JPS62208872A - Fine frosen grain housing equipment - Google Patents

Fine frosen grain housing equipment

Info

Publication number
JPS62208872A
JPS62208872A JP61053159A JP5315986A JPS62208872A JP S62208872 A JPS62208872 A JP S62208872A JP 61053159 A JP61053159 A JP 61053159A JP 5315986 A JP5315986 A JP 5315986A JP S62208872 A JPS62208872 A JP S62208872A
Authority
JP
Japan
Prior art keywords
temperature
frozen
grains
fine
cold gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61053159A
Other languages
Japanese (ja)
Inventor
Kazushiro Yasuta
泰多 計城
Yokiji Imaike
今池 世記二
Norio Yamazaki
山崎 紀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Sanso Co Ltd
Original Assignee
Taiyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Sanso Co Ltd filed Critical Taiyo Sanso Co Ltd
Priority to JP61053159A priority Critical patent/JPS62208872A/en
Publication of JPS62208872A publication Critical patent/JPS62208872A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To make fine frosen grains very easily takeable out of a vessel, by maintaining these fine frosen grains inside the vessel in a fluidic state by dint of spouting force of cold gas, in case of fine frozen grain housing equipment for blast use. CONSTITUTION:A temperature controlling device 3 detects a temperature of cold gas 12a flowing into a vessel 1 from an intake pipe 14 with a detector 16, controls a flow rate of drive gas flowing into a heat exchanger 15 from a flow control valve 19, and keeps it within the specified temperature range. And, this cold gas 12a is made to be spouted out of an exhaust nozzle 11 of a partition plate 4 of the vessel 1, thereby forming a fluid layer 7 of fine frosen grains 7a. On the other hand, the drive gas cooled by heat exchange with the cold gas 12a is fed to a blast gun 10, and spouted out of this blast gun 10 as preventing a temperature rise in these fine frosen grains 7a from occurring. Thus, an ice blast is effectively and smoothly performable.

Description

【発明の詳細な説明】 (産業上の利用分野) 近年、プラスト用の砥粒等として、凍結粒製造容器内で
冷媒との熱交換により製造した孕細な氷粒等の微凍結粒
を用いることが試みられているが、本発明は、かかる微
凍結粒をプラスト用その他の用途に直ちに供しうる最適
温度に保冷した状態で収容・貯蔵しておくための微凍結
粒収容装置に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, micro-frozen grains such as fine ice grains produced by heat exchange with a refrigerant in a frozen grain manufacturing container have been used as abrasive grains for Plast. However, the present invention relates to a micro-frozen grain storage device for storing and storing such micro-frozen grains in a cooled state at an optimal temperature so that they can be immediately used for plastic or other purposes. .

(従来の技術) 凍結粒製造容器内で製造した微凍結粒は、それが製造容
器内に入れた冷媒中から取出すと、雰囲気温が微凍結粒
より高い場合には、雰囲気の有する熱量を与えられて温
度上昇し融解し易いので、使用に供するまでの間は、何
らかの手段により微凍結粒の温度を低く維持しておく必
要がある。
(Prior art) When the finely frozen grains produced in the frozen grain production container are taken out from the refrigerant contained in the manufacturing container, if the ambient temperature is higher than the finely frozen grains, the microfrozen grains give up the heat of the atmosphere. Since the temperature of the micro-frozen particles increases and they tend to melt, it is necessary to maintain the temperature of the micro-frozen particles at a low level by some means until they are ready for use.

凍結粒製造容器から取出した微凍結粒を、保冷室内に配
置しその外部雰囲気を温度制御した容器に収容しておき
、使用に供するまでの間、微凍結粒の温度を低温に維持
するのが普通である。
The micro-frozen grains taken out from the frozen grain production container are placed in a cold storage chamber and the external atmosphere is kept in a temperature-controlled container, and the temperature of the micro-frozen grains is maintained at a low temperature until it is ready for use. It's normal.

(発明が解決しようとする問題点) ところで、微凍結粒を収容する容器内の微凍結粒を低温
度に維持するため外部雰囲気の温度を制御する場合には
、該容器内の温度分布を均一にすることが困難である。
(Problem to be Solved by the Invention) By the way, when controlling the temperature of the external atmosphere in order to maintain the micro-frozen particles at a low temperature in a container containing the micro-frozen particles, it is necessary to maintain a uniform temperature distribution within the container. It is difficult to

即ち雰囲気温が微凍結粒部より高い場合、微凍結粒収容
容器内の周壁近傍部位と中央部位とでは雰囲気温の影響
を受けて微凍結粒間に温度差を生じ、外壁近傍の凍結粒
が一部融解する程度に温められると、融解部分が隣接の
微凍結間に流入し、そこで冷却されて再凍結する如き現
象を生じ、微凍結粒同志が付着する凍結粒の融、固着を
招き結核の収容容器からの取出しが困難となったり、均
一な粒径の凍結粒により均一な力を被処理物体の表面に
加える精密なプラスト処理等を期待し難くなくなる。
In other words, when the ambient temperature is higher than the part of the micro-frozen grains, a temperature difference occurs between the micro-frozen grains in the area near the peripheral wall and the central part of the container for storing micro-frozen grains due to the influence of the ambient temperature, and the frozen grains near the outer wall When heated to the extent that it partially melts, the melted portion flows into adjacent micro-frozen spaces, where it cools and refreezes, leading to the melting and sticking of frozen particles that adhere to each other, leading to tuberculosis. It becomes difficult to take out the frozen particles from the storage container, and it becomes difficult to expect precise blasting, etc., in which uniform force is applied to the surface of the object to be treated due to frozen particles having a uniform particle size.

さらに、アイスプラスト用の砥粒等として用いる微凍結
粒は、被処理物体やその表面から剥離したいものの硬度
に対応した硬度のものを使用する必要があるが、か\る
砥粒硬度は微凍結粒の温度によって定まるので、微凍結
粒の温度の所望の温度に調整しておくことが好ましいが
、容器外部の雰囲気の温度を必要温度に小回9をきかし
て制御することは困難であり、微凍結粒をかかる使用目
的に応じて温度調節するのに雰囲気温度の調節で対処す
ることは事実上実現し難い。
Furthermore, the micro-frozen grains used as abrasive grains for Ice Plast must have a hardness that corresponds to the hardness of the object to be treated or the object that is to be peeled from its surface. Since it is determined by the temperature of the grains, it is preferable to adjust the temperature of the micro-frozen grains to a desired temperature, but it is difficult to control the temperature of the atmosphere outside the container to the required temperature by using the small cycle 9. In fact, it is difficult to adjust the temperature of the micro-frozen grains according to the purpose of use by adjusting the ambient temperature.

また、凍結粒製造容器から取出した微凍結粒には冷媒が
付着しているため、微凍結粒を溶媒で濡れたまま収容容
器に供給し、そのまま、噴射使用すると溶媒によるペタ
つきがあって、乾燥してサラサラした粒子に比べて噴射
粒子にスピードを与え難かったり、均一な分布を与え操
作にムラを生じ易く、これを避けるには何等かの冷媒除
去手段により付着冷媒を分離除去しておく必要がある。
In addition, since the finely frozen grains taken out from the frozen grain production container have refrigerant attached to them, if the finely frozen grains are supplied to the container while wet with the solvent and then used for injection, the solvent will cause stickiness. Compared to dry and smooth particles, it is difficult to give speed to the sprayed particles, and it is easy to give a uniform distribution, which causes uneven operation. To avoid this, it is necessary to separate and remove the adhering refrigerant using some kind of refrigerant removal method. There is a need.

本発明は、かかる問題を解決し、微凍結粒を、使用に供
するまでの間、粒子同志の付着、融・固着現象の発生を
有効に防止し、溶媒を除去すると共に所望の温度に保持
しながら微凍結粒を収容・貯蔵しておくことのできる微
凍結粒収容装置を提供することを目的とするものである
The present invention solves these problems, effectively prevents adhesion of particles to each other, and the occurrence of melting/fixation phenomena, removes solvent, and maintains finely frozen particles at a desired temperature until they are used. It is an object of the present invention to provide a micro-frozen particle storage device that can accommodate and store micro-frozen particles.

(問題点を解決するための手段) 本発明の微凍結粒収容装置は、上記目的を達成するため
、微凍結粒を収容する容器と、該容器内の微凍結粒収容
空間にその下方から冷気ガスを噴出させて、微凍結粒に
よる流動層を形成維持する流動層形成手段と、前記冷気
ガスの温度調整を行う温度調整手段を具備するものであ
る。
(Means for Solving the Problems) In order to achieve the above object, the micro-frozen grain storage device of the present invention includes a container for storing micro-frozen grains, and a space for storing micro-frozen grains in the container, in which cool air is blown from below. The apparatus includes a fluidized bed forming means for forming and maintaining a fluidized bed of slightly frozen particles by ejecting gas, and a temperature adjusting means for adjusting the temperature of the cold gas.

(作用) かかる構成をとると、容器内に収容した微凍結粒を、こ
れに直接接触する冷気ガスによって流動状態に維持する
のであるから、微凍結粒と冷気ガスとは十分に攪拌・混
和された状態下に熱交換を行い、これ等を一定の温度範
囲に保持することができるのである。しかも冷気ガスに
よる流動作用によって微凍結粒に付着せる冷媒は万遍な
く冷気ガス中に拡散させ、確実に蒸発除去させることが
できる。したがって、容器内において、微凍結粒同志が
付着或は融・固着を生じたり、微凍結粒が容器内壁面に
付着したりすることがなく、さらに微凍結粒の容器外へ
の取出しも容易に行うことができる。
(Function) With this configuration, the micro-frozen particles contained in the container are maintained in a fluid state by the cold gas that comes into direct contact with them, so the micro-frozen particles and the cold gas are sufficiently stirred and mixed. By performing heat exchange under these conditions, it is possible to maintain these within a certain temperature range. Moreover, the refrigerant adhering to the finely frozen particles is evenly diffused into the cold gas by the flow action of the cold gas, and can be reliably evaporated and removed. Therefore, the micro-frozen particles do not adhere to each other or melt/stick together in the container, and the micro-frozen particles do not adhere to the inner wall surface of the container, and furthermore, the micro-frozen particles can be easily taken out of the container. It can be carried out.

しかも、容器内に噴出させる冷気ガスの温度を調整する
ことにより、微凍結粒の維持温度をかなり自由に設定す
ることが容易であり、使用目的に応じた最適温度の微凍
結粒をアイスプラスト用砥粒等として供するのに好適で
おる。
Moreover, by adjusting the temperature of the cold gas that is blown into the container, it is easy to set the maintenance temperature of the micro-frozen grains fairly freely, and the micro-frozen grains can be used for Ice Plast at the optimal temperature according to the purpose of use. It is suitable for use as abrasive grains, etc.

(実施例) 以下、本発明の構成を第1図及び第2図に示す実施例に
基づいて具体的に説明する。
(Example) Hereinafter, the configuration of the present invention will be specifically described based on the example shown in FIGS. 1 and 2.

第1図に示す微凍結粒グ収容装置は、密閉状の容器1と
、流動層形成手段2と、冷気ガスの温度調整手段3とを
備えてなる。
The finely frozen granule storage device shown in FIG. 1 includes a closed container 1, a fluidized bed forming means 2, and a cold gas temperature adjusting means 3.

前記容器1内は、仕切板4で上側の微凍結粒収容空間1
aと下側の冷気ガス供給空間1bとを区画しである。容
器1の上部には開閉自在な微凍結粒供給口5を設け、凍
結粒製造装置6により製造された微凍結粒7a・・・を
幸凍結核収容空間1aに供給するようにしてるる。この
供給口5は、微凍結粒7a・・・を容器1内に所定量供
給すると閉塞させて、容器1を密閉す゛るものである。
The inside of the container 1 is divided into an upper micro-frozen grain storage space 1 by a partition plate 4.
a and a lower cold gas supply space 1b. A finely frozen grain supply port 5 that can be opened and closed is provided in the upper part of the container 1, and the finely frozen grains 7a produced by the frozen grain manufacturing device 6 are supplied to the frozen grain storage space 1a. The supply port 5 is closed when a predetermined amount of the finely frozen particles 7a are supplied into the container 1, thereby sealing the container 1.

なお、凍結粒製造装置6の詳細は省略するが、凍結粒製
造容器内において水等の被凍結液を液化氷素等の冷媒の
液面に向けて噴霧滴下させることにより、冷媒と熱交換
させ微細で且つ均一な粒径の微凍結粒7a・・・を製造
するように構成したものであり、微凍結粒7a・・・を
スクリュコンベア等により冷媒中から取出して、前記供
給口5に供給するようにしである。したがって、容器内
1に供給する凍結粒7a・・・には前記冷媒が付着して
いる。また、容器1の上部には排気管8及び取出し管9
を接続させ、この取出し管9の一端部は微凍結粒収容空
間1aの適所に下向きに開口されていると共に、その他
端部にはプラストガン10を連結した。このプラストガ
ン10には駆動用ガス供給管17を接続し、この供給管
17から所定圧に加圧した窒素ガス。
Although details of the frozen grain manufacturing device 6 are omitted, heat exchange with the refrigerant is performed by spraying and dripping a liquid to be frozen such as water toward the liquid surface of a refrigerant such as liquefied ice in a frozen grain manufacturing container. It is configured to produce finely frozen particles 7a with a fine and uniform particle size, and the finely frozen particles 7a are taken out of the refrigerant by a screw conveyor or the like and supplied to the supply port 5. That's what I do. Therefore, the refrigerant is attached to the frozen particles 7a... that are supplied into the container 1. Additionally, an exhaust pipe 8 and a take-out pipe 9 are provided at the top of the container 1.
One end of this take-out tube 9 was opened downward at a suitable location in the micro-frozen particle storage space 1a, and a plast gun 10 was connected to the other end. A driving gas supply pipe 17 is connected to this plastic gun 10, and nitrogen gas pressurized to a predetermined pressure is supplied from this supply pipe 17.

空気等の、駆動用ガスを導入することによって、流動層
7の微凍結粒7a・・・を一種のエジェクター作用によ
り取出し管9に吸込ませ、容器1外へ取出すと共にプラ
ストガン10から被ブラスト処理物20に噴射するよう
にしたものである。すなわち、この実施例では、取出し
管9.プラストガン10及びドライブガス供給管17を
用いて微凍結粒7a・・・の輸送手段及びプラスト手段
を兼用構成するように工夫しである。これによって装置
構造を簡略化できる利点がある。
By introducing a driving gas such as air, the slightly frozen particles 7a of the fluidized bed 7 are sucked into the take-out pipe 9 by a kind of ejector action, taken out from the container 1, and blasted from the blast gun 10. It is designed to be sprayed onto an object 20. That is, in this embodiment, the extraction pipe 9. The plast gun 10 and the drive gas supply pipe 17 are devised to serve as a means for transporting the finely frozen particles 7a and a plast means. This has the advantage of simplifying the device structure.

前記流動層形成手段2は、容器1内の仕切板4に、第2
図に示す如く、2つの空間1a、1bに連通する多数の
噴出ノズル11・・・を上向きに設置し、液化窒素、液
化アルゴン等の液化ガス12を収容した冷気ガスタンク
13の上部と容器1の下部とを導入管14を介して連通
接続したものであり、液化ガス12の蒸発ガスである冷
気ガス12aを冷気ガス供給空間1 bに供給し、各噴
出ノズル11から微凍結粒収容空間1a内に噴出させる
ことにより、該空間1aに収容した微凍結粒7a・・・
を流動させ、微凍結粒7a・・・による流動層7を形成
させる。
The fluidized bed forming means 2 includes a second
As shown in the figure, a large number of jet nozzles 11 communicating with two spaces 1a and 1b are installed upward, and the upper part of a cold gas tank 13 containing a liquefied gas 12 such as liquefied nitrogen or liquefied argon is connected to the container 1. The lower part is connected to the lower part through an introduction pipe 14, and cold gas 12a, which is the evaporated gas of the liquefied gas 12, is supplied to the cold gas supply space 1b, and from each jet nozzle 11 into the finely frozen particle storage space 1a. By ejecting the finely frozen particles 7a... accommodated in the space 1a...
is made to flow to form a fluidized bed 7 of slightly frozen particles 7a...

ところで、冷気ガス12aの噴出ノズル11・・からの
噴出圧力は、流動層7を安定に形成保持し得る様、微凍
結粒7a・・・の粒径及びその収容量即ち流動層7の厚
さ等に応じ適宜設定すればよい。
By the way, the ejection pressure of the cold gas 12a from the ejection nozzles 11... is determined based on the particle size of the slightly frozen particles 7a... and the capacity thereof, that is, the thickness of the fluidized bed 7, so that the fluidized bed 7 can be stably formed and maintained. It may be set as appropriate depending on the situation.

その条件は当業者であれば実験的に定め得るところであ
る。具体的に1例を挙げれば、微凍結粒7a・・・が1
00〜200pmの均一粒径であり、流動層7の厚さが
300flである場合において、噴出圧力0. o a
 kg / d程度であることが望ましい。
Those conditions can be determined experimentally by those skilled in the art. To give one specific example, the microfrozen particles 7a... are 1
When the particle size is uniform between 00 and 200 pm and the thickness of the fluidized bed 7 is 300 fl, the ejection pressure is 0. oa
It is desirable that it is around kg/d.

また冷気ガス12aとしては、微凍結粒7a・・・を保
冷しうる低温ガスであれば如何なるものであってもよい
が、微凍結粒7a・・・との接触等により液化又は固化
し易いもの、例えば水分や炭酸ガス等を含むものは不適
当である。
The cold gas 12a may be any low-temperature gas that can keep the micro-frozen particles 7a cold, but it may easily liquefy or solidify upon contact with the micro-frozen particles 7a... For example, those containing water or carbon dioxide gas are unsuitable.

前記温度調整手段3は、前記導入管14に熱交換器15
及び温度検出器16を介設し、前記駆動用ガス供給管1
7に前記熱交換器15内を通過する冷却管18を閉回路
状に分岐接続し、供給管17における冷却管18両端の
接続箇所間の部分である温度調整手段171Lに、前記
温度検出器16による検出値に応じて開閉制御する流量
調整弁19を介設する。温度検出器16は、熱交換器1
5を経過した冷気ガス12Bの温度を検出して、その検
出温度が予め設定した設定温度範囲よりも低い場合には
流量調整弁19を閉塞側に制御し、逆に設定温度範囲よ
りも高い場合には流量調整弁19を開放側に制御する。
The temperature adjustment means 3 includes a heat exchanger 15 in the introduction pipe 14.
and a temperature detector 16, and the driving gas supply pipe 1
The cooling pipe 18 passing through the heat exchanger 15 is branched and connected to 7 in a closed circuit, and the temperature detector 16 is connected to the temperature adjusting means 171L, which is a portion of the supply pipe 17 between the connecting points at both ends of the cooling pipe 18. A flow rate regulating valve 19 is provided which is controlled to open and close according to the detected value. The temperature detector 16 is connected to the heat exchanger 1
The temperature of the cold gas 12B that has passed through 5 is detected, and if the detected temperature is lower than a preset temperature range, the flow rate adjustment valve 19 is controlled to the closing side, and conversely, if it is higher than the set temperature range. Then, the flow rate adjustment valve 19 is controlled to the open side.

したがって、かかる温度調整手段3によれば、導入管1
4から容器1に導入する冷気ガス12aの温度が予め設
定した設定温度よゆ低い場合には、温度検出器16がこ
れを検出して流量調整弁19を閉塞側に制御させ、ドラ
イブガスを冷却管18つまり熱交換器15に導くことか
ら、冷気ガス1211は熱交換器15内でドライブガス
と熱交換して温度上昇されていき、最終的に容器1には
設定温度範囲内に調節した冷気ガス12aを供給する。
Therefore, according to the temperature adjustment means 3, the introduction pipe 1
When the temperature of the cold gas 12a introduced into the container 1 from 4 is lower than the preset temperature, the temperature detector 16 detects this and controls the flow rate adjustment valve 19 to close, thereby cooling the drive gas. Since the cold gas 1211 is led to the pipe 18, that is, the heat exchanger 15, its temperature is increased by exchanging heat with the drive gas in the heat exchanger 15, and finally the container 1 is filled with cold air whose temperature is adjusted within the set temperature range. Gas 12a is supplied.

一方、駆動用ガスは冷気ガス12aとの熱交換により冷
却して、プラストガン1oに供給し、プラストガン10
から噴出させる微凍結粒7a・・・の温度上昇を防止す
る。ドライスガスとの熱交換により冷気ガス12aの温
度が設定温度範囲より上昇すると、温度検出器16が流
量調整弁19を開放側に制御して、ドライブガスを冷却
管18と供給管17の温度調整部分17aとに分流させ
、これによって熱交換器15による冷気ガス12aと駆
動用ガスとの熱交換による熱量の移動量が容器1に供給
する冷気ガス12aの温度は再び設定温度まで低下する
On the other hand, the driving gas is cooled by heat exchange with the cold gas 12a and supplied to the plastic gun 1o.
This prevents the temperature of the slightly frozen particles 7a... which are ejected from rising. When the temperature of the cold gas 12a rises above the set temperature range due to heat exchange with the dry gas, the temperature detector 16 controls the flow rate adjustment valve 19 to the open side, and the drive gas is transferred to the temperature adjustment section of the cooling pipe 18 and supply pipe 17. As a result, the temperature of the cold gas 12a supplied to the container 1 decreases to the set temperature again due to the amount of heat transferred by the heat exchange between the cold gas 12a and the driving gas by the heat exchanger 15.

このような動作を繰返すことによって、容器1に供給す
る冷気ガス12aを設定温度に維持することができ、流
動層7の温度を所望の一定温度範囲内に維持することが
可能となる。
By repeating such operations, the cold gas 12a supplied to the container 1 can be maintained at the set temperature, and the temperature of the fluidized bed 7 can be maintained within a desired constant temperature range.

冷気ガス12aないし流動層7の温度は、前記設定温度
を変更することによって容易に調整することができ、流
動状態にある微凍結粒7a・・・の温度を直接熱交換す
ることによって、急速かつ容易に調整することができ、
一定の温度範囲に維持することが極めて容易になる。
The temperature of the cold gas 12a or the fluidized bed 7 can be easily adjusted by changing the set temperature, and the temperature of the slightly frozen particles 7a in a fluidized state can be rapidly and can be easily adjusted,
It becomes very easy to maintain a constant temperature range.

なお、温度調整手段3は、前記実施例においては、冷気
ガス12aの温度調整のみならずブラスト用のドライブ
ガスの冷却をも同時に行うように構成したが、単に冷気
ガス12aのみを温度調整するように構成してもよいこ
と勿論である。ただし、前記実施例の如く構成しておく
と、装置構造を簡略化できる利点がある。
In the above embodiment, the temperature adjustment means 3 was configured to not only adjust the temperature of the cold gas 12a but also cool the drive gas for blasting at the same time. Of course, it may be configured as follows. However, if the configuration is as in the embodiment described above, there is an advantage that the device structure can be simplified.

(発明の効果) 本発明の微凍結粒収容装置は、容器に収容したう凍結粒
を冷気ガスの噴出力によって流動状態に維持するもので
あるから、微凍結粒の製造時に付着した冷媒を冷気ガス
中に揮散せしめ得て、微凍結粒を乾燥させ、サラサラし
た粒子状にして流動収容しておくことができる。したが
って、該容器からの取出しを極めて容易ならしめ、微凍
結粒の製造時の均一な粒径を保持し得て、アイスプラス
ト等の使用に好適に供しうる。また、特別に冷媒除去手
段を設けておく必要がなく、装置構造を簡略化すること
ができる。
(Effects of the Invention) The micro-frozen grain storage device of the present invention maintains the frozen grains housed in the container in a fluid state by the ejection force of cold gas. It can be volatilized into a gas, and the finely frozen particles can be dried and made into smooth particles and stored in a fluidized state. Therefore, it is extremely easy to take out the microfrozen particles from the container, and the uniform particle size during production of the microfrozen particles can be maintained, making them suitable for use in iceplasts and the like. Further, there is no need to provide a special refrigerant removal means, and the device structure can be simplified.

しかも、冷気ガスの温度を調整することによって、微凍
結粒の温度を容易に制御することができ、使用目的に応
じた最適温度の微凍結粒を提供することができ、アイス
プラスト等を極めて効果的に行うことができる。
Moreover, by adjusting the temperature of the cold gas, the temperature of the micro-frozen grains can be easily controlled, making it possible to provide the micro-frozen grains at the optimal temperature according to the purpose of use, making Ice Plast etc. extremely effective. It can be done in a specific manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る微凍結粒収容装置の一実施例を示
す概略の縦断側面図、第2図は同要部の拡大詳細図であ
る。 1・・・容器、1a・・・微凍結粒収容空間、2・・・
流動層形成手段、3・・・温度調整手段、7・・・流動
層、7a・・・微凍結粒、12B・・・冷気ガス。
FIG. 1 is a schematic vertical sectional side view showing an embodiment of the microfrozen particle storage device according to the present invention, and FIG. 2 is an enlarged detailed view of the main parts. 1... Container, 1a... Finely frozen grain storage space, 2...
Fluidized bed forming means, 3... Temperature adjustment means, 7... Fluidized bed, 7a... Slightly frozen grains, 12B... Cold gas.

Claims (1)

【特許請求の範囲】[Claims] 微凍結粒を収容する容器と、該容器内の微凍結粒収容空
間にその下方から冷気ガスを噴出させて、微凍結粒によ
る流動層を形成維持する流動層形成手段と、前記冷気ガ
スの温度調整を行う温度調整手段とを具備する微凍結粒
収容装置。
a container for storing micro-frozen grains; a fluidized bed forming means for forming and maintaining a fluidized bed of micro-frozen grains by jetting cold gas from below into a space for storing micro-frozen grains in the container; and a temperature of the cold gas. A micro-frozen grain storage device comprising a temperature adjustment means for adjusting the temperature.
JP61053159A 1986-03-11 1986-03-11 Fine frosen grain housing equipment Pending JPS62208872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61053159A JPS62208872A (en) 1986-03-11 1986-03-11 Fine frosen grain housing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61053159A JPS62208872A (en) 1986-03-11 1986-03-11 Fine frosen grain housing equipment

Publications (1)

Publication Number Publication Date
JPS62208872A true JPS62208872A (en) 1987-09-14

Family

ID=12935066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61053159A Pending JPS62208872A (en) 1986-03-11 1986-03-11 Fine frosen grain housing equipment

Country Status (1)

Country Link
JP (1) JPS62208872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014927A1 (en) * 1989-05-30 1990-12-13 Ixtal Blast Technology Corp. Particle blast cleaning and treating of surfaces
US5592268A (en) * 1994-07-22 1997-01-07 Brother Kogyo Kabushiki Kaisha Mechanism to prevent toner leakage from an image forming unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014927A1 (en) * 1989-05-30 1990-12-13 Ixtal Blast Technology Corp. Particle blast cleaning and treating of surfaces
US5592268A (en) * 1994-07-22 1997-01-07 Brother Kogyo Kabushiki Kaisha Mechanism to prevent toner leakage from an image forming unit

Similar Documents

Publication Publication Date Title
US3708995A (en) Carbon dioxide food freezing method and apparatus
US4932168A (en) Processing apparatus for semiconductor wafers
US3036338A (en) Coating and pelletizing of fusible materials
FI72056C (en) Process for preparing granules made of a core and a casing.
EP0444793B1 (en) Manufacture of glass articles
CN108277334B (en) Cryogenic treatment equipment and method
JPH01100211A (en) Method and apparatus for producing powder from molten substance
US4612973A (en) Cold-hearth melt-spinning apparatus for providing continuous casting of refractory and reactive alloys
JPS6025481B2 (en) Method and apparatus for producing metal powder
US4444023A (en) Snow horns
EP0731326B1 (en) Process fluid cooling method and apparatus
JPH089582Y2 (en) Frozen grain production equipment
JPS62208872A (en) Fine frosen grain housing equipment
US4524548A (en) Continuous deflashing system
JP2674053B2 (en) Metal grain continuous manufacturing equipment
JPH0487903A (en) Powder and grain filling apparatus
CN210303557U (en) Equipment for stably producing fertilizer particles
US6557355B2 (en) Methods and apparatus for creating and using ice pellets
JPH05253404A (en) Construction of antisticking for feed nozzle in vacuum drier
JPH0799302B2 (en) Ice grain production equipment
JPH0757471B2 (en) Frozen particle injection device
JPS62258976A (en) Frozen-grain production unit
CN109806810B (en) Method and equipment for stabilizing production of fertilizer particles
KR890000618Y1 (en) Cooling system of the blast furnace slap for making powder
JPS61275231A (en) Storage of polymerizable substance