JPS62208827A - Electrode wire rod for wire electric discharge machining - Google Patents

Electrode wire rod for wire electric discharge machining

Info

Publication number
JPS62208827A
JPS62208827A JP4805286A JP4805286A JPS62208827A JP S62208827 A JPS62208827 A JP S62208827A JP 4805286 A JP4805286 A JP 4805286A JP 4805286 A JP4805286 A JP 4805286A JP S62208827 A JPS62208827 A JP S62208827A
Authority
JP
Japan
Prior art keywords
wire
machining
electrode wire
electrode
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4805286A
Other languages
Japanese (ja)
Inventor
Yoshihiro Arima
有馬 与志広
Eizo Tamura
英三 田村
Takeshi Kitagawa
北川 孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Techno Research Corp
Original Assignee
Kawasaki Steel Corp
Kawatetsu Techno Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, Kawatetsu Techno Research Corp filed Critical Kawasaki Steel Corp
Priority to JP4805286A priority Critical patent/JPS62208827A/en
Publication of JPS62208827A publication Critical patent/JPS62208827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To perform machining excellent in machining precision and surface roughness at a low cost by using at least one metal element wire, multiple metal element wires or twisted metal element wires coated with a functional metal at a thickness of 0.1mum or more as an electrode wire rod. CONSTITUTION:Alloy steel or high-carbon steel is used for a metal element wire; a single wire or a strand of multiple wires or a twisted wire, if necessary, is used to have an adequate cross section area according to the tensile force. For precision machining, the cross section area is made equal to the circle area of 10-300mumphi at the tensile force of 150kgf/mm<2>; for high-speed machining, the cross section area is made equal to the circle area of 30-500mumphi at the tensile force of less than 150kgf/mm<2>. In addition, it is coated with an adequate functional metal at a thickness of 0.1mum or more by chemical, physical deposition method, plating, etc., as required. Coating may be applied before or after twisting. Machining performance excellent in machining speed and machining precision at a low cost can be improved even for a thick work by using a thus processed electrode wire rod.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高速、高蹟度加工に用いる高張力で腰が強く
、かつ経済的なワイヤ放電加工用電極線材に関し、特に
加工断面の厚さが大きい被加工物の加工性能が高いワイ
ヤ放電加工用電極線材に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high-tension, strong, and economical electrode wire for wire electrical discharge machining used in high-speed, high-intensity machining, and in particular, to The present invention relates to an electrode wire for wire electrical discharge machining that has high machining performance for large workpieces.

〈従来技術とその問題点〉 ワイヤ放電加工方法は、被工作物と電極線との間に放電
を行わせ、該電極線と被工作物とを相対的に移動させて
被工作物を所望の形状に切断加工するものである。ワイ
ヤ放電加工方法は、従来から実施されている方法であり
、これに使用する電極線の良否が加工速度や加工精度、
被工作物の表面性状などに直接大きな影晋をおよぼすた
め、加工に適した材料を用いることが必要である。
<Prior art and its problems> The wire electrical discharge machining method generates an electric discharge between a workpiece and an electrode wire, moves the electrode wire and the workpiece relatively, and moves the workpiece into a desired shape. It is cut into shapes. The wire electrical discharge machining method is a method that has been used for a long time, and the quality of the electrode wire used for this method depends on the machining speed, machining accuracy, and
Since it directly affects the surface properties of the workpiece, it is necessary to use materials suitable for machining.

一般に電極線に要求される特性として次のようなものが
挙げられる。
The following characteristics are generally required for electrode wires.

(1)高加工速度 (2)被工作物の寸法精度が高いこと、加工面の表面が
十分なめらかであること、 (3)作業性が良いこと(作業中の断線が少ないこと、
など、) (4)経済性(消耗品であるので、できるだけ安価であ
ること)、 加工速度は、電極線と被工作物との間の放電が十分安定
していると、高速にできるが、被工作物の表面粗度が大
きくなり肌荒れが発生する。被工作物の寸法精度を高め
るためには、電極線の径を小さくし、かつ、その偏差を
小さくすること、また、加工時にできるだけ高い張力を
与えて「線ぶれ」を小さくする必要がある。
(1) High machining speed (2) High dimensional accuracy of the workpiece and sufficiently smooth surface of the machined surface (3) Good workability (less wire breakage during work)
(4) Economic efficiency (as it is a consumable item, it should be as inexpensive as possible). The machining speed can be increased if the electrical discharge between the electrode wire and the workpiece is sufficiently stable. The surface roughness of the workpiece increases and roughness occurs. In order to improve the dimensional accuracy of the workpiece, it is necessary to reduce the diameter of the electrode wire and its deviation, and to apply as high a tension as possible during processing to reduce "wire wobbling".

放電の安定性、高抗張力特性に対する要求から、今まで
にも種々の電極線材が用いられている。
Various electrode wire materials have been used up to now due to requirements for discharge stability and high tensile strength properties.

従来用いられて来た材料の線径は、0.05〜0.25
mmφであり、この範囲内で比較的線径の太きい材料は
、放電加工特性を上げるために種々の機能化金属を添加
した銅や黄銅を主体としたものが多い。
The wire diameter of conventionally used materials is 0.05 to 0.25.
mmφ, and materials with a relatively large wire diameter within this range are often made mainly of copper or brass to which various functionalized metals are added to improve electrical discharge machining characteristics.

ここで、機能化金属とは、電子放出が十分に容易な(す
なわち仕事関数が小さい)金属であり、。
Here, the functionalized metal is a metal that emits electrons sufficiently easily (that is, has a small work function).

かつ沸点が低いなどのワイヤ放電加工時に高い機能を発
揮せしめる金属をいう。
A metal with a low boiling point that exhibits high functionality during wire electrical discharge machining.

線径の小さい線材料としては、高抗張力特性を与えるた
めに、種々の機能化金属を添加したタングステンを主体
としたもの、などが多い。たとえは、最近の特許では、
特開昭59−222546号は、銅に2010〜40w
t%とBeを0.05〜3 wt%添加したものであり
、特開昭59−222547号は銅にZn20〜40w
t%とSi O,1〜5wt%添加したものである。
Wire materials with small wire diameters are often made mainly of tungsten to which various functionalized metals are added in order to provide high tensile strength properties. For example, in a recent patent,
JP-A No. 59-222546 discloses 2010~40w for copper.
t% and Be added in an amount of 0.05 to 3 wt%.
t% and SiO, 1 to 5 wt%.

従来の電極線材は、次のような点で上記の要求をみたし
ていない。
Conventional electrode wires do not meet the above requirements in the following respects.

まず、銅系では抗張力が十分高くなく、断線しやすく、
また、加工速度も大きくない。また黄銅ネは銅4より加
工速度は大きいが、抗張力が十分ではなく、加工作業性
や被工作物の寸法精度と表面粗度の面で要求を満足しな
い。また黄銅系は銅系より伸線加工が困難である。細線
電極用のタングステン系は高価である上に、伸線加工が
困難であり、放電加工性の面でも不十分である。
First, copper-based wires do not have a high enough tensile strength and are prone to breaking.
Also, the processing speed is not high. Further, although the machining speed of Brass Ne is higher than that of Copper 4, it does not have sufficient tensile strength and does not satisfy requirements in terms of machining workability, dimensional accuracy and surface roughness of the workpiece. Brass-based wires are also more difficult to wire-draw than copper-based wires. Tungsten-based wires for thin wire electrodes are expensive, difficult to wire-draw, and have insufficient electrical discharge machinability.

また、被加工物の厚さが大きくなると、加工能率は劣化
する。すなわち、加工速度が、単位時間当りの加工面積
(加工厚さ×加工長さ、mm27m1n )で表示され
ることからも明らかなように、厚さが大きくなると加工
長さが小さくなる。
Furthermore, as the thickness of the workpiece increases, the processing efficiency deteriorates. That is, as is clear from the fact that the machining speed is expressed as the machining area per unit time (machining thickness x machining length, mm27m1n), as the thickness increases, the machining length becomes smaller.

また、被加工物の加工可能な厚さそのものに限界がある
。その大きな理由の1つは、加工液が、被加工物の厚さ
方向に十分流れなくなるからである。
Furthermore, there is a limit to the thickness of the workpiece that can be processed. One of the major reasons for this is that the machining fluid does not flow sufficiently in the thickness direction of the workpiece.

〈発明の目的〉 本発明の目的は、十分に高い抗張力を持ち、断線頻度の
小さい加工条件での加工を可能にし、従来得られなかっ
た高い加工速度での加工を実現することである。さらに
、従来は放電加工が困難であった材厚の厚い被加工物に
対して、極めて高速で高い加工精度と十分な平滑な加工
面を得ることを実現した十分に低価格な新規なワイヤ放
電加工用電極線材を提供しようとするものである。
<Objective of the Invention> The object of the present invention is to enable processing under processing conditions that have sufficiently high tensile strength and a low frequency of wire breakage, and to realize processing at a high processing speed that was previously unobtainable. Furthermore, we have developed a new, sufficiently low-cost wire discharge method that can achieve extremely high speed, high machining accuracy, and sufficiently smooth machining surfaces for thick workpieces that were previously difficult to machine by electrical discharge machining. The purpose is to provide an electrode wire for processing.

〈発明の構成〉 第1の態様の発明は、複数の金属素線を有することを特
徴とするワイヤ放電加工用電極線材を提供するものであ
る。
<Structure of the Invention> The first aspect of the invention provides an electrode wire for wire electrical discharge machining characterized by having a plurality of metal wires.

第2の態様の発明は、0.1μm以上の付着厚になるよ
うに機能化金属を付着せしめた、少なくとも1本の金属
素線よりなることを特徴とするワイヤ放電加工用電極線
材を提供するものである。
A second aspect of the invention provides an electrode wire for wire electrical discharge machining, characterized in that it is made of at least one metal wire to which a functionalized metal is attached to have a thickness of 0.1 μm or more. It is something.

第3の態様の発明は、金属素線の撚線に0.1μm以上
の付着厚になるように機能化金属を付着せしめてなるこ
とを特徴とするワイヤ放電加工用電極−線材を提供する
ものである。
A third aspect of the invention provides an electrode-wire material for wire electrical discharge machining, characterized in that a functionalized metal is adhered to a stranded metal wire to an adhesion thickness of 0.1 μm or more. It is.

蹟密加工用電極線の場合には、前記金属素線の抗張力が
150 kgf/ma+2以上であり、前記電極線が1
0〜300μmφの円面積と等しい断面積とするのがよ
い。
In the case of an electrode wire for dense processing, the tensile strength of the metal wire is 150 kgf/ma+2 or more, and the electrode wire has a tensile strength of 150 kgf/ma+2 or more.
It is preferable that the cross-sectional area is equal to a circular area of 0 to 300 μmφ.

また、高速加工用電極線の場合には、前記金属素線の高
張力が150 kgf/mm2未満であり、前記電極線
が30〜500μmφの円面積と等しい断面積とするの
がよい。
Further, in the case of an electrode wire for high-speed processing, it is preferable that the metal wire has a high tension of less than 150 kgf/mm2, and that the electrode wire has a cross-sectional area equal to a circular area of 30 to 500 μmφ.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

[1コ本発明では、電極線母材として金属素線な用いる
[1] In the present invention, a metal wire is used as the electrode wire base material.

金属素線は、銅、黄銅、タングステン等あるいは、これ
らの金属に特殊な合金元素を含む金属等の電極線母材と
して用いることができ (1)高加工速度 (2)被工作物の寸法粒度が高いこと、加工面の表面が
」−分なめらかであること、 (3)作業性が良いこと(作業中の断線が少ないこと、
など、) (4)経済性(消耗品であるので、できるだけ安価であ
ること)、 等の要求を充す性質を持つものであればいかなるものを
用いてもよいが、本発明では電極線母材としての高い特
性を与えるために各種の特殊な合金元素を含む素線を用
いるかわりに、好ましくは鋼線を用い、素線の抗張力が
150 kgf/+m2未満すなわち高速加工用である
ものと150 kgf/lllm2以上すなわち精密加
工用であるものに分けて考え、150 kgf/mm2
未満の場合は素材が安価で極めて経済的効果が大きい特
性を生かし、150 kgf/mm2以上の場合は、線
ぶれが小ざく精密加工特性が良いという特性を活用した
Metal wires can be used as electrode wire base materials for copper, brass, tungsten, etc., or metals containing special alloying elements in these metals. (1) High processing speed (2) Dimensional grain size of the workpiece (3) Good workability (less wire breakage during work),
(4) Economic efficiency (as it is a consumable item, it should be as inexpensive as possible), etc. Any material may be used as long as it satisfies the requirements, but in the present invention, the electrode wire bus Instead of using strands containing various special alloying elements to provide high properties as a material, it is preferable to use steel wires whose tensile strength is less than 150 kgf/+m2, that is, for high-speed processing. kgf/llm2 or more, that is, for precision machining, 150 kgf/mm2
If it is less than 150 kgf/mm2, we take advantage of the characteristics that the material is cheap and have an extremely large economic effect, and if it is more than 150 kgf/mm2, we take advantage of the characteristics that the line blur is small and precision machining characteristics are good.

すなわち、素線の抗張力に応じた適切な断面積となるよ
うに単線で、あるいは単線を複数本まとめたストランド
として、必要な場合は撚線として用い、必要があれば後
述する各種機能化金属を各種の方法で付着せしめ、必要
な場合は、再線引き加工を施す等の適切な処理を選択す
ることにより、抗張力が150 kgf/mm+2未満
の素線を用いても、抗張力が150 kgf/1I12
以上の素線を用いてもそれぞれの特性を生かして本発明
のワイヤ放電加工用電極線材とした。
In other words, it can be used as a single wire or as a strand made up of multiple single wires, or as a twisted wire if necessary, so as to have an appropriate cross-sectional area according to the tensile strength of the wire, and if necessary, it can be used with various functionalized metals as described below. By attaching it by various methods and selecting appropriate treatment such as redrawing if necessary, the tensile strength can be increased to 150 kgf/1I12 even if a wire with a tensile strength of less than 150 kgf/mm+2 is used.
The electrode wire material for wire electrical discharge machining of the present invention was made by utilizing the characteristics of each of the above-mentioned wires.

すなわち、上述したように主として精密加工用として用
いられる抗張力の高い素線を撚り合わせて成形した電極
線を利用する場合と、抗張力の低い加工速度を重視する
より太い線径になるように撚り合わせた電極線を利用す
る場合がある。
In other words, as mentioned above, there are cases in which electrode wires formed by twisting high tensile strength wires used mainly for precision processing, and cases in which the wires are twisted to have a thicker wire diameter to emphasize processing speed with low tensile strength. In some cases, electrode wires that have been used are used.

なお、素線をそのまま用いてもよいが、再線引き加工を
行って、抗張力を高めたものを用いてもよい。
Note that the strands may be used as they are, but they may be redrawn to have higher tensile strength.

(1)用いる電極線の素材の抗張力が150 kgf/
mm2以上のものは、主として精密加工用の電極線とし
ての利用分野で効果を発揮する。
(1) The tensile strength of the electrode wire material used is 150 kgf/
A wire having a diameter of mm2 or more is effective mainly in the field of use as an electrode wire for precision processing.

精密加工を行うためには、放電加工時の線ぶれを極力小
さくすることが必要である。そのためには抗張力の高い
電極線材を用いなければならない。本発明による電極線
材は好ましくは複数の素線を撚り合わせて作られている
ので、素線そのものに高張力特性を与えなければならな
い。
In order to perform precision machining, it is necessary to minimize line deviation during electrical discharge machining. For this purpose, an electrode wire with high tensile strength must be used. Since the electrode wire according to the invention is preferably made by twisting a plurality of strands together, the strands themselves must have high tensile strength properties.

抗張力150 kgf/mm”以上の経済的な素線の一
例としては、Co70.10〜0.20%、Cr10.
40〜0.80%、Ni/ 0.70〜1.00%、V
lo、03〜0.08%、[; u / O、15〜0
 、50%、Mo/ 0.40〜0.60%、B10.
02〜0.006%、含有する鋼線があげら九る。しか
しながらさらに経済的なものとしては、特にこのような
特殊成分を含まないC10,4〜0.8%、のような高
炭素鋼線でも十分にその機能を発揮せしめ得る。すなわ
ち、この範囲での炭素量や熱処理条件、伸線加工条件を
調整することにより、容易ニ高い抗張力を得ることがで
きる。
An example of an economical wire with a tensile strength of 150 kgf/mm" or more is Co70.10-0.20%, Cr10.
40-0.80%, Ni/0.70-1.00%, V
lo, 03-0.08%, [; u/O, 15-0
, 50%, Mo/0.40-0.60%, B10.
There are nine steel wires containing 0.02 to 0.006%. However, as for a more economical wire, a high carbon steel wire such as C10.4 to 0.8%, which does not contain such special components, can also function satisfactorily. That is, by adjusting the carbon content, heat treatment conditions, and wire drawing conditions within this range, high tensile strength can be easily obtained.

抗張力が150 kgf/mm”以上の素線を用いる場
合は、撚線等を行って電極線材とした後の断面積が10
μmφ〜500μmφの円面積の範囲とする。断面は必
ずしも真円である必要はなく、いかなる形状であ7ても
よい。
When using strands with a tensile strength of 150 kgf/mm" or more, the cross-sectional area after twisting etc. to make the electrode wire is 10
The circular area range is from μmφ to 500 μmφ. The cross section does not necessarily have to be a perfect circle, and may have any shape.

断面積が10μ履φの円面積未満であると、加工速度が
不十分であり、500μ■φの円面積層であると、加工
精度が劣化するからである。
If the cross-sectional area is less than 10 μιΦ, the machining speed will be insufficient, and if the cross-sectional area is 500 μιΦ, the machining accuracy will deteriorate.

(2)用いる電極線の素線の抗張力がl 50 kgf
/Iflo+2未満のものは、より太い径になるように
撚り合わせて高速加工用電極線として利用する。
(2) The tensile strength of the strands of the electrode wire used is l 50 kgf
If the diameter is less than /Iflo+2, the wires are twisted to have a larger diameter and used as electrode wires for high-speed processing.

この場合においても150 kgf/mm2以上の抗張
力をもつ素線を撚り合わせた電極線を用いても加工特性
は向上するが、150 kgf/mob2未満の素線を
用いる方が、極めて経済的効果が大きい。
In this case as well, the processing characteristics can be improved by using an electrode wire made by twisting together wires with a tensile strength of 150 kgf/mm2 or more, but it is extremely economical to use wires with a tensile strength of less than 150 kgf/mob2. big.

抗張力が150 kgf/mm2未満の素線を用いる場
合は、撚線等を行って電極線材とした後の断面積が30
μmφ〜500μmφの円面積の範囲とする。断面は必
ずしも真円である必要はなく、いかなる形状であっても
よい。
When using a wire with a tensile strength of less than 150 kgf/mm2, the cross-sectional area after twisting the wire to make an electrode wire is 30 kgf/mm2.
The circular area range is from μmφ to 500 μmφ. The cross section does not necessarily have to be a perfect circle, and may have any shape.

断面積が30μ履φの円面積未満であると、加工速度が
不十分であり、SOOμmφの円面積層であると、加工
精度が劣化するからである。
If the cross-sectional area is less than 30 μmφ, the machining speed will be insufficient, and if the cross-sectional area is SOO μmφ, the machining accuracy will deteriorate.

抗張力が150 kgf/mII+2以上の素線を用い
る場合に比して、断面積を大きくとれば、大電流放電加
工が可能となり、加工速度が増大する。
Compared to the case where a wire having a tensile strength of 150 kgf/mII+2 or more is used, if the cross-sectional area is made larger, large current electric discharge machining becomes possible and the machining speed increases.

本発明のワイヤ放電加工用電極線材は、金属素線をその
まま複数本合わせた複合線として用いてもよいが、以下
で説明する各種機能化金属を付着せしめて用いてもよい
The electrode wire material for wire electrical discharge machining of the present invention may be used as a composite wire made by combining a plurality of metal wires as is, but it may also be used by adhering various functionalized metals as described below.

[2]効率よく安定して放電加工を行うには、「放電エ
ネルギーの増大」も必要である。このために後述の各種
機能化金属を後述の各種の方法で電極線表面に付着せし
めると加工速度も増大し、加工精度も向上する。電極表
面への機能化金属の付着方法として、素線に付着せしめ
てから撚線加工するものと、撚り合わせてから付着せし
める方法とがある。いずれの場合も、機能化金属を付着
せしめない電極線よりは加工特性は著しく向上するが、
前者の場合の方が、特性改善効果は著しい。この理由は
、前者の方が均一に安定して機能化金属が付着するため
と考えられる。
[2] In order to perform electrical discharge machining efficiently and stably, it is also necessary to "increase electrical discharge energy." For this purpose, if various functionalized metals, which will be described later, are attached to the surface of the electrode wire by various methods, which will be described later, the processing speed will be increased, and the processing accuracy will also be improved. There are two methods for attaching the functionalized metal to the electrode surface: one method involves attaching the functionalized metal to the wire and then twisting the wire, and the other method involves twisting the functionalized metal and then attaching the functionalized metal. In either case, the processing characteristics are significantly improved compared to electrode wires that do not have functionalized metal attached.
In the former case, the characteristic improvement effect is more remarkable. The reason for this is thought to be that the functionalized metal adheres more uniformly and stably in the former case.

機能化金属とは、電子放出が十分に容易(すなわち仕事
関数が小さい)であり、かつ沸点が低いなどのワイヤ放
電加工時に高い機能を発揮せしめる金属をいう。
Functionalized metal refers to a metal that emits electrons sufficiently easily (that is, has a small work function) and has a low boiling point, which allows it to exhibit high functionality during wire electric discharge machining.

このような機能化金属としては、 Al1. Si、■
、[;r、Mn、 Ni、Cu、 Zn、 Ga、 G
e、 Zr、 Nb、 In。
Such functionalized metals include Al1. Si,■
, [;r, Mn, Ni, Cu, Zn, Ga, G
e, Zr, Nb, In.

sb、Iff、Ta、 Pbのいずれかの単体、Ni−
Cu、 Cu−Zn、 Ni−Znの合金、ざらにこれ
らのm体・合金にlを加えた複合体などを挙げることが
できる。
Single element of sb, If, Ta, Pb, Ni-
Examples include alloys of Cu, Cu-Zn, and Ni-Zn, as well as composites in which l is added to these m-forms and alloys.

これらの機能化金属を付着せしめる方法としては、CV
D (化学的蒸着)、真空蒸着、スパッタリング、イオ
ンブレーティングなどのPVD (物面病1並1 轡せ
或−妃 ル惑広 −力酊 カ融引抜き鍛造法などを挙げ
ることができ、これらのいずれかの方法あるいはこれら
の方法のうち複数の付着法を組み合わせたものにより0
.1μ1以上の付着厚になるように付着または被覆せし
める。
As a method for attaching these functionalized metals, CV
Examples include PVD (chemical vapor deposition), vacuum deposition, sputtering, ion blating, etc., and pultrusion forging methods. 0 by any method or a combination of these methods.
.. It is adhered or coated to a thickness of 1μ1 or more.

機能化金属の膜厚は、素線に付着せしめてから撚線加工
する場合も、素線を撚り合わせてから付着せしめる場合
も、0.1μm以上とする。0.1μm未満であると、
その機誠的強度が十分でなく、機能化金属の機能が十分
に発揮されない。
The film thickness of the functionalized metal is set to 0.1 μm or more whether it is applied to the strands and then twisted, or when the strands are twisted and then attached. If it is less than 0.1 μm,
Its mechanical strength is insufficient, and the function of the functionalized metal is not fully demonstrated.

以上のように各種機能化金属を各種の方法でその表面に
付着せしめることにより、加工特性は大幅に向上する。
As described above, by attaching various functionalized metals to the surface using various methods, processing characteristics can be greatly improved.

また、上記の断面積の電極線材とすることにより、本発
明の電極線材は従来電極線材の抗張力の2倍以上の抗張
力をもつ電極線材であるので、放電加工時の線ぶれが小
さく、「タイコ量」も小さくなり加工精度が著しく向上
する。
In addition, by using the electrode wire with the above-mentioned cross-sectional area, the electrode wire of the present invention has a tensile strength that is more than twice that of conventional electrode wires, so wire runout during electrical discharge machining is small, and The quantity is also reduced, and machining accuracy is significantly improved.

さらに本発明の電極線材は、その撚線の効果に上り k
J灯の汀(、\胎石工機ル綺雷bn Tすス輿r加工速
度の向上と、加工精度および加工面粗度に対する改善に
関する効果が大きい。
Furthermore, the electrode wire of the present invention has the effect of the twisted wire k
It is highly effective in improving machining speed, machining accuracy, and machined surface roughness.

すなわち5本発明は好ましくは、素線を複数本撚り合わ
せたものを電極線とすることにより、電極線の断面が凹
凸を持ったものとなり、加工液が電極線と被加工物加工
面との間、すなわち被加工物の厚さ方向に効果的に流通
する。この効果と、一定速度で、たとえば上方より下方
へ送られる凹凸をもった断面の電極線と被加工物との放
電効果により加工速度が飛躍的に向上する。
In other words, in the present invention, preferably, the electrode wire is made of a plurality of strands twisted together, so that the cross section of the electrode wire is uneven, and the machining fluid does not come into contact with the electrode wire and the processing surface of the workpiece. ie, in the thickness direction of the workpiece. Due to this effect and the electric discharge effect between the workpiece and the electrode wire, which has an uneven cross section and is fed downward at a constant speed, for example, the machining speed is dramatically improved.

く実 施 例〉 以下に本発明を実施例をあげて具体的に説明する。Practical example The present invention will be specifically described below with reference to Examples.

第1表に示す素線を用いて第1表に示す条件で電極線材
を作製した。
Electrode wires were produced using the wires shown in Table 1 under the conditions shown in Table 1.

被加工物としてSにD−11板材の加工を行い、加工精
度、加工速度、加工面粗さを比較した結果を「第1図」
〜「第6図」に示し、加工精度、加工面粗さで加工特性
を評価した。同じ材質の加工物の板厚を変えた場合の加
工特性値も同図に示した。
Figure 1 shows the results of machining D-11 plate material S as the workpiece and comparing the machining accuracy, machining speed, and machined surface roughness.
The machining characteristics were evaluated in terms of machining accuracy and machined surface roughness, as shown in Figure 6. The same figure also shows the machining characteristic values when the thickness of a workpiece made of the same material is changed.

なお、第1図、第2図の縦軸は、加工精度を加工溝幅で
評価している。加工溝幅が小さくかつバラツキ範囲が小
さい程、被加工物の加工寸法精度は優れている。
Note that the vertical axis in FIGS. 1 and 2 evaluates the machining accuracy based on the width of the machining groove. The smaller the processing groove width and the smaller the variation range, the better the processing dimensional accuracy of the workpiece.

実施例1および比較例1 第1表に示すとおり、以下のように本発明例1〜4およ
び比較例1の電極線材を作製した。
Example 1 and Comparative Example 1 As shown in Table 1, electrode wires of Invention Examples 1 to 4 and Comparative Example 1 were produced as follows.

(本発明例1) FCを主体とする抗張力が255 kgf/mtrr2
の素線を複数本撚り合わせて、直径が50μmφの円の
面積に等しくせしめた断面積をもつ電極線材。
(Example 1 of the present invention) Tensile strength mainly composed of FC is 255 kgf/mtrr2
An electrode wire material with a cross-sectional area equal to the area of a circle with a diameter of 50 μmφ made by twisting multiple wires together.

(本発明例2) 255 kgf/am2の抗張力をもつ素線に5μmF
XのZnを機能化金属として電気メツキ法により付着せ
しめて後にこの素線を複数本撚り合わせて直径が50μ
mφの円の面積に等しくせしめた断面積をもつ電極線材
(Example 2 of the present invention) A wire with a tensile strength of 255 kgf/am2 was heated with 5 μmF.
Zn of
An electrode wire with a cross-sectional area equal to the area of a circle of mφ.

(本発明例3) 255 kgf/mm2の抗張力をもつ素線を複数本撚
り合わせて直径が40μmφの円の面積に等しくせしめ
た断面積をもつ撚線に撚線後の断面の外周に沿った表面
に平均5μm厚のZnを機能化金属として電気メツキ法
により付着せしめた電極線材。
(Example 3 of the present invention) A plurality of wires having a tensile strength of 255 kgf/mm2 were twisted together to have a cross-sectional area equal to the area of a circle with a diameter of 40 μmφ. An electrode wire material with an average thickness of 5 μm of Zn as a functional metal adhered to the surface by electroplating.

(本発明例4) 高炭素鋼の素線の表面に機能化金属としてZnを電気メ
ツキ法により付着せしめた後に再線引き加工を行い25
5 kgf/mm2の抗張力を付加せしめた再線引き加
工後のメッキ厚が5μmの素線を複数本撚り合わせて直
径が50μlφの円の面積に等しくせしめた断面積をも
つ電極線材。
(Example 4 of the present invention) After attaching Zn as a functionalized metal to the surface of a high carbon steel wire by electroplating, re-drawing was performed.
An electrode wire material having a cross-sectional area equal to the area of a circle with a diameter of 50 μlφ by twisting together a plurality of wires with a plating thickness of 5 μm after redrawing and adding a tensile strength of 5 kgf/mm2.

(比較例1) 比較材としては、従来使われていた直径50μmφ、抗
張力が120 kgf/mta2のタングステン電極線
を用いた。
(Comparative Example 1) As a comparative material, a conventionally used tungsten electrode wire having a diameter of 50 μmφ and a tensile strength of 120 kgf/mta2 was used.

本発明例2によるものと、本発明例4によるものとは、
これら3つの加工特性に大きな差はみられないが、他の
ものより優れており、本発明例3に示すものがこれらに
次いで優れた加工特性を示す。本発明例1によるものは
、2.3.4より劣るが、従来のタングステン電極材で
加工した場合(比較例1)よりは、優れた加工特性を示
す。特に、これら4つの本発明例によるものは、被加工
材の材厚が厚い場合に特性改善効果が著しい。
The one according to the present invention example 2 and the one according to the present invention example 4,
Although there is no big difference in the processing properties of these three, they are better than the others, and the one shown in Inventive Example 3 shows the second most excellent processing properties. Although the material according to Inventive Example 1 is inferior to 2.3.4, it exhibits better processing characteristics than when processed using a conventional tungsten electrode material (Comparative Example 1). In particular, these four examples of the present invention have a remarkable effect of improving characteristics when the workpiece is thick.

これら3つの加工特性のうち、とりわけ、加工精度に関
して本発明による電極線材は最も優れた改善を示す。
Among these three processing characteristics, the electrode wire according to the present invention exhibits the greatest improvement in processing accuracy.

本発明例2によるものと、本発明例4によるものとは加
工特性においては、大きな差はみられないが、前述のよ
うに本発明例4によるものの方が、最も経済的である。
Although there is no significant difference in processing characteristics between the products according to Example 2 of the present invention and those according to Example 4 of the present invention, as described above, the product according to Example 4 of the present invention is the most economical.

本実施例で示したものはFeを主体とした電極材である
ので、従来のタングステン1Jjii材などよりも、は
るかに安価なものである。
Since the electrode material shown in this embodiment is mainly made of Fe, it is much cheaper than the conventional tungsten 1Jjii material.

また、本実施例は一例を示したものであり、本発明の範
囲内の他の条件で作製した電極線材に関しても、本実施
例と同等またはそれ以上の効果が得られた。
Moreover, this example shows an example, and effects equivalent to or better than those of this example were obtained also with respect to electrode wires produced under other conditions within the scope of the present invention.

(実施例2および比較例2) 第1表に示すとおり、以下のように本発明例5〜8およ
び比較例2の電極線材を作製した。
(Example 2 and Comparative Example 2) As shown in Table 1, electrode wires of Invention Examples 5 to 8 and Comparative Example 2 were produced as follows.

(本発明例5) Feを主体とする抗張力が130 kgf/mm2の素
線を複数本撚り合わせて、直径が200μmφの円の面
積に等しくせしめた断面積をもつ電極線材。
(Example 5 of the present invention) An electrode wire having a cross-sectional area equal to the area of a circle with a diameter of 200 μmφ by twisting together a plurality of Fe-based wires with a tensile strength of 130 kgf/mm2.

(本発明例6) 本発明例5の素線に10μm厚のZnを機能化金属とし
て電気メツキ法により付着せしめて後にこの素線を複数
本撚り合わせて直径が200μlφの円の面積に等しく
せしめた断面積をもつ電極線材。
(Example 6 of the present invention) Zn with a thickness of 10 μm was attached as a functional metal to the wire of Example 5 of the present invention by electroplating, and then a plurality of these wires were twisted to make the area equal to the area of a circle with a diameter of 200 μlφ. Electrode wire with a cross-sectional area.

(本発明例7) 本発明例5の素線な複数本撚り合わせて直径が180μ
lφの円の面積に等しくせしめた断面積をもつ撚線に加
工後の断面の外周に沿った表面に平均10μm11厚の
Znを機能化金属として電気メツキ法により付着せしめ
た電極線材。
(Example 7 of the present invention) A plurality of wires of Example 5 of the present invention are twisted together to have a diameter of 180μ.
An electrode wire material in which Zn as a functionalized metal is adhered to the surface along the outer periphery of a stranded wire having a cross-sectional area equal to the area of a circle of lφ with an average thickness of 10 μm11 by electroplating.

(本発明例8) 本発明例7で用いた素線より炭素量が低い安価な高炭素
濶の素線の表面に機能化金属としてZnを電気メツキ法
により付着せしめて後に再線引き加工を行い130 k
gf/am2の抗張力を付加せしめた再線引き加工後の
メッキ厚が10μmの素線を複数本撚り合わせて直径が
200μlφの円の面積に等しくせしめた断面積をもつ
電極線材。
(Example 8 of the present invention) Zn was deposited as a functional metal on the surface of an inexpensive high-carbon wire with a lower carbon content than the wire used in Example 7 of the present invention by electroplating, and then redrawn. 130k
An electrode wire material having a cross-sectional area equal to the area of a circle with a diameter of 200 μlφ by twisting together a plurality of wires with a plating thickness of 10 μm after redrawing and adding a tensile strength of gf/am2.

(比較例2) 比較材としては、従来使われていた直径200μmφ、
抗張力が95 kgf/mff12の黄銅線を用いた。
(Comparative Example 2) As comparative materials, conventionally used diameter 200μmφ,
A brass wire with a tensile strength of 95 kgf/mff12 was used.

本発明例6によるものと、本発明例8によるものとは、
これら3つの加工特性に大きな差はみられないが、他の
例より優れた結果が得られ、本発明例7に示すものがこ
れらに次いで優れた加工特性を示す。
The one according to the present invention example 6 and the one according to the present invention example 8,
Although there is no major difference in the processing characteristics of these three examples, better results than the other examples were obtained, and the one shown in Inventive Example 7 shows the second most excellent processing characteristics.

本発明例5に示すものは、他のものより劣るが、従来の
黄銅線で加工した場合比較例2よりは、はるかに優れた
加工特性を示す。特にこれら4つの本発明によるものは
材厚の厚い場合に特性改善効果が著しい。
Invention Example 5 is inferior to the others, but exhibits much better processing characteristics than Comparative Example 2 when processed using conventional brass wire. In particular, these four materials according to the present invention have a remarkable effect of improving characteristics when the material is thick.

また、これら3つの加工特性のうち、とりわけ、加工速
度に関して、本発明による電極線材は最も優れた改善を
示す。
Further, among these three processing characteristics, the electrode wire according to the present invention shows the most excellent improvement in processing speed.

本発明例6の場合と、本発明例8の場合とでは、加工特
性に大きな差異はみられないが、前述のように本発明8
の場合は経済性の面で最も優れている。
Although there is no major difference in processing characteristics between Invention Example 6 and Invention Example 8, as described above, Invention Example 8
is the most economical case.

本実施例で示したものはFeを主体としたものであるの
で、従来の黄銅電極材などよりも、はるかに安価である
Since the material shown in this example is mainly made of Fe, it is much cheaper than conventional brass electrode materials.

また、本実施例は一例を示したものにすぎず、本発明の
範囲の他の条件で作製した電極線材に関しても本実施例
と同等またはそれ以上の効果が得られた。
Further, this example is merely an example, and effects equivalent to or better than those of this example were obtained with electrode wires produced under other conditions within the scope of the present invention.

〈発明の効果〉 本発明の電極線材は、複数の素線を撚り合わせて構成さ
れており、加工特性をさらに向上させるために適切な方
法によりその表面に機能化金属を付着せしめている。そ
のために、従来線よりも、加工速度が大きく、線ぶれも
減少し、「タイコ量」も小さくすることができ、さらに
、加工面粗さ、加工溝幅ともに小さくできる。
<Effects of the Invention> The electrode wire of the present invention is composed of a plurality of wires twisted together, and a functionalized metal is attached to its surface by an appropriate method in order to further improve processing characteristics. Therefore, compared to conventional wires, the machining speed is higher, the line runout is reduced, the "tension amount" can be reduced, and both the machined surface roughness and the machined groove width can be reduced.

また曲りぐせも小さく、腰が強いので自動結線も容易に
なり断線の頻度も小さいので作業性も大幅に向上する。
In addition, the bends are small and the wire is strong, so automatic wire connection is easy, and the frequency of wire breakage is low, which greatly improves work efficiency.

経済面においても、従来のタングステン線の1/10以
下、黄銅線の2/3以下のコストであり、この面でも帰
れている。
Economically, the cost is less than 1/10 that of conventional tungsten wire and less than 2/3 of that of brass wire, making it a success in this respect as well.

とりわけ、加工液の効果的な流通が可能になったことや
、凹凸をもった断面が加工先端を通過する状態での放電
効果、などにより材厚の厚い被加工物に対して、著しい
加工特性の向上効果を実現することができる。
In particular, the effective flow of machining fluid and the electric discharge effect when an uneven cross section passes through the machining tip provide remarkable machining characteristics for thick workpieces. It is possible to realize the improvement effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図、第5図は、それぞれ実施例1における
本発明電極線材のファースト加工時の加工精度特性、加
工速度特性、加工面粗さ測定値、をそれぞれ従来電極線
材と比較して示したグラフである。 第2図、第4図、第6図は、それぞれ実施例2における
本発明電極線材のファースト加工時の加工精度特性、加
工速度特性、加工面粗さ測定値、をそれぞれ従来・電極
線材と比較して示したグラフである。
Figures 1, 3, and 5 show the machining accuracy characteristics, machining speed characteristics, and machined surface roughness measurements during the first machining of the electrode wire of the present invention in Example 1, respectively, compared with the conventional electrode wire. This is a graph shown. Figures 2, 4, and 6 compare the machining accuracy characteristics, machining speed characteristics, and machined surface roughness measurements during first machining of the electrode wire of the present invention in Example 2, respectively, with the conventional electrode wire. This is a graph shown as follows.

Claims (9)

【特許請求の範囲】[Claims] (1)複数の金属素線を有することを特徴とするワイヤ
放電加工用電極線材。
(1) An electrode wire for wire electrical discharge machining characterized by having a plurality of metal wires.
(2)前記金属素線の抗張力が150kgf/mm^2
以上であり、前記電極線が10〜300μmφの円面積
と等しい断面積であることを特徴とする特許請求の範囲
第1項に記載のワイヤ放電加工用電極線材。
(2) The tensile strength of the metal wire is 150 kgf/mm^2
The electrode wire for wire electrical discharge machining according to claim 1, wherein the electrode wire has a cross-sectional area equal to a circular area of 10 to 300 μmφ.
(3)前記金属素線の抗張力が150kgf/mm^2
未満であり、前記電極線が30〜500μmφの円面積
と等しい断面積であることを特徴とする特許請求の範囲
第1項に記載のワイヤ放電加工用電極線材。
(3) The tensile strength of the metal wire is 150 kgf/mm^2
The electrode wire for wire electrical discharge machining according to claim 1, wherein the electrode wire has a cross-sectional area equal to a circular area of 30 to 500 μmφ.
(4)0.1μm以上の付着厚になるように機能化金属
を付着せしめた、少なくとも1本の金属素線よりなるこ
とを特徴とするワイヤ放電加工用電極線材。
(4) An electrode wire material for wire electrical discharge machining, characterized in that it consists of at least one metal wire to which a functionalized metal is adhered so as to have an adhesion thickness of 0.1 μm or more.
(5)前記金属素線の抗張力が150kgf/mm^2
以上であり、前記電極線が10〜300μmφの円面積
と等しい断面積であることを特徴とする特許請求の範囲
第4項に記載のワイヤ放電加工用電極線材。
(5) The tensile strength of the metal wire is 150 kgf/mm^2
The electrode wire for wire electrical discharge machining according to claim 4, wherein the electrode wire has a cross-sectional area equal to a circular area of 10 to 300 μmφ.
(6)前記金属素線の抗張力が150kgf/mm^2
未満であり、前記電極線が30〜500μmφの円面積
と等しい断面積であることを特徴とする特許請求の範囲
第4項に記載のワイヤ放電加工用電極線材。
(6) The tensile strength of the metal wire is 150 kgf/mm^2
The electrode wire for wire electrical discharge machining according to claim 4, wherein the electrode wire has a cross-sectional area equal to a circular area of 30 to 500 μmφ.
(7)金属素線の撚線に0.1μm以上の付着厚になる
ように機能化金属を付着せしめてなることを特徴とする
ワイヤ放電加工用電極線材。
(7) An electrode wire material for wire electric discharge machining, characterized in that a functionalized metal is adhered to strands of metal wires to a thickness of 0.1 μm or more.
(8)前記金属素線の抗張力が150kgf/mm^2
以上であり、前記電極線が10〜300μmφの円面積
と等しい断面積であることを特徴とする特許請求の範囲
第7項に記載のワイヤ放電加工用電極線材。
(8) The tensile strength of the metal wire is 150 kgf/mm^2
The electrode wire for wire electrical discharge machining according to claim 7, wherein the electrode wire has a cross-sectional area equal to a circular area of 10 to 300 μmφ.
(9)前記金属素線の抗張力が150kgf/mm^2
未満であり、前記電極線が30〜500μmφの円面積
と等しい断面積であることを特徴とする特許請求の範囲
第7項に記載のワイヤ放電加工用電極線材。
(9) The tensile strength of the metal wire is 150 kgf/mm^2
The electrode wire for wire electrical discharge machining according to claim 7, wherein the electrode wire has a cross-sectional area equal to a circular area of 30 to 500 μmφ.
JP4805286A 1986-03-05 1986-03-05 Electrode wire rod for wire electric discharge machining Pending JPS62208827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4805286A JPS62208827A (en) 1986-03-05 1986-03-05 Electrode wire rod for wire electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4805286A JPS62208827A (en) 1986-03-05 1986-03-05 Electrode wire rod for wire electric discharge machining

Publications (1)

Publication Number Publication Date
JPS62208827A true JPS62208827A (en) 1987-09-14

Family

ID=12792565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4805286A Pending JPS62208827A (en) 1986-03-05 1986-03-05 Electrode wire rod for wire electric discharge machining

Country Status (1)

Country Link
JP (1) JPS62208827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139073A (en) * 2012-01-06 2013-07-18 Sumitomo Electric Ind Ltd Electrode wire for wire electric discharge machining and method of manufacturing the same
JP2021119020A (en) * 2020-01-30 2021-08-12 日立金属株式会社 Wire-edm electrode wire, its manufacturing method, and evaluation method of wire-edm electrode wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139073A (en) * 2012-01-06 2013-07-18 Sumitomo Electric Ind Ltd Electrode wire for wire electric discharge machining and method of manufacturing the same
JP2021119020A (en) * 2020-01-30 2021-08-12 日立金属株式会社 Wire-edm electrode wire, its manufacturing method, and evaluation method of wire-edm electrode wire

Similar Documents

Publication Publication Date Title
US4968867A (en) Wire electrode for wire cut electric discharge machining
US6781081B2 (en) Wire electrode for spark erosion cutting
US5599633A (en) Wire electrode for electro-discharge machining
JPH04261714A (en) Wire electrode for cutting work piece by electrical discharge machining
JPS62208827A (en) Electrode wire rod for wire electric discharge machining
JPH05228729A (en) Shaving die
JPS5941462A (en) Preparation of composite electrode wire for discharge machining
JP3405069B2 (en) Electrode wire for electric discharge machining
JP2001052528A (en) Electrode wire for highly conductive wire electrical discharge machining
JP3087552B2 (en) Electrode wire for electric discharge machining
JPH0679535A (en) Composite electrode wire for wire-cut electric discharge machining and its manufacture
JP2000107943A (en) Wire electronic discharge machining electrode line
JP2001030008A (en) Manufacture of copper or copper alloy-iron combined wire
JP4020003B2 (en) Electrode wire for wire electric discharge machining and electric discharge machining method using the same
JPS61188025A (en) Electrode wire for electric discharge machining
JPS59129626A (en) Electrode wire for wire cut electro-discharge machining
JPS59110517A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JPS62130128A (en) Electrode wire for wire cut electric discharge machining
JPH11320270A (en) Electrode wire with high strength and high conductivity for wire electric discharge machining
JPH0224025A (en) Electrode wire for wire electric discharge machining
JPS6257823A (en) Electrode wire for wire electric discharge machining
JPS6099526A (en) Electrode wire for wire-cut electric spark machine
JPS59123751A (en) Production of electrode wire for electric spark machining for cutting wire
JPS6257824A (en) Electrode wire for wire electric discharge machining
JPS62259719A (en) Electrode for wire-cut electric-discharge machining