JPS62208283A - Recombinant vector and bacterium containing same - Google Patents

Recombinant vector and bacterium containing same

Info

Publication number
JPS62208283A
JPS62208283A JP4848286A JP4848286A JPS62208283A JP S62208283 A JPS62208283 A JP S62208283A JP 4848286 A JP4848286 A JP 4848286A JP 4848286 A JP4848286 A JP 4848286A JP S62208283 A JPS62208283 A JP S62208283A
Authority
JP
Japan
Prior art keywords
cellulase
dna
recombinant vector
ruminococcus
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4848286A
Other languages
Japanese (ja)
Inventor
Shuji Kawai
川合 修次
Shoji Taya
田谷 正二
Shinji Iijima
信司 飯島
Takeshi Kobayashi
猛 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP4848286A priority Critical patent/JPS62208283A/en
Publication of JPS62208283A publication Critical patent/JPS62208283A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To produce the aimed cellulase under an aerobic condition efficiently, by preparing a recombinant vector containing a cellulase producing chromosome DNA of a bacterium belonging to the genus Ruminococcus, capable of producing cellulase. CONSTITUTION:Ruminococcus albus a bacterium belonging to the genus Ruminococcus is treated with lysozyme to dissolve a cell wall, mildly subjected to bacteriolysis with a surface active agent, treated with phenol and centrifuges to give a DNA fraction, from which DNA is obtained by ethanol precipitation. This chromosome DNA is cleaved with restricted endonuclease, DNA and a vector are scissored with the same restricted enzyme, then both are linked by the use of DNA ligase to give a recombinant vector. Then, the recombinant vector is transduced into Escherichia coli capable of being cultivated under an aerobic condition by transformation method to produce cellulase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 微生物利用工業の分野に有用である。[Detailed description of the invention] [Industrial application field] It is useful in the field of microbial utilization industry.

〔発明の要約〕[Summary of the invention]

本発明はルミノコッカス屈に属するセルラーゼ生産菌の
セルラーゼ生産に関与する遺伝情報を担う染色体DNA
断片を含有せしめてなる組換えベクター、及びこれによ
り形質転換されたエシェリヒア属に属するセルラーゼ生
産菌に関するものである。
The present invention relates to chromosomal DNA that carries genetic information involved in cellulase production of cellulase-producing bacteria belonging to the Ruminococcus genus.
The present invention relates to a recombinant vector containing the fragment, and a cellulase-producing bacterium belonging to the genus Escherichia transformed with the recombinant vector.

〔従来の技術〕[Conventional technology]

食糧危機やエネルギー危機の長期的解決策として、再生
産可能な資源であるバイオマスが注目されている。中で
もセルロース系資源は重要視されており、エネルギー化
合物、化学工業原料、食飼料などへの転換利用の、研究
が盛んである。セルロース資源の有効利用のためには、
これを低分子化し安定で利用し易い形態へ変換する必要
があり、種々の微生物からセルラーゼ生産菌がスクリー
ニングされている所以である。
Biomass, a renewable resource, is attracting attention as a long-term solution to food and energy crises. Among these, cellulose-based resources are regarded as important, and there is active research into their conversion and use into energy compounds, raw materials for the chemical industry, food and feed, etc. For effective use of cellulose resources,
It is necessary to convert this into a stable and easily usable form by reducing its molecular weight, and this is why cellulase-producing bacteria are being screened from various microorganisms.

反すう動物の第−冒には、セルロース分解能をもつルー
メン細菌が棲息しており、ルミノコッカス・フラビファ
シエンス、ルミノコッカス・アルプス、バクテロイド・
プレビス、バクテロイド・ルミノコーラ、バクテロイド
・スシノゲネス等が分離固定されている。
The rumen bacteria that have the ability to decompose cellulose live in the first blood cells of ruminants, including Ruminococcus flavifaciens, Ruminococcus alpus, and Bacteroides
Plevis, Bacteroides ruminocola, Bacteroides succinogenes, etc. have been isolated and fixed.

ルミノコッカス・アルプスは、これらの中でも最も強い
セルロース分解能を持つ細菌であり、培養条件等がよく
検討されている。(日本農芸化学会編朶:バイオマス、
朝食書店[)51〜67(+985))〔発明が解決し
ようとする問題点〕 ルミノコッカス・アルプスの完全合成培地組成等は、す
でに確立されているが、本菌が絶対嫌気性菌である為に
、調整培地及び培養中は嫌気性に保つ必要があり、工業
化には不適である。又、嫌気性菌は、好気性菌に比べて
増殖が遅く、得られる菌体濃度も低い等の欠点を有して
いる。従って本菌のもつセルラーゼを、大量生産しよう
とすれば、その生産能力を高め、より容易な培養方法の
確立が必要である。
Ruminococcus alpus is a bacterium that has the strongest ability to decompose cellulose among these, and its culture conditions have been carefully studied. (edited by the Japanese Society of Agricultural Chemistry: Biomass,
Breakfast Bookstore [) 51-67 (+985)) [Problems to be solved by the invention] The composition of a completely synthetic medium for Ruminococcus alpus has already been established, but since this bacterium is an obligate anaerobic bacterium, Moreover, it is necessary to maintain the conditioned medium and culture in an anaerobic state, making it unsuitable for industrialization. Furthermore, anaerobic bacteria have disadvantages such as slower growth and lower bacterial cell concentration than aerobic bacteria. Therefore, in order to mass-produce cellulase possessed by this bacterium, it is necessary to increase its production capacity and establish an easier culture method.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らは、ルミノコッカス属に属するセルラーゼ生
産菌のセルラーゼ生産方法の改善につき鋭意研究した結
果、ルミノコッカス属に居するセルラーゼ生産菌から得
られるセルラーゼ生産性遺伝子を用いて組換えベクター
を作成し、これを好気的条件下で培養可能な微生物に導
入し形質転換させることにより、[1的とするセルラー
ゼを好気的条件下で効率的に生産させることが出来るこ
とを見い出し本発明を完成した。
As a result of intensive research into improving cellulase production methods using cellulase-producing bacteria belonging to the genus Ruminococcus, the present inventors created a recombinant vector using a cellulase-producing gene obtained from a cellulase-producing bacteria belonging to the genus Ruminococcus. We have discovered that by introducing this into a microorganism that can be cultured under aerobic conditions and transforming it, it is possible to efficiently produce cellulase under aerobic conditions. completed.

即ち、本発明は、ルミノコッカス属に属するセルラーゼ
生産菌の染色体DNAを切断して得られたセルラーゼ生
産に関与する遺伝情報を担う染色体DNA断片を含有す
る組換えベクターを提供し、更にこの組換えベクターを
好気的条件下で培養筒゛能な微生物であるエシェリヒア
属に属する微生物に導入して得られた形質転換体を提供
するものである。
That is, the present invention provides a recombinant vector containing a chromosomal DNA fragment carrying genetic information involved in cellulase production obtained by cleaving the chromosomal DNA of a cellulase-producing bacterium belonging to the genus Ruminococcus; The present invention provides a transformant obtained by introducing a vector into a microorganism belonging to the genus Escherichia that can be cultured under aerobic conditions.

本発明において使用される染色体DNA供与菌として使
用するルミノコッカス属微生物としては、ルミノコッカ
ス・アルプス(名古屋大学工学部保存菌株)があげられ
る。
Examples of the microorganism of the genus Ruminococcus used as the chromosomal DNA donor used in the present invention include Ruminococcus alps (a strain stored in the Faculty of Engineering, Nagoya University).

ルミノコッカス・アルプスからの染色体DNAの調整法
は特に限定されない。例えば、リゾチーム等で細胞壁を
溶解後、界面活性剤を用いて穏やかに溶菌し、フェノー
ル処理を行ない遠心によって得られるDNA画分から、
エタノール沈澱によってDNA’を得、更に精製を行な
う。
The method for preparing chromosomal DNA from Ruminococcus alpus is not particularly limited. For example, after lysing the cell wall with lysozyme, etc., gentle lysis using a surfactant, phenol treatment, and centrifugation obtains a DNA fraction.
DNA' is obtained by ethanol precipitation and further purified.

或いは、SDS等の界面活性剤によって溶菌後遠心によ
り菌体残査とDNA画分を分離し、さらに塩化セシウム
平衡密度勾配遠心法でDNA画分を得る。
Alternatively, after lysis with a surfactant such as SDS, bacterial cell residue and DNA fraction are separated by centrifugation, and the DNA fraction is further obtained by cesium chloride equilibrium density gradient centrifugation.

次いで、調整された染色体DNAは、ベクターと連結さ
れるために切断される。供与染色体DNAの切断は、通
常制限エンドヌクレアーゼを用いる方法によって実施さ
れるが、特にこの方法に限定されるものではなく、例え
ば物理的に剪断力を加えて切断する方法でもよい。制限
酵素を使用して供与染色体DNAを切断する場合、完全
切断をおこす反応条件を用いるのであればセルラーゼ生
産性遺伝子に切断部位を持たない制限エンドヌクレアー
ゼであれば如何なるものでも使用可能である。また5部
分的にしか切断を起さない反応条件を用いるのであれば
、全ての制限エンドヌクレアーゼが使用可能である。斯
様に制限酵素は用いる条件に応じて種々のものが選択可
能であるが、ベクターとの連結の容易からは使用するベ
クターに唯一の切断部位を有する制限酵素を使用するの
がよい。例えば、ベクターとしてプラスミドのpBR3
22を使用する場合、IEcoRI 、 Sal I 
、 Bam1l I 。
The prepared chromosomal DNA is then cut for ligation with the vector. The donor chromosomal DNