部材及び固定側摺動面部材の摺動面に
摺動するように介在したスラスト軸受において、該セラ
ミックス円板の少くとも一方の面もしくは両面の中心に
凹部を形成し、該凹部のあるセラミックス円板の面に対
向する摺動面を有する摺動面部材に該凹部と対向して凹
部を設け、対向する両凹部にわたって芯材を収容してな
るスラスト軸受である。
"Means for Solving the Problem" The first invention of the present application provides a sliding surface perpendicular to the axis of a rotating side sliding surface member provided at the end of a rotating shaft, and a fixed side sliding surface opposite to this sliding surface. Between the sliding surface of the surface member and the sliding surface of the rotating side sliding surface member and the fixed side sliding surface member, a ceramic disk with spiral grooves formed in opposite directions on both sides when viewed from the respective surfaces is installed. A thrust bearing interposed so as to slide on a surface has a recess formed at the center of at least one or both surfaces of the ceramic disk, and has a sliding surface facing the surface of the ceramic disk with the recess. This is a thrust bearing in which a sliding surface member is provided with a recessed portion facing the recessed portion, and a core material is accommodated across both opposing recessed portions.

本願第2発明はセラミックス円板の両面には夫々の面側
から見て互に逆方向のスパイラル溝が設けられ、両面が
相手摺動面と摺擦するスラスト軸受において、回転軸の
軸端部に設けられた回転側摺動面部材の軸直角の摺動面
とこの摺動面に対向する固定側摺動面部材の摺動面との
間に、回転側摺動面部材に摺擦するセラミックス円板及
び固定側摺動面部材に摺擦するセラミックス円板を夫々
配し、回転側及び固定側摺動面部材間に、この両セラミ
ックス円板を含めて、単数又は複数の平板の円板とセラ
ミックス円板を摺擦するように交互に配し、各セラミッ
クス円板と摺動面部材、各セラミックス円板と平板の円
板の対向面全部又は一つの対向面を除き対向する中心部
の両側にわたって凹部を設け、対向する両凹部にわたっ
て芯材を収容してなるスラスト軸受である。
The second invention of the present application is a thrust bearing in which spiral grooves in opposite directions are provided on both surfaces of a ceramic disc when viewed from the respective surfaces, and both surfaces slide against a mating sliding surface. Between the sliding surface perpendicular to the axis of the rotating sliding surface member provided in A ceramic disc and a ceramic disc that rub on the fixed side sliding surface member are arranged respectively, and a single or multiple flat plate circle including both ceramic discs is placed between the rotating side and fixed side sliding surface member. Plates and ceramic discs are arranged alternately so as to rub against each other, and each ceramic disc and a sliding surface member, each ceramic disc and a flat plate, the entire opposing surface of the disc, or the opposing central part except for one opposing surface. This is a thrust bearing in which a recess is provided on both sides of the bearing, and a core material is accommodated across both opposing recesses.

「作用」 本願第1発明は回転軸が一旦停止することなく回転方向
を変えるに際して、回転軸の軸端部に設けられた摺動面
部材と固定側摺動面部材間Jこ配されたセラミックス円
板もしくはセラミックス円板間に挾持されている円板は
半径方向に附勢されることがあるが、各対向凹部には芯
材が入っているためにセラミックス円板もしくはセラミ
ックス円板間に挾持されている円板は常に中心を保つ、
又セラミックス円板両面に凹部を設けたものは成程度の
ラジアル荷重を担持てきる。
"Function" The first invention of the present application uses ceramics disposed between the sliding surface member provided at the shaft end of the rotating shaft and the stationary side sliding surface member when the rotating shaft changes the direction of rotation without once stopping. A disc or a disc sandwiched between ceramic discs may be energized in the radial direction, but because each opposing recess contains a core material, the discs or discs sandwiched between ceramic discs or ceramic discs may not be biased in the radial direction. The disc always stays centered,
Also, a ceramic disk with concave portions on both sides can bear a certain amount of radial load.

本願第2発明は複数のセラミックス円板と平板の円板と
の間で焼付、或は損傷が生じて抵抗が増しても、他のセ
ラミックス円板と平板の円板間ですべりスラスト軸受の
機能が保たれる作用のほか本願第7発明の作用を呈し半
径方向にセラミックス円板及び平板がずれることがない
The second invention of the present application is that even if seizing or damage occurs between a plurality of ceramic discs and a flat disc and resistance increases, the function of the thrust bearing is maintained by sliding between the other ceramic discs and the flat disc. In addition to the effect of maintaining this, it also exhibits the effect of the seventh invention of the present application, and the ceramic disk and flat plate are prevented from shifting in the radial direction.

「実施例」 以下、本発明の実施例を図面により説明する。"Example" Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例の縦断面図である。回転軸!端
には回転側の摺動面部材として円板状の回転受板コがキ
ー/aを介して圧入固定され、回転受板−にはセラミッ
クス円板である軸受板3の表の面が接して配され、軸受
板Jの回転受板−と接する面と反対の裏面には固定側の
摺動面部材として円板状の固定受板Sが接して配されて
いる。軸受板3の該裏面の中心及び固定受板!の軸受板
3に対向する面の中心には夫々半。
FIG. 1 is a longitudinal sectional view of an embodiment of the invention. Axis of rotation! A disc-shaped rotating receiving plate is press-fitted to the end as a sliding surface member on the rotating side via a key/a, and the front surface of the bearing plate 3, which is a ceramic disc, is in contact with the rotating receiving plate. A disk-shaped fixed receiving plate S is disposed as a fixed-side sliding surface member on the back surface of the bearing plate J, which is opposite to the surface in contact with the rotating receiving plate. The center of the back surface of the bearing plate 3 and the fixed receiving plate! Each half is located at the center of the surface facing the bearing plate 3.

球状の凹部II、Aが設けられ、該凹部ダ、6に芯材と
して小球7が嵌まり込んでいる。固定受板!の軸受板3
と接する面の反対面の中心には球面凹座tが設けられ、
球面凹座lには固設部材にねじ込まれたアジャストスク
リューデの先端の球面が当接して接している。固定受板
!の外周上の軸方向の孔には不動部分に固定した回り止
めピン10がゆるく嵌入している。
Spherical recesses II and A are provided, and a small ball 7 is fitted into the recesses II and A as a core material. Fixed receiving plate! bearing plate 3
A spherical concave seat t is provided at the center of the opposite surface to the surface in contact with,
The spherical concave seat 1 is in contact with the spherical surface of the tip of the adjusting screw screwed into the fixed member. Fixed receiving plate! A detent pin 10 fixed to an immovable part is loosely fitted into an axial hole on the outer periphery of the rotor.

この固定受板Sはレベリングブロックの機能を果すと同
時に軸受板Jに対する摺動面部材となっている。小球り
と凹部弘、6とは軸受板3と固定受板Sが固体接触する
状態において固体接触又は微小隙間があり、軸受板3が
半径方向に移動が許されないようになっている。
This fixed receiving plate S functions as a leveling block and at the same time serves as a sliding surface member for the bearing plate J. When the bearing plate 3 and the fixed receiving plate S are in solid contact, there is a solid contact or a small gap between the small ball and the recessed part 6, so that the bearing plate 3 is not allowed to move in the radial direction.

軸受板3の表の面には第2図の上側より見た平面図に示
すようにスパイラル溝//が等配して設けである。この
スパイラル溝/lは軸受板Jの外周を放射状に夫々外方
へ突きぬけており、中心部には存しない。軸受板3の裏
面にはスパイラル溝//と同様なスパイラル溝//°が
設けである(図には点線で示されている)。
As shown in the top plan view of FIG. 2, spiral grooves are provided on the front surface of the bearing plate 3 at equal intervals. The spiral grooves /l extend radially outward through the outer periphery of the bearing plate J, and do not exist in the center. A spiral groove //° similar to the spiral groove // is provided on the back surface of the bearing plate 3 (indicated by a dotted line in the figure).

この上下のスパイラル溝//、//“は捩れ方向が反対
方向である(第3図は底面図である)。
The upper and lower spiral grooves //, //'' are twisted in opposite directions (FIG. 3 is a bottom view).

同じ側から見ると第2図のようたこ同方向である。When viewed from the same side, the octopuses are in the same direction as shown in Figure 2.

軸受板3の両面は夫々平行で平面度lμ以下の平面の摺
動面/コ、/コ′に作られており、スパイラル溝//、
//’の深さは夫々3〜50μm程度となっている。
Both sides of the bearing plate 3 are parallel to each other and have flat sliding surfaces /c, /c' with a flatness of less than lμ, and spiral grooves //,
The depth of //' is approximately 3 to 50 μm, respectively.

スパイラル溝//、//’及び凹部ダ、乙には例えばグ
リースのような高粘性潤滑剤が封ぜられている。スパイ
ラル溝//、//’の深さを定める要因としては用いら
れる潤滑剤の粘性が最も大きく、又回転速度にも依存す
る。軸受板3と回転受板コ、固定受板5を引離すように
軸方向に引張力を加えたとき真空圧により唖めで大きな
抵抗力が働くような深さであって、潤滑剤の粘度が大き
いときには深く、粘度が小さいときには浅くするように
選ばれる。スパイラル溝//、l/’の幅は軸受負荷能
力の点からはせまい方がよいが、この軸受では負荷能力
がテイルテイングパッドを用いた浮動型のスラスト軸受
に比べて極めて大であるのでそれ程の制約はない。
The spiral grooves //, //' and the recesses D and B are filled with a high viscosity lubricant such as grease. The viscosity of the lubricant used is the largest factor determining the depth of the spiral grooves // and //', and it also depends on the rotation speed. The depth is such that when a tensile force is applied in the axial direction to separate the bearing plate 3, rotating bearing plate 5, and fixed bearing plate 5, a large resistance force is exerted due to the vacuum pressure, and the viscosity of the lubricant is low. When the viscosity is large, the depth is chosen to be deep, and when the viscosity is low, the depth is chosen to be shallow. The width of the spiral groove //, l/' should be narrower in terms of bearing load capacity, but since the load capacity of this bearing is extremely large compared to a floating type thrust bearing that uses tailing pads, it is There are no restrictions.

軸受板3はセラミックス材例えば炭化珪素(SiC)、
窒化珪素(stiN4)が使用され、回転受板コ、固定
受板3にはアルミナセラミックス、超硬合金、ステンレ
ス、高鉛青銅、普通鋳鉄或いは軸受板と同−材料等の何
れかが用いられ、小球7は硬質材料で熱伝導のよいもの
が望ましく、β−8iCの針状結晶で緻密体は硬質であ
り、熱の良導体であるから好適である。或いは高強度の
Si3N4緻密体も好適である。
The bearing plate 3 is made of a ceramic material such as silicon carbide (SiC),
Silicon nitride (stiN4) is used, and the rotating receiving plate 3 and the fixed receiving plate 3 are made of alumina ceramics, cemented carbide, stainless steel, high lead bronze, ordinary cast iron, or the same material as the bearing plate. The small spheres 7 are preferably made of a hard material with good thermal conductivity, and are preferably made of acicular crystals of β-8iC, which have a hard, dense body and are good conductors of heat. Alternatively, a high-strength Si3N4 dense body is also suitable.

軸受板3に用いられるセラミックス材は、耐食性に優れ
ている反面、加工性が悪いため、その表面に3〜30μ
mの極めて浅いスパイラル状の溝加工を施すことは容易
ではないが、本発明では、所定形状のセラミックス族の
被加工材の表面を、所定形状のスパイラル状の樹脂マス
クで遮蔽した上、微粉のアルミナ質研削材を上記樹脂マ
スク上に噴射するショツトブラスト加工法により、極め
て短時間にスパイラル溝を形成する。
Although the ceramic material used for the bearing plate 3 has excellent corrosion resistance, it has poor workability, so the surface has a thickness of 3 to 30 μm.
Although it is not easy to form extremely shallow spiral grooves of m in diameter, in the present invention, the surface of a ceramic workpiece of a predetermined shape is shielded with a spiral resin mask of a predetermined shape, and then fine powder is removed. Spiral grooves are formed in an extremely short time by a shot blasting method in which alumina abrasive material is sprayed onto the resin mask.

上記のスパイラル状の樹脂マスクは、ポリエステル系の
液体感光性樹脂を紫外線で露光・硬化させたもので、製
作方法としては、先ず、スパイラル状溝のネガフィルム
を作成し、これをガラス板上に置き、この上に透明のカ
バーフィルムを重ね、感光性を有する液体樹脂を注加す
る。また、この樹脂の上に、さらに、ベース・フィルム
をロールでラミネートする。
The above spiral-shaped resin mask is made by exposing and curing polyester-based liquid photosensitive resin with ultraviolet light.The manufacturing method is to first create a negative film with spiral grooves, and then place it on a glass plate. A transparent cover film is placed on top of this, and a photosensitive liquid resin is poured into it. Further, a base film is further laminated on top of this resin using a roll.

次に、紫外線ランプで数秒間露光させ、ネガフィルムを
通して″、露光した部分の樹脂は硬化し、フィルムと同
一形状のスパイラル溝形状をした樹脂マスクが出来る。
Next, the resin is exposed to ultraviolet light for a few seconds and passed through a negative film, and the exposed area of the resin hardens, creating a resin mask with spiral grooves in the same shape as the film.

軸受板3の製作用に使用した樹脂マスクは、一層のベー
スフィルムと粘着性を有するスパイラル溝模様を有する
樹脂、及び保護用紙とからなっている。ショット加工す
るときは保護用紙をとり、被加工材表面に貼り付け、ベ
ース・フィルムの一層をはがした後行う。軸受板3の厚
みは−n程度、直径は平面図1こ示す程度である°。
The resin mask used for manufacturing the bearing plate 3 consists of a base film, an adhesive resin with a spiral groove pattern, and a protective paper. When performing shot processing, remove the protective paper, attach it to the surface of the workpiece, and remove one layer of the base film. The thickness of the bearing plate 3 is approximately -n, and the diameter is approximately as shown in the plan view 1.

回転軸/を第2図において図示矢印イの反時計方向に回
転すると回転受板λは同方向に回転する。回転受板−と
軸受板3の表側の面間の潤滑剤は同矢印方向に附勢され
るのでスパイラル溝ll中の潤滑剤は該溝中を中心に向
かい動圧が発生し、軸受板3の摺動面12と回転受板2
間に発生した動圧により回転軸/のスラスト負荷に対向
して液膜が形成せられ、流体潤滑が行われる。軸受板3
の裏面では、軸受板3と固定受板3間の潤滑剤が軸受板
3のスパイラル溝//゛により放射状に移動しようとし
て軸受板3と固定受板!の中心部の間に真空圧が生ずる
(考察によれば潤滑剤は外方へ附勢はされるが移動しな
い)軸受板3は固定受板!に対して引張られて液膜は極
薄となって密接し、固定された状態となる。
When the rotating shaft / is rotated in the counterclockwise direction indicated by the arrow A in FIG. 2, the rotary receiving plate λ is rotated in the same direction. Since the lubricant between the rotating receiving plate and the front surface of the bearing plate 3 is energized in the direction of the same arrow, the lubricant in the spiral groove 11 generates dynamic pressure toward the center in the groove, and the bearing plate 3 sliding surface 12 and rotating receiving plate 2
Due to the dynamic pressure generated during this time, a liquid film is formed opposite the thrust load on the rotating shaft, and fluid lubrication is performed. Bearing plate 3
On the back side of the bearing plate 3 and the fixed receiving plate 3, the lubricant between the bearing plate 3 and the fixed receiving plate 3 tries to move radially due to the spiral grooves of the bearing plate 3. A vacuum pressure is created between the centers of (According to the discussion, the lubricant is forced outward but does not move) Bearing plate 3 is a fixed receiving plate! The liquid film becomes extremely thin as it is pulled against the object, and becomes in a fixed state.

次に静止状態から上記と逆方向に第2図の図示矢印口方
向に回転軸lを回転すると回転受板−が時計方向に回転
するので回転受板コと軸受板3間の潤滑剤はスパイラル
溝//により外周に向って排除されようとして真空圧が
生じて、回転受板コと軸受板3は吸着固定され、軸受板
3は時計方向に回転する。軸受板3が時計方向に回転す
ると固定受板よとの間の潤滑剤はスパイラル溝//′に
より中心側へ移動させられ、軸受板3と固定受板3間に
は動圧が発生して液膜が生成されてスラスト荷重に抗し
、流体潤滑が行われる。
Next, when the rotating shaft l is rotated from a stationary state in the opposite direction to the above in the direction of the arrow shown in Fig. 2, the rotating receiving plate 1 rotates clockwise, so that the lubricant between the rotating receiving plate 1 and the bearing plate 3 is spiraled. Vacuum pressure is generated as the vacuum pressure is removed toward the outer periphery by the groove //, and the rotary receiving plate 3 and the bearing plate 3 are attracted and fixed, and the bearing plate 3 rotates clockwise. When the bearing plate 3 rotates clockwise, the lubricant between the fixed receiving plate and the fixed receiving plate is moved toward the center by the spiral groove //', and dynamic pressure is generated between the bearing plate 3 and the fixed receiving plate 3. A liquid film is generated to resist the thrust load and provide fluid lubrication.

回転中の回転軸lを停止しないで回転方向を変えると、
最初の回転方向が上述した反時計回りの矢印イ、二番目
に説明した時計回りの矢印口にかかわらず回転方向を変
換する過程において軸受板3が中心から半径方向にずれ
ようとする現象が見られる。これは第1図において小球
7を外しておいて回転軸lを停止しないで正逆転すると
生ずる場合があることで確かめられる。
If you change the direction of rotation without stopping the rotating axis l,
Regardless of whether the first direction of rotation is the counterclockwise arrow A mentioned above or the second clockwise direction, a phenomenon is observed in which the bearing plate 3 tends to shift radially from the center during the process of changing the rotation direction. It will be done. This can be confirmed by the fact that, in FIG. 1, this may occur if the small ball 7 is removed and the rotating shaft l is rotated forward or backward without stopping.

この原因は矢印イの回転方向から矢印口に回転方向が変
る際は軸受板3と固定受板!の吸着力が完全にとけない
間に軸受板3と回転受板−の吸着力が不完全に発生し、
且つ動圧が充分発生しないので動圧発生による潤滑剤の
渦流によるセンタリング作用が小さいためと考えられ、
又、矢印口の回転方向から矢印イの回転方向に変える際
には軸受板Jと回転受板−の吸着力が完全にとけない間
に、軸受板3と固定受板よとの吸着が不完全に起り且つ
動圧が充分発生しないので上記センタリング作用が小さ
いためと考えることができる。
The cause of this is that when the rotation direction changes from the direction of rotation indicated by arrow A to the direction of arrow A, the bearing plate 3 and the fixed receiving plate! While the adsorption force between the bearing plate 3 and the rotary receiving plate is not completely resolved, the adsorption force between the bearing plate 3 and the rotary receiving plate is incompletely generated.
In addition, it is thought that this is because not enough dynamic pressure is generated, so the centering effect due to the vortex flow of the lubricant due to the generation of dynamic pressure is small.
Also, when changing the direction of rotation from the direction of arrow A to the direction of rotation indicated by arrow A, the adhesion between the bearing plate 3 and the fixed support plate is not completed while the adhesion force between the bearing plate J and the rotating support plate is not completely released. This can be considered to be because the above-mentioned centering effect is small because it occurs completely and dynamic pressure is not generated sufficiently.

本発明では軸受板3と固定受板3には夫々凹部ダ、6を
設けて小球りを納めであるため、軸受板3は固定受板!
の中心に対して同中心を保つ。
In the present invention, the bearing plate 3 and the fixed receiving plate 3 are provided with recesses D and 6, respectively, to accommodate small balls, so the bearing plate 3 is a fixed receiving plate!
remain concentric with the center of

本発明のスラスト軸受の負荷実験をのべる。A load experiment of the thrust bearing of the present invention will be described.

実験による上記軸受板3と回転受板コ、軸受板Jと固定
受板3間に粘性の大きいグリース、油等を塗布し、スラ
スト負荷を加えてくり返し正逆転を行った処、lO万回
くり返すも、軸受面の損傷は一切なく、且つ上記の潤滑
油が全く損耗していないことが判明した。
In an experiment, highly viscous grease, oil, etc. was applied between the bearing plate 3 and the rotating bearing plate 3, and between the bearing plate J and the fixed bearing plate 3, and a thrust load was applied and the forward and reverse rotation was repeated 10,000 times. However, it was found that there was no damage to the bearing surface and that the lubricating oil was not worn out at all.

常温水道水中で、回転数、7000 rpmの試験環境
で、回転受板コ、固定受板3に夫々アルミナ・セラミッ
クスを用いた場合、正回転、逆回転ともに、j !; 
00 Kgfのスラスト荷重のときJ!OW(ワット)
の動力損失のみであった。動圧を生じない側の面間では
軸受板3は回転していないことが、確認された。これは
、スパイラル溝で動圧効果を有するときの摩擦係数は0
.003であるのに対し、このときの裏面と対向受板間
での摩擦係数はO,7前後であり、両面間には回転トル
ク値として約700倍以上の差があることによるためで
ある。
When alumina ceramics were used for the rotating receiving plate 3 and the fixed receiving plate 3 in a test environment of 7000 rpm in tap water at room temperature, both forward and reverse rotations were j! ;
When the thrust load is 00 Kgf, J! OW (watt)
The only power loss was . It was confirmed that the bearing plate 3 did not rotate between the surfaces on the side where no dynamic pressure was generated. This means that when the spiral groove has a dynamic pressure effect, the friction coefficient is 0.
.. 003, whereas the coefficient of friction between the back surface and the opposing receiving plate at this time is around 0.7, and this is because there is a difference of about 700 times or more in rotational torque value between both surfaces.

尚、回転軸lのスラスト荷重が負の値、即ち、軸受板J
と各受板λ、3を引離す方向の荷重に対しても、吸着力
が発生して抵抗力があり、この方向の負荷にも対抗でき
る。
Note that if the thrust load of the rotating shaft l is a negative value, that is, the bearing plate J
Even against a load in a direction that separates each receiving plate λ, 3, an adsorption force is generated and there is a resistance force, and the load in this direction can also be resisted.

第7図は従来のテイルテイングバットを用いた浮動盤ス
ラスト軸受と本発明のスラスト軸受の動力損失を比較し
た線図であって、73%プロピレン・グリコール液中で
、回転受板コ、固定受板!に夫々普通鋳鉄(FCCO2
を用いたときの100100O0までの損失動力(図の
四角印)と、従来、水中モータ等に使われているテイル
テイングパッド軸受を使用したときの損失動力(図の三
角印)を示す。従来品の軸受は/ 100Kffで焼付
き、このときの損失動力はlλoovrと大きく、本発
明品では10000に4fの高負荷でも焼付かず、損失
動力も2101にと極端に少ない。
FIG. 7 is a diagram comparing the power loss of a floating plate thrust bearing using a conventional tailing butt and a thrust bearing of the present invention, in which the rotating plate, fixed plate, and Board! Normal cast iron (FCCO2)
Power loss up to 100,100O0 (square mark in the figure) is shown when using a tailing pad bearing, which is conventionally used in underwater motors, etc. (triangle mark in the figure) is shown. The conventional bearing seizes at 100 Kff, and the power loss at this time is as large as 1λoovr, whereas the product of the present invention does not seize even under a high load of 10,000 to 4 f, and the power loss is extremely small at 2,101 kff.

更に、スラリー液中において試験した処、上記性能を発
揮し、軸受板3と各受板コ、!との間にはスラリーの浸
入が見られなかった。
Furthermore, when tested in a slurry liquid, the above performance was demonstrated, and the bearing plate 3 and each bearing plate,! No infiltration of slurry was observed between the two.

第3図はセラミックス円板の軸受板と摺擦する摺動面部
材の中心の各凹部、及び該両凹部に収容される芯材の形
状を示す。
FIG. 3 shows the recesses at the center of the sliding surface member that slides against the bearing plate of the ceramic disk, and the shape of the core material accommodated in both recesses.

第3図(a)は芯材が小球7、凹部ダ、6が円錐孔であ
る。この実施例によれば小球りの球径を選んで凹部ダ、
6と小球り間のすきま調整が容易である。
In FIG. 3(a), the core material is a small ball 7, the concave portion 6 is a conical hole. According to this embodiment, by selecting the diameter of the small ball, the concave portion is
It is easy to adjust the gap between 6 and the small ball.

第3図(1))は芯材が小球り、凹部11.Aは小球7
の球径と同径の円筒孔である。この実施例では円筒孔を
研削して加工精度を確保し得る。
In Fig. 3 (1)), the core material is a small ball, and the recess 11. A is small ball 7
It is a cylindrical hole with the same diameter as the sphere. In this embodiment, machining accuracy can be ensured by grinding the cylindrical hole.

第よ図(C)、第3図(d)は芯材が断面楕円形の回転
軸lの中心を中心とする回転体の楕円体/6゜/7であ
って第8図(C)は軸方向に短かく、第8図(d)は軸
方向に長く、夫々凹部17.Aは該楕円体/A、/7に
夫々沿った形状である。
Figures 1 (C) and 3 (d) are ellipsoids of rotation whose core material is an ellipsoid in cross section and whose center is the rotation axis l, and Figure 8 (C) is The concave portion 17. is short in the axial direction, and long in the axial direction in FIG. 8(d). A has a shape along the ellipsoids /A and /7, respectively.

第S図(e)は芯材が円筒/lで、・凹所II、Aが同
円筒の嵌入する円筒形である。
In Fig. S (e), the core material is a cylinder/l, and the recess II, A has a cylindrical shape into which the same cylinder fits.

実施例は高粘性液体を軸受板と各受板間で保持させたが
、軸受板又は受板を多孔質部材としておけば湿潤性があ
るので、潤滑剤を含浸させておくと万一軸受板と受板間
の潤滑剤がなくなっても再起動が容易で運転可能となる
In the example, a highly viscous liquid was held between the bearing plate and each receiving plate, but if the bearing plate or receiving plate is made of a porous member, it will have wettability, so if it is impregnated with lubricant, the bearing plate should Even if the lubricant between the and the receiving plate runs out, restarting is easy and operation is possible.

実施例は軸受板と各受板間に高粘性潤滑剤例えばグリー
スを保持させたから、大気中、液体中にか\わらず利用
できるが、軸受板と各受板間に当初潤滑剤を保有せずス
ラスト軸受全体を液体例えば水中において用いることが
できる。
In the embodiment, a high viscosity lubricant such as grease is held between the bearing plate and each receiving plate, so it can be used regardless of whether it is in the atmosphere or in liquid. The entire thrust bearing can be used in liquids, for example underwater.

実施例は凹部l、6を軸受板と固定受板との間に設けた
が、軸受板と回転受板間の中心1こ凹部を設けて、小球
をこの凹部に嵌めてもよい。この場合軸受板両面に小球
を配するようにすると成程度のラジアル荷重を担持てき
る。
In the embodiment, the recesses 1 and 6 are provided between the bearing plate and the fixed receiving plate, but a recess 1 at the center between the bearing plate and the rotating receiving plate may be provided, and the small ball may be fitted into this recess. In this case, if small balls are arranged on both sides of the bearing plate, a certain amount of radial load can be supported.

実施例は回転受板コを回転軸/Iこ取付けているがこれ
は回転軸/端を軸受板に対する摺動面部材としてもよい
ことは勿論である(次の本願第2発明参照)。
In the embodiment, the rotary receiving plate is attached to the rotating shaft/I, but it goes without saying that the rotating shaft/end may be used as a sliding surface member for the bearing plate (see the following second invention of the present application).

第6図は本願第2発明の実施例の要部を示す縦断面図で
ある。回転軸lの端面ば回転平面/!となっており、回
転平面15と軸受板3−/が接している。回転平面/よ
は第1実施例の回転受板コの摺動面に相当する。軸受板
3−/は第1実施例の軸受板3と同一である。固定受板
よ一/は両面が平行な円板であって固定受板!−/と軸
受板、3−/の面、小球7−/と凹部ダ、6の関係等は
第1実施例の固定受板よと軸受板3間の関係と同じであ
る。固定受板j’−/の下面には軸受板3−コが小球ク
ー−を介して接し、軸受板3−=の下面は小球7を介し
てレベリングブロックを兼ねる固定受板!が接する。
FIG. 6 is a longitudinal cross-sectional view showing a main part of an embodiment of the second invention of the present application. The end face of the rotation axis l is the rotation plane /! The rotating plane 15 and the bearing plate 3-/ are in contact with each other. The rotating plane corresponds to the sliding surface of the rotating receiving plate in the first embodiment. The bearing plate 3-/ is the same as the bearing plate 3 of the first embodiment. The fixed receiving plate is a circular plate with parallel surfaces on both sides, and is a fixed receiving plate! The relationships between -/ and the bearing plate, the surfaces 3-/, the small balls 7-/ and the recesses DA, 6, etc. are the same as those between the fixed receiving plate and the bearing plate 3 in the first embodiment. A bearing plate 3-co is in contact with the lower surface of the fixed receiving plate j'-/ via a small ball 7, and the lower surface of the bearing plate 3-= is a fixed receiving plate that also serves as a leveling block via a small ball 7! touches.

この場合スパイラル溝の捩れ方向は第6図の上方から見
て総て第2図(以下第6図の回転方向は第二図で示す)
と同方向としであるがら、軸受板J−/は軸受板3(第
1発明)、或は軸受板3−.2を用いることができる。
In this case, the twisting direction of the spiral groove is shown in Figure 2 when viewed from above in Figure 6 (hereinafter, the rotation direction in Figure 6 is shown in Figure 2).
bearing plate J-/ is in the same direction as bearing plate 3 (first invention), or bearing plate 3-. 2 can be used.

回転軸/が第2図において反時計方向に回転すると通常
は回転軸/の回転平面13と軸受板3−/の上側の面で
摺動し、固定受板よ−へ軸受板3−.2、固定受板!は
静止している。(慣性、静止摩擦、動摩擦を考慮に入れ
ると先ずこのようになるあ回転軸/が上記と反対に回転
すると回転平面/3と軸受板3−/の上面は吸着固定さ
れ、軸受板j−/と固定受板!−/間で摺動回転する。
When the rotating shaft / rotates counterclockwise in FIG. 2, it usually slides on the rotating plane 13 of the rotating shaft / and the upper surface of the bearing plate 3-/, and moves toward the fixed receiving plate. 2. Fixed receiving plate! is stationary. (Taking inertia, static friction, and kinetic friction into account, the first result is as follows. When the rotating shaft / rotates in the opposite direction to the above, the rotating plane /3 and the upper surface of the bearing plate 3-/ are fixed by suction, and the bearing plate j-/ It slides and rotates between the fixed receiving plate !-/.

軸受板3−/と回転平面lS間で焼付いたり、摺動面の
損傷により抵抗力が増大すると反時計方向の回転軸/の
回転では軸受板3−/と固定受板!−/は吸着固定され
るので固定受板よ−7が回転板となって回転し、固定受
板j−/と軸受板3−コ間が摺動面となって回転する。
If the resistance force increases due to seizing between the bearing plate 3-/ and the rotating plane IS or damage to the sliding surface, the bearing plate 3-/ and the fixed receiving plate will be damaged when the rotating shaft rotates counterclockwise! Since the j-/ is fixed by suction, the fixed receiving plate j-7 acts as a rotating plate and rotates, and the space between the fixed receiving plate j-/ and the bearing plate 3-co acts as a sliding surface and rotates.

同様に軸受板3−/と固定受板!−/間で焼付いたり摺
動面の損傷があり抵抗が増大すると時計方向の回転軸l
の回転では回転軸lの回転平面/3と軸受板3−/は吸
着固定され、固定受板5−/は時計方向に回転して軸受
板3−コと吸着固定されて、軸受板3−一は時計方向に
回転し、軸受板3−=と固定受板5の間に動圧が発生し
てスラスト軸受の作用をする。
Similarly, bearing plate 3-/ and fixed bearing plate! - If the resistance increases due to seizing or damage to the sliding surface between
During the rotation, the rotating plane /3 of the rotating shaft l and the bearing plate 3-/ are fixed by suction, and the fixed receiving plate 5-/ is rotated clockwise and fixed by suction to the bearing plate 3-/, and the bearing plate 3-/ is fixed by suction. 1 rotates clockwise, dynamic pressure is generated between the bearing plate 3-= and the fixed receiving plate 5, and it acts as a thrust bearing.

このようにこの実施例によれば安全性、信頼性を高度に
要求されるスラスト軸受に適する。
As described above, this embodiment is suitable for thrust bearings that require a high degree of safety and reliability.

この実施例の技術思想を拡張すると軸受板と各受板を交
互に小球を重ねることにより安全性を高め得る。
Expanding the technical concept of this embodiment, safety can be improved by alternately stacking small balls on the bearing plate and each receiving plate.

尚、このような多重に軸受板と各受板を重ねたスラスト
軸受において各摺動面の相対回転数を低くするように軸
受板と受板外周に羽根又は羽根相当の形状を備えるよう
にして相対回転割合を保つようにすると高速回転可能と
なる。
In addition, in such a thrust bearing in which the bearing plate and each receiving plate are stacked in multiple layers, blades or a shape equivalent to a blade are provided on the outer periphery of the bearing plate and the receiving plate so as to lower the relative rotation speed of each sliding surface. High speed rotation is possible by maintaining the relative rotation ratio.

第6図において小球を備えない面は回転平面と軸受板3
−7間としたが小球を備えない対向摺動面は一個所に限
られるがどの摺動面間でもよい。勿論、回転軸/と軸受
3−1間に小球を備え、全摺動面間1こ小球を配すると
ラジアル荷重を担持できる。
In Fig. 6, the surface without small balls is the rotating plane and the bearing plate 3.
-7, but the number of opposing sliding surfaces not provided with small balls is limited to one location, but it may be between any sliding surfaces. Of course, if a small ball is provided between the rotating shaft/bearing 3-1 and one small ball is placed between all sliding surfaces, the radial load can be supported.

〔発明の効果〕〔Effect of the invention〕

本願第1発明は回転軸の軸端部に設けられた回転側摺動
面部材の軸直角の摺動面に対向する固定側摺動面部材の
摺動面との間に、両面に夫々の面側から見て互に逆方向
のスパイラル溝を形成したセラミックス円板を回転側摺
動面部材及び固定側摺動面部材の摺動面に摺動するよう
に介在したスラスト軸受において、該セラミックス円板
の少くとも一方の面もしくは両面の中心に凹部を形成し
、該凹部のあるセラミックス円板の面に対向する摺動面
を有する摺動面部材に該凹部と対向して凹部を設け、対
向する両凹部にわたって芯材を収容してなるスラスト軸
受とした力1ら軸受板が半径方向に移動する現象がなく
なり、正逆転自在に用いることができ、横型機械にも用
いることができる。小球を用いている場合、軸受板は自
在に傾き得るので正確に均一な潤滑剤の液膜が形成され
る。
The first invention of the present application has a sliding surface perpendicular to the axis of a rotating sliding surface member provided at the end of a rotating shaft and a sliding surface of a fixed sliding surface member opposing the rotating shaft. In a thrust bearing in which a ceramic disk having spiral grooves formed in opposite directions when viewed from the surface side is interposed so as to slide on the sliding surfaces of a rotating side sliding surface member and a stationary side sliding surface member, the ceramic A recess is formed in the center of at least one surface or both surfaces of the disc, and a recess is provided opposite to the recess on a sliding surface member having a sliding surface facing the surface of the ceramic disc with the recess, A thrust bearing in which a core material is accommodated across both opposing recesses eliminates the phenomenon in which the bearing plate moves in the radial direction due to force 1, and can be used in forward and reverse directions, and can also be used in horizontal machines. When using small balls, the bearing plate can be tilted freely so that a precisely uniform film of lubricant is formed.

小球が耐摩耗性の優れた緻密質セラミックスであり、予
めこの小球の入る凹部及びスパイラル状溝部に高粘性の
液体、例えば蒸気圧の低いフッ素オイル等を塗布して付
着しておけば乾式状態でも起動トルクが小さく、回転駆
動させることができる。またこの場合動圧の発生時は高
圧部で高粘性液の膜が形成され、停止時には再びスパイ
ラル溝部に滞留するので高粘性液体の消耗は極めて少な
く、実用上、長期間にわたって乾式条件下で運転できる
The small balls are made of dense ceramics with excellent wear resistance, and if the recesses and spiral grooves into which the small balls enter are coated with a highly viscous liquid, such as fluorinated oil with low vapor pressure, etc., the dry method can be used. Even in this state, the starting torque is small and it can be rotated. In addition, in this case, when dynamic pressure is generated, a film of highly viscous liquid is formed in the high pressure section, and when it is stopped, it stagnates in the spiral groove again, so consumption of the high viscous liquid is extremely small, making it practical to operate under dry conditions for a long period of time. can.

本願第2発明は回転側摺動面部材と固定側摺動面部材間
に交互にスパイラル溝を設けたセラミックス円板と平板
の円板を摺擦し、夫々の対向摺動面側全部又は一つを除
く全部の中心部に凹部を設けて該対向する凹部にわたっ
て芯材を配したから、セラミックス円板及び平板の円板
は半径方向に逸脱せず、正逆転自在となる。何れかセラ
ミックス゛円板と他の平板の円板の摺動面間Iζ抵抗増
大又は焼付が生じても他のセラミックス円板が作動して
スラスト軸受として機能し、信頼性が高くなる。
The second invention of the present application slides a ceramic disk and a flat disk in which spiral grooves are provided alternately between a rotating side sliding surface member and a stationary side sliding surface member, and all or part of each opposing sliding surface side is rubbed. Since recesses are provided in all but one of the centers and the core material is disposed across the opposing recesses, the ceramic disc and the flat disc do not deviate in the radial direction and can freely rotate in the forward and backward directions. Even if an increase in Iζ resistance or seizure occurs between the sliding surfaces of any of the ceramic discs and other flat discs, the other ceramic discs operate and function as a thrust bearing, increasing reliability.

各実施態様は上記本願第1発明の実施態様と同効を有す
る。
Each embodiment has the same effect as the embodiment of the first invention of the present application.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は本願第1発明の実施例の縦断面図、第2図は軸
受板の平面図、第3図は軸受板の底面図、第ダ図は動力
損失を比較した線図、第3図(a)乃至第3図(6)は
凹部と芯材の他の実施例を示す縦断面図、第6図は本願
第2発明の実施例の要部を示す縦断面図である。 l・・回転軸 /a・・キー コ・・回転受板 j 、
 j−/ 、 、?−20・軸受板 II、A・・凹部
!、!−/、!−−am固定受板 ? 、 7−/ 、
クーJ @ m小球 !・・球面凹座 タ・・アジャス
トスクリュー 10・・回り止めピン //、//’−
・スパイラル溝 /、2./コ2・拳摺動面 /!・・
回転平面 /lh、/7・・楕円体。 第1図 第4図 スラ又ト$T号(k5f) 第8図(b)
7 is a longitudinal sectional view of the embodiment of the first invention of the present application, FIG. 2 is a plan view of the bearing plate, FIG. 3 is a bottom view of the bearing plate, FIG. FIGS. 3(a) to 3(6) are longitudinal sectional views showing other embodiments of the recess and the core material, and FIG. 6 is a longitudinal sectional view showing essential parts of the embodiment of the second invention of the present application. l...Rotating shaft /a...Key K...Rotating receiving plate j,
j-/ , ,? -20・Bearing plate II, A・・Concavity! ,! -/,! --am fixed receiving plate? , 7-/ ,
Ku J @ m small ball! ... Spherical concave seat Ta... Adjustment screw 10... Stopping pin //, //'-
・Spiral groove /, 2. /Co2・Fist sliding surface/!・・・
Rotation plane /lh, /7...Ellipsoid. Figure 1 Figure 4 Suramato $T (k5f) Figure 8 (b)

Claims (1)

【特許請求の範囲】 1、回転軸の軸端部に設けられた回転側摺動面部材の軸
直角の摺動面とこの摺動面に対向する固定側摺動面部材
の摺動面との間に、両面に夫々の面側から見て互に逆方
向のスパイラル溝を形成したセラミックス円板を回転側
摺動面部材及び固定側摺動面部材の摺動面に摺動するよ
うに介在したスラスト軸受において、該セラミックス円
板の少くとも一方の面もしくは両面の中心に凹部を形成
し、該凹部のあるセラミックス円板の面に対向する摺動
面を有する摺動面部材に該凹部と対向して凹部を設け、
対向する両凹部にわたつて芯材を収容してなるスラスト
軸受。 2、芯材が小球である特許請求の範囲第1項記載のスラ
スト軸受。 3、凹部が半球状である特許請求の範囲第2項記載のス
ラスト軸受。 4、小球が緻密質のセラミックス材である特許請求の範
囲第2項又は第3項記載のスラスト軸受。 5、小球が入る凹部及びスパイラル溝部に予め高粘性液
体を付着したものである特許請求の範囲第2項又は第3
項記載のスラスト軸受。 6、セラミックス円板の両面には夫々の面側から見て互
に逆方向のスパイラル溝が設けられ、両面が相手摺動面
と摺擦するスラスト軸受において、回転軸の軸端部に設
けられた回転側摺動面部材の軸直角の摺動面とこの摺動
面に対向する固定側摺動面部材の摺動面との間に、回転
側摺動両部材に摺擦するセラミックス円板及び固定側摺
動面部材に摺擦するセラミックス円板を夫々配し、回転
側及び固定側摺動面部材間に、この両セラミックス円板
を含めて、単数又は複数の平板の円板とセラミックス円
板を摺擦するように交互に配し、各セラミックス円板と
摺動面部材、各セラミックス円板と平板の円板の対向面
全部又は一つの対向面を除き対向する中心部の両側にわ
たつて凹部を設け、対向する両凹部にわたつて芯材を収
容してなるスラスト軸受。 7、芯材が小球である特許請求の範囲第6項記載のスラ
スト軸受。 8、各凹部が半球状である特許請求の範囲第7項記載の
スラスト軸受。 9、小球が緻密質のセラミックス材である特許請求の範
囲第7項又は第8項記載のスラスト軸受。 10、小球が緻密質のセラミックス材であつて且つ高粘
性流体を付着したものである特許請求の範囲第7項又は
第8項記載のスラスト軸受。
[Scope of Claims] 1. A sliding surface perpendicular to the axis of a rotating sliding surface member provided at the end of the rotating shaft, and a sliding surface of a stationary sliding surface member opposing this sliding surface. During this process, a ceramic disc having spiral grooves formed in opposite directions when viewed from the respective surfaces is slid onto the sliding surfaces of the rotating side sliding surface member and the stationary side sliding surface member. In the interposed thrust bearing, a recess is formed at the center of at least one surface or both surfaces of the ceramic disk, and the recess is formed in a sliding surface member having a sliding surface facing the surface of the ceramic disk with the recess. A recess is provided facing the
A thrust bearing that accommodates a core material across both opposing recesses. 2. The thrust bearing according to claim 1, wherein the core material is a small ball. 3. The thrust bearing according to claim 2, wherein the recess is semispherical. 4. The thrust bearing according to claim 2 or 3, wherein the small balls are made of a dense ceramic material. 5. Claim 2 or 3, in which a high viscosity liquid is preliminarily attached to the concave portion and the spiral groove portion into which the small sphere enters.
Thrust bearings listed in section. 6. Spiral grooves are provided on both sides of the ceramic disk in opposite directions when viewed from the respective surfaces, and are provided at the shaft end of the rotating shaft in a thrust bearing where both surfaces slide against the mating sliding surface. A ceramic disc is provided between the sliding surface of the rotating sliding surface member perpendicular to the axis and the sliding surface of the stationary sliding surface member opposing this sliding surface, which slides against both the rotating sliding members. A ceramic disc that slides on the sliding surface member on the rotating side and the fixed side is placed between the sliding surface member on the rotating side and the fixed side. The disks are arranged alternately so as to rub, and each ceramic disk and the sliding surface member, each ceramic disk and the entire opposing surface of the flat disk, or both sides of the opposing center except for one opposing surface. A thrust bearing in which a recess is provided and a core material is accommodated across both opposing recesses. 7. The thrust bearing according to claim 6, wherein the core material is a small ball. 8. The thrust bearing according to claim 7, wherein each recess has a hemispherical shape. 9. The thrust bearing according to claim 7 or 8, wherein the small balls are made of a dense ceramic material. 10. The thrust bearing according to claim 7 or 8, wherein the small balls are made of a dense ceramic material and are coated with a highly viscous fluid.
JP60159329A 1985-07-18 1985-07-18 Thrust bearing Granted JPS6220911A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60159329A JPS6220911A (en) 1985-07-18 1985-07-18 Thrust bearing
US06/894,776 US4699525A (en) 1985-07-18 1986-07-10 Thrust bearing
DE8686109491T DE3673278D1 (en) 1985-07-18 1986-07-11 AXIAL BEARING.
EP86109491A EP0209808B1 (en) 1985-07-18 1986-07-11 Thrust bearing
KR1019860005748A KR960000987B1 (en) 1985-07-18 1986-07-16 Thrust bearing
CN86105825.9A CN1005351B (en) 1985-07-18 1986-07-18 Thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159329A JPS6220911A (en) 1985-07-18 1985-07-18 Thrust bearing

Publications (2)

Publication Number Publication Date
JPS6220911A true JPS6220911A (en) 1987-01-29
JPH0424573B2 JPH0424573B2 (en) 1992-04-27

Family

ID=15691435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159329A Granted JPS6220911A (en) 1985-07-18 1985-07-18 Thrust bearing

Country Status (1)

Country Link
JP (1) JPS6220911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220912A (en) * 1985-07-19 1987-01-29 Ebara Res Co Ltd Thrust bearing
JPH01106625U (en) * 1988-01-08 1989-07-18
JPH01293979A (en) * 1988-05-21 1989-11-27 Eidai Co Ltd Manufacture of top plate of sink stand or the like
RU2592176C1 (en) * 2015-06-25 2016-07-20 Игнат Игоревич Иванов Sliding bearing
JP2017522522A (en) * 2014-07-21 2017-08-10 ジョイント・ストック・カンパニー“セントラル・デザイン・ビューロー・オブ・マシーン・ビルディング”Joint Stock Company ‘‘Central Design Bureau Of Machine Building’’ Axial plain bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220912A (en) * 1985-07-19 1987-01-29 Ebara Res Co Ltd Thrust bearing
JPH0461969B2 (en) * 1985-07-19 1992-10-02 Ebara Mfg
JPH01106625U (en) * 1988-01-08 1989-07-18
JPH01293979A (en) * 1988-05-21 1989-11-27 Eidai Co Ltd Manufacture of top plate of sink stand or the like
JPH0581349B2 (en) * 1988-05-21 1993-11-12 Eidai Co Ltd
JP2017522522A (en) * 2014-07-21 2017-08-10 ジョイント・ストック・カンパニー“セントラル・デザイン・ビューロー・オブ・マシーン・ビルディング”Joint Stock Company ‘‘Central Design Bureau Of Machine Building’’ Axial plain bearing
RU2592176C1 (en) * 2015-06-25 2016-07-20 Игнат Игоревич Иванов Sliding bearing

Also Published As

Publication number Publication date
JPH0424573B2 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US4699525A (en) Thrust bearing
JPH0240881B2 (en)
JP2728202B2 (en) Hemispherical type fluid bearing
US5524985A (en) Fluid thermal compensation and containment for hydrodynamic bearings
KR100709101B1 (en) Hydrodynamic bearing unit
JPS6321244B2 (en)
JPS6220911A (en) Thrust bearing
JPH10184668A (en) Fluid bearing device
JPS61206822A (en) Static pressure bearing structure
JPH10131954A (en) Dynamic pressure type fluid bearing device
JPS62288719A (en) Dynamic pressure thrust bearing
JPS6199721A (en) Submerged thrust bearing
JPS6199718A (en) Thrust bearing
JPS5989823A (en) Fluid bearing device
JPH0456892B2 (en)
JPH0424572B2 (en)
JPH0456891B2 (en)
JP4024007B2 (en) Hydrodynamic bearing unit
JPS6220912A (en) Thrust bearing
JPH0456893B2 (en)
JPH0142660Y2 (en)
JPS6235527B2 (en)
JPH03157513A (en) Bearing structure
JPS624920A (en) Thrust bearing
JPS61223320A (en) Thrust bearing