JPH0461969B2 - - Google Patents

Info

Publication number
JPH0461969B2
JPH0461969B2 JP60159647A JP15964785A JPH0461969B2 JP H0461969 B2 JPH0461969 B2 JP H0461969B2 JP 60159647 A JP60159647 A JP 60159647A JP 15964785 A JP15964785 A JP 15964785A JP H0461969 B2 JPH0461969 B2 JP H0461969B2
Authority
JP
Japan
Prior art keywords
sliding surface
bearing
bearing plate
disk
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60159647A
Other languages
Japanese (ja)
Other versions
JPS6220912A (en
Inventor
Shotaro Mizobuchi
Yoshiichi Kimura
Katsumi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP60159647A priority Critical patent/JPS6220912A/en
Priority to US06/894,776 priority patent/US4699525A/en
Priority to DE8686109491T priority patent/DE3673278D1/en
Priority to EP86109491A priority patent/EP0209808B1/en
Priority to KR1019860005748A priority patent/KR960000987B1/en
Priority to CN86105825.9A priority patent/CN1005351B/en
Publication of JPS6220912A publication Critical patent/JPS6220912A/en
Publication of JPH0461969B2 publication Critical patent/JPH0461969B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 「産業上の利用分野」 本発明は動圧効果を利用した正逆転可能なスラ
スト軸受に関する。 「従来の技術」 従来例としては特願昭58−134475号の発明があ
る。該発明は表面に、正転時に動圧効果を生じさ
せる方向に形成されたスパイラル溝を、また裏面
には、逆回転時に動圧効果を生じさせる方向に形
成されたスパイラル溝をそれぞれ設けた硬質材料
からなる中間板を、一方が回転し他方が固定され
た対向する2個の受板の間に介在させたことを特
徴とするスラスト軸受であつて、安価でテイルテ
イングパツド型の浮動式スラスト軸受に比較して
損失動力が1/5以下となつている。 上記、公知例には該スラスト軸受は例えば水中
モータに備えるスラスト軸受のように潤滑、冷却
液中で用いられるようになつており、スラスト軸
受の試験は液体中にて行われており、中間板(以
下軸受板と称する)の外周に接触しないように中
間板の半径方向の移動を阻止する部材が固定側の
部材に設けてある。 「発明が解決しようとする問題点」 上記スラスト軸受は、液体中に浸漬して用いら
れるため、液体を入れた容器状の軸受室を構成す
るか、液体を絶えずスラスト軸受に流下させて液
中にある如くする必要がある。 このようにすると、いわゆる乾式構造の電動機
等では実用上、上記発明のスラスト軸受を装備す
ることは困難であり、一般にはスラスト軸受室を
構成した軸受装置として用いなければならないの
で用いられる範囲が限定される。 又、上記発明のスラスト軸受では軸受板は半径
方向に逸脱した場合はその外周が半径方向の逸脱
を阻止する部材と摺擦してしまう。そのため横型
機械には用いられない。 この発明の目的は両面にスパイラル溝を備えた
軸受を回転側摺動面部材と固定側摺動面部材に摺
擦するように配したスラスト軸受において、スラ
スト軸受単体を機素として、自在にスラスト軸受
装置に応用し得る、応用範囲の広いスラスト軸受
を提供することを目的とする。 〔発明の構成〕 「問題点を解決するための手段」 本発明は両面に互いに反対方向のスパイラル溝
を設け、片面もしくは両面の中心部に凹部を設け
たセラミツクス円板と、片面もしくは両面にセラ
ミツクス円板の凹部に対向する凹部を有する平板
の円板とをセラミツクス円板と平板の円板との両
凹部にわたつて小球を収容して合わせ、且つセラ
ミツクス円板と平板の円板、小球とセラミツクス
円板及び平板の円板間に高粘性潤滑材を介在して
組立てられ、セラミツクス円板、平板の円板、小
球が組立状態において離れることなくユニツトと
して運搬、軸受装置の組立、分解等の取扱いが行
われることを特徴とするスラスト軸受ユニツトの
取扱方法である。 「作用」 セラミツクス円板と平板の円板が高粘性潤滑剤
により吸着されているのでそのまゝ単位スラスト
軸受として取扱うことができる。組立てられると
セラミツクス円板、或は平板の円板が半径方向に
逸脱しない。軸受作用はスパイラル溝により片面
が動圧流体軸受として作用し、他の片面が吸着作
用をして正逆回転に対して何れかの面が摺動す
る。 「実施例」 以下、この発明の実施例を図面により説明す
る。第1図は縦断面図、第2図は第1図の平面図
である。 1は両面に多数のスパイラル溝2を設けたセラ
ミツクスの円板でできている軸受板、4は軸受板
1の摺動面3に高粘性潤滑剤の液膜を介して接す
る摺動面を備えた両面が正確に平行な円板形の摺
動面部材、6は軸受板1と摺動面部材4の対向面
の夫々中心に設けた半球形の凹部7,8に収容さ
れている小球、9は小球6と軸受板1及び摺動面
部材4との間、軸受板1のスパイラル溝2と摺動
面部材4の間及び軸受板1の摺動面3と摺動面部
[Object of the Invention] "Industrial Field of Application" The present invention relates to a forward and reverse thrust bearing that utilizes dynamic pressure effects. "Prior Art" A conventional example is the invention disclosed in Japanese Patent Application No. 134475/1982. The invention provides a hard material having spiral grooves formed on the front surface in a direction that produces a dynamic pressure effect during forward rotation, and spiral grooves formed on the back surface in a direction that produces a hydrodynamic pressure effect during reverse rotation. An inexpensive tailing pad type floating thrust bearing, characterized in that an intermediate plate made of material is interposed between two opposing receiving plates, one of which rotates and the other which is fixed. The power loss is less than 1/5 compared to the previous model. In the above-mentioned known examples, the thrust bearings are used in lubricating and cooling liquids, such as thrust bearings in underwater motors, and tests on thrust bearings are conducted in liquids, and the intermediate plate A member on the fixed side is provided to prevent the intermediate plate from moving in the radial direction so as not to contact the outer periphery of the intermediate plate (hereinafter referred to as a bearing plate). "Problems to be Solved by the Invention" Since the above-mentioned thrust bearing is used by being immersed in liquid, it is necessary to construct a bearing chamber shaped like a container containing liquid, or to immerse it in liquid by constantly letting liquid flow down to the thrust bearing. It is necessary to do as follows. In this way, it is practically difficult to equip a so-called dry structure electric motor with the thrust bearing of the above invention, and generally it must be used as a bearing device that constitutes a thrust bearing chamber, so the range of use is limited. be done. Further, in the thrust bearing of the above invention, when the bearing plate deviates in the radial direction, its outer periphery rubs against the member that prevents the radial deviation. Therefore, it cannot be used in horizontal machines. The object of the present invention is to provide a thrust bearing in which a bearing with spiral grooves on both sides is arranged so as to rub against a rotating side sliding surface member and a stationary side sliding surface member. It is an object of the present invention to provide a thrust bearing that can be applied to a bearing device and has a wide range of applications. [Structure of the Invention] "Means for Solving the Problems" The present invention comprises a ceramic disk having spiral grooves in opposite directions on both sides and a recess in the center of one or both sides; A flat disk having a concave portion opposing the concave portion of the disk is fitted together with a small ball accommodated across both concave portions of the ceramic disk and the flat disk, and the ceramic disk, the flat disk, and the small A ball, a ceramic disc, and a flat disc are assembled with a high viscosity lubricant interposed between them, and the ceramic disc, flat disc, and small ball are transported as a unit without being separated in the assembled state, and the bearing device is assembled. This is a method of handling a thrust bearing unit characterized by handling such as disassembly. ``Operation'' Since the ceramic disc and the flat disc are adsorbed by a high viscosity lubricant, they can be handled as a unit thrust bearing. Once assembled, the ceramic disc or flat disc will not deviate in the radial direction. The bearing function is such that one side acts as a dynamic pressure fluid bearing due to the spiral groove, and the other side acts as an adsorption function, and either side slides in response to forward and reverse rotation. "Example" Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view, and FIG. 2 is a plan view of FIG. 1. 1 is a bearing plate made of a ceramic disc with a large number of spiral grooves 2 on both sides; 4 is a sliding surface that contacts the sliding surface 3 of the bearing plate 1 through a liquid film of high-viscosity lubricant; 6 is a small ball accommodated in hemispherical recesses 7 and 8 provided at the centers of the opposing surfaces of the bearing plate 1 and the sliding surface member 4, respectively. , 9 is between the small ball 6 and the bearing plate 1 and the sliding surface member 4, between the spiral groove 2 of the bearing plate 1 and the sliding surface member 4, and between the sliding surface 3 of the bearing plate 1 and the sliding surface part.

【表】 このスラスト軸受では摺動面の液膜は200Kg/
cm2の面圧の場合に約1.5μm程度と小さい。従つ
て、上記スパイラル溝2及び小球6及び小球6廻
りの全潤滑液量は軸受板1の外径を50ミリメート
ルとして0.003c.c.という微量である。 上記組合せBの場合、外径50ミリメートルの軸
受板1に対して用いられる小球6は球径2ミリメ
ートルで空隙率60%のSiCである。 第3図はこの発明のスラスト軸受を用いる場合
の一応例を示す。摺動面部材4は、固設した部分
にねじ込まれたアジヤストスクリユー11の先端
の半球形がその中心の凹面12に接して浮動支持
されているレベリングブロツク13に接着固定さ
れる。レベリングブロツク13の外周近くの端面
の軸方向に設けた穴には固定部分に設けた回り止
めピン14がゆるく嵌入している。軸受板1の摺
動面部材4と接しない反対面は回転軸15にキー
16を介して圧入固定された回転側受板17に高
粘性潤滑剤9′を介して接している。この高粘性
潤滑剤9′は組立の際塗布するか或は軸受板1に
予かじめ塗布して合成樹脂被膜で蔽つておいたも
のを組立時該被膜を取去つて得たものである。回
転側受板17は摺動面部材として軸受板1に接す
るため、その材質は摺動面部材4と同一でそして
摺動面は摺動面部材4と同様超仕上されている。 回転軸15が第2図において図示矢印の反時計
方向に回転すると回転側受板17と軸受板1間で
はスパイラル溝2により、潤滑剤9は中心に向つ
て附勢され、動圧は中心部で高くなり、動圧流体
軸受が構成される。軸受板1と摺動面部材4の間
では軸受板1が反時計方向に回されようと附勢さ
れ潤滑剤9は外周へ向うように附勢されるが直ち
に真空圧が発生して軸受板1と摺動面部材4は吸
着する。 上記と逆に回転軸15が時計方向に回転すると
軸受板1と回転側受板17との間の潤滑剤はスパ
イラル溝2により外周に向つて附勢され、軸受板
1と回転側受板17は直ちに真空吸着され、軸受
板1は回転側受板17と一体に時計方向に回転す
る。軸受板1の時計方向の回転により軸受板1と
摺動面部材4間の潤滑剤9はスパイラル溝2の作
用により中心側に向い中心部では高圧液体流が生
じて軸受板1は摺動面部材4と流体潤滑状態でス
ラスト荷重を担持して回転する。 回転軸15のスラスト負荷が第3図の上方より
下方に向うものである場合には上記のようにして
大きなスラスト負荷に耐えるが、回転軸15を上
方に持上げようとするスラスト荷重が加わつても
軸受板1と摺動面部材4、軸受板1と回転側受板
17との間には吸着力が働くので主要なスラスト
方向に対する反スラスト向のスラスト荷重にも耐
える。 回転軸15の正逆転時に軸受板1は半径方向に
不安定となるがその際は小球6と凹部7,8によ
り中心が保たれる。 第4図は軸受板1の両側に小球6を介して両面
に凹部8を設けた摺動面部材4,4を配した縦断
面図である。このような実施例を回転軸端と固定
側の間に設けた実施例の縦断面図を第5図に示
す。摺動面部材4,4の何れを回転軸、固定軸側
に配してもよい。 回転軸15端にキー16を介して固定したスラ
ストデイスク18には上側の摺動面部材4が接着
固定される。他の構成は第3図と同様である。こ
の実施例ではスラストデイスク18と上側の摺動
面部材4は回転側受板17に相当するが、小球
6,6により軸受板1の両側において摺動面部材
4,4は半径方向には動き得ず、且つスラストデ
イスク18、レベリングブロツク13に固定され
ているので小球6と凹部7,8間ですべり軸受と
なり、負荷能力は小さいが或程度ラジアル負荷を
担持できる。 実験によるに第3図、第5図の何れの実施例に
おいても10万回一旦停止しないで正逆転を行つた
処、摺動面には損傷は一切なく、予かじめ封じて
ある高粘性の潤滑剤のグリースは全く減少してい
なかつた。尚上記実験は空中、水中においても同
様であつた。ただし、水中において用いる場合は
水に不溶性の潤滑剤を封入しておく必要がある。
又、スラリー液中においての上記と同様の実験に
おいても摺動面間へのスラリーの浸入は見受けら
れなかつた。 第1図、第4図において軸受板1と摺動面部材
4を摺動面に沿つてずらそうとしても小球6のた
めに軸受板1と摺動面部材4はずらすことができ
ず、軸方向に軸受板1と摺動面部材4を引張つて
も真空吸着状態にあり、これらを引離す方向のス
ラスト荷重にかなり耐える。勿論取扱上離れるこ
とがなく、潤滑油膜も1.5μm程度であるから、異
物の浸入は実用上問題がない。 実施例は一枚の軸受板と一枚の摺動面部材を重
ねたもの、一枚の軸受板の両面に摺動面部材を重
ねたものを示したが、一枚の軸受板と一枚の摺動
面部材を重ねたものの中心の両面に小球の入る凹
部を設けたものを単位として夫々小球を介して重
ねると軸受板と摺動面部材が交互に重なり、多板
のスラスト軸受の要素部材となる。このような点
から、軸受板及び摺動面部材の各両面には小球の
入る凹部を設けておくことが融通性の上から望ま
しい。 〔発明の効果) 本発明は両面に互いに反対方向のスパイラル溝
を設け、片面もしくは両面の中心部に凹部を設け
たセラミツクス円板と、片面もしくは両面にセラ
ミツクス円板の凹部に対向する凹部を有する平板
の円板とをセラミツクス円板と平板の円板との両
凹部にわたつて小球を収容して合わせ、且つセラ
ミツクス円板と平板の円板、小球とセラミツクス
円板及び平板の円板間に高粘性潤滑材を介在して
組立てられ、セラミツクス円板、平板の円板、小
球が組立状態において離れることなくユニツトと
して運搬、軸受装置の組立、分解等の取扱いが行
われることを特徴とするスラスト軸受ユニツトの
取扱方法としたから、軸受板と摺動面部材は吸着
状態にあり、例えば運搬、軸受装置の組立、分解
等の取扱いによつても離れることがないので、こ
れらを組付けた状態で部品供給することにより、
あたかもシール付のボールベアリングのように取
扱うことができる。従つて、特に潤滑を配慮して
スラスト軸受装置を設計する必要がなく、空中、
液中何れでも用いることができる。負荷能力は極
めて大きく、軸受板と摺動面部材を引離す方向の
スラスト荷重にもかなり負荷能力がある。摩擦損
失が小さく、冷却手段を必要としない。
[Table] The liquid film on the sliding surface of this thrust bearing is 200 kg/
It is as small as about 1.5 μm when the surface pressure is cm 2 . Therefore, the total amount of lubricating fluid in the spiral groove 2, the small ball 6, and around the small ball 6 is as small as 0.003 cc, assuming that the outer diameter of the bearing plate 1 is 50 mm. In the case of the above combination B, the small balls 6 used for the bearing plate 1 with an outer diameter of 50 mm are SiC with a ball diameter of 2 mm and a porosity of 60%. FIG. 3 shows an example in which the thrust bearing of the present invention is used. The sliding surface member 4 is adhesively fixed to a leveling block 13 in which a hemispherical tip of an adjusting screw 11 screwed into a fixed portion is floatingly supported in contact with a concave surface 12 at the center thereof. A detent pin 14 provided at the fixed portion is loosely fitted into a hole provided in the axial direction of the end surface near the outer periphery of the leveling block 13. The opposite surface of the bearing plate 1 that is not in contact with the sliding surface member 4 is in contact with a rotating side receiving plate 17 press-fitted onto the rotating shaft 15 via a key 16 via a high viscosity lubricant 9'. This highly viscous lubricant 9' is applied during assembly, or is obtained by applying it to the bearing plate 1 in advance and covering it with a synthetic resin coating, and then removing the coating during assembly. Since the rotating side receiving plate 17 contacts the bearing plate 1 as a sliding surface member, its material is the same as that of the sliding surface member 4, and the sliding surface is super-finished like the sliding surface member 4. When the rotating shaft 15 rotates in the counterclockwise direction indicated by the arrow in FIG. , and a hydrodynamic bearing is formed. Between the bearing plate 1 and the sliding surface member 4, the bearing plate 1 is energized to rotate counterclockwise, and the lubricant 9 is energized toward the outer periphery, but vacuum pressure is immediately generated and the bearing plate 1 and the sliding surface member 4 are attracted to each other. Contrary to the above, when the rotating shaft 15 rotates clockwise, the lubricant between the bearing plate 1 and the rotating side receiving plate 17 is energized toward the outer periphery by the spiral groove 2, and the lubricant between the bearing plate 1 and the rotating side receiving plate 17 is immediately vacuum-adsorbed, and the bearing plate 1 rotates clockwise together with the rotating side bearing plate 17. As the bearing plate 1 rotates in the clockwise direction, the lubricant 9 between the bearing plate 1 and the sliding surface member 4 is directed toward the center by the action of the spiral groove 2, and a high-pressure liquid flow is generated in the center, and the bearing plate 1 is moved toward the sliding surface. It rotates while bearing a thrust load in a state of fluid lubrication with the member 4. If the thrust load on the rotating shaft 15 is directed downward from the top in FIG. Since adsorption force acts between the bearing plate 1 and the sliding surface member 4, and between the bearing plate 1 and the rotating side receiving plate 17, it can withstand thrust loads in a direction opposite to the main thrust direction. Although the bearing plate 1 becomes unstable in the radial direction when the rotating shaft 15 rotates in the forward and reverse directions, the center is maintained by the small balls 6 and the recesses 7 and 8. FIG. 4 is a longitudinal cross-sectional view showing sliding surface members 4, 4 having recesses 8 provided on both sides of the bearing plate 1 with small balls 6 interposed therebetween. FIG. 5 shows a longitudinal sectional view of an embodiment in which such an embodiment is provided between the rotating shaft end and the stationary side. Either of the sliding surface members 4, 4 may be disposed on the rotating shaft or fixed shaft side. The upper sliding surface member 4 is adhesively fixed to the thrust disk 18 which is fixed to the end of the rotating shaft 15 via a key 16. The other configurations are the same as in FIG. 3. In this embodiment, the thrust disk 18 and the upper sliding surface member 4 correspond to the rotating side receiving plate 17, but the sliding surface members 4, 4 on both sides of the bearing plate 1 are prevented from moving in the radial direction by the small balls 6, 6. Since it cannot move and is fixed to the thrust disk 18 and leveling block 13, it forms a sliding bearing between the small ball 6 and the recesses 7 and 8, and although its load capacity is small, it can support a certain amount of radial load. Experiments have shown that in both the embodiments shown in Figures 3 and 5, when the forward and reverse rotations were performed 100,000 times without stopping, there was no damage to the sliding surfaces. The lubricant grease was not reduced at all. The above experiment was similar in both air and water. However, when used underwater, it is necessary to seal in a water-insoluble lubricant.
Also, in an experiment similar to the above in a slurry liquid, no penetration of the slurry into the space between the sliding surfaces was observed. In FIGS. 1 and 4, even if an attempt is made to shift the bearing plate 1 and the sliding surface member 4 along the sliding surface, the bearing plate 1 and the sliding surface member 4 cannot be displaced due to the small balls 6. Even when the bearing plate 1 and the sliding surface member 4 are pulled in the axial direction, they remain in a vacuum suction state, and can withstand a considerable thrust load in the direction of separating them. Of course, it does not come apart during handling, and the lubricating oil film is about 1.5 μm, so there is no practical problem with the intrusion of foreign matter. In the example, one bearing plate and one sliding surface member are stacked, and one bearing plate and sliding surface members are stacked on both sides. When the sliding surface members of 2 are stacked with recesses on both sides of the center for the small balls to be placed, the bearing plates and the sliding surface members overlap alternately, creating a multi-plate thrust bearing. Becomes an elemental member. From this point of view, it is desirable from the standpoint of flexibility to provide recesses into which the small balls can fit on both surfaces of the bearing plate and the sliding surface member. [Effects of the Invention] The present invention has a ceramic disc having spiral grooves in opposite directions on both sides and a recess in the center of one or both sides, and a recess opposite to the recess in the ceramic disc on one or both sides. A flat disc is fitted together with a small ball accommodated in both recesses of the ceramic disc and the flat disc, and the ceramic disc and the flat disc, the small ball, the ceramic disc, and the flat disc are combined. It is characterized by being assembled with a high viscosity lubricant interposed between them, and the ceramic discs, flat discs, and small balls can be transported as a unit without being separated in the assembled state, and the bearing device can be assembled, disassembled, etc. Because of this method of handling the thrust bearing unit, the bearing plate and the sliding surface member are in a suction state and will not separate even during handling such as transportation, assembly and disassembly of the bearing device, so it is difficult to assemble them. By supplying parts with the parts attached,
It can be handled like a sealed ball bearing. Therefore, there is no need to design the thrust bearing device with special consideration for lubrication, and
It can be used in any liquid. The load capacity is extremely large, and the thrust load in the direction of separating the bearing plate and the sliding surface member is also quite large. Friction loss is small and no cooling means are required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の縦断面図、第2図は
軸受板の平面図、第3図は第1図の応用例を示す
縦断面図、第4図は他の実施例の縦断面図、第5
図は第4図の応用例を示す縦断面図である。 1…軸受板、2…スパイラル溝、3…摺動面、
4…摺動面部材、6…小球、7,8…凹部、9…
高粘性潤滑剤、11…アジヤストスクリユー、1
2…凹面、13…レベリングブロツク、14…回
り止めピン、15…回転軸、16…キー、17…
回転側受板、18…スラストデイスク。
Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, Fig. 2 is a plan view of a bearing plate, Fig. 3 is a longitudinal sectional view showing an application example of Fig. 1, and Fig. 4 is a longitudinal sectional view of another embodiment. Front view, No. 5
The figure is a longitudinal sectional view showing an application example of FIG. 4. 1...Bearing plate, 2...Spiral groove, 3...Sliding surface,
4...Sliding surface member, 6...Small ball, 7, 8...Recess, 9...
High viscosity lubricant, 11... Adjustment screw, 1
2... Concave surface, 13... Leveling block, 14... Detent pin, 15... Rotating shaft, 16... Key, 17...
Rotating side receiving plate, 18...Thrust disk.

Claims (1)

【特許請求の範囲】[Claims] 1 両面に互いに反対方向のスパイラル溝を設
け、片面もしくは両面の中心部に凹部を設けたセ
ラミツクス円板と、片面もしくは両面にセラミツ
クス円板の凹部に対向する凹部を有する平板の円
板とをセラミツクス円板と平板の円板との両凹部
にわたつて小球を収容して合わせ、且つセラミツ
クス円板と平板の円板、小球とセラミツクス円板
及び平板の円板間に高粘性潤滑材を介在して組立
てられ、セラミツクス円板、平板の円板、小球が
組立状態において離れることなくユニツトとして
運搬、軸受装置の組立、分解等の取扱いが行われ
ることを特徴とするスラスト軸受ユニツトの取扱
方法。
1. A ceramic disc with spiral grooves in opposite directions on both sides and a recess in the center of one or both sides, and a flat disc with a recess opposite to the recess of the ceramic disc on one or both sides. A small ball is accommodated in the concave portions of the disk and the flat disk, and a high viscosity lubricant is applied between the ceramic disk and the flat disk, the small ball and the ceramic disk, and the flat disk. Handling of a thrust bearing unit characterized in that ceramic discs, flat discs, and small balls are assembled together and transported as a unit without being separated in the assembled state, and the bearing device is assembled, disassembled, etc. Method.
JP60159647A 1985-07-18 1985-07-19 Thrust bearing Granted JPS6220912A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60159647A JPS6220912A (en) 1985-07-19 1985-07-19 Thrust bearing
US06/894,776 US4699525A (en) 1985-07-18 1986-07-10 Thrust bearing
DE8686109491T DE3673278D1 (en) 1985-07-18 1986-07-11 AXIAL BEARING.
EP86109491A EP0209808B1 (en) 1985-07-18 1986-07-11 Thrust bearing
KR1019860005748A KR960000987B1 (en) 1985-07-18 1986-07-16 Thrust bearing
CN86105825.9A CN1005351B (en) 1985-07-18 1986-07-18 Thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159647A JPS6220912A (en) 1985-07-19 1985-07-19 Thrust bearing

Publications (2)

Publication Number Publication Date
JPS6220912A JPS6220912A (en) 1987-01-29
JPH0461969B2 true JPH0461969B2 (en) 1992-10-02

Family

ID=15698279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159647A Granted JPS6220912A (en) 1985-07-18 1985-07-19 Thrust bearing

Country Status (1)

Country Link
JP (1) JPS6220912A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220911A (en) * 1985-07-18 1987-01-29 Ebara Res Co Ltd Thrust bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220911A (en) * 1985-07-18 1987-01-29 Ebara Res Co Ltd Thrust bearing

Also Published As

Publication number Publication date
JPS6220912A (en) 1987-01-29

Similar Documents

Publication Publication Date Title
KR960000987B1 (en) Thrust bearing
US5504637A (en) Disk rotating device having dynamic-pressure fluid bearings
US5358339A (en) Hydrodynamic fluid bearing with liquid-radial bearing and gas-thrust bearing
KR100234507B1 (en) Self pressurizing journal bearing assembly
US5328271A (en) Hydrodynamic spindle bearing for ultra-slim disk storage unit
JP4182056B2 (en) Fluid dynamic pressure bearing configured with raceway for high efficiency
US4624583A (en) Foil thrust bearing
JPH09191604A (en) Spindle motor
US3494674A (en) Hydrodynamic bearing for axial and radial loads
JPH0461969B2 (en)
US3325231A (en) Miniature motor bearing
JPS62288719A (en) Dynamic pressure thrust bearing
JP3892995B2 (en) Hydrodynamic bearing unit
JP4024007B2 (en) Hydrodynamic bearing unit
JPH0424573B2 (en)
JP2850986B2 (en) Automatic alignment mechanism of spiral groove type thrust bearing
JPH0225019Y2 (en)
JPH03260415A (en) Dynamic pressure fluid bearing device
JP2900560B2 (en) Bearing device for magnetic disk
JPS5817219A (en) Dynamic-pressure radial bearing device
JPH0135208B2 (en)
JPH01279110A (en) Fluid bearing device
JPS6131327B2 (en)
JPH01279111A (en) Fluid bearing device
JPH0328519A (en) Magnetic slide bearing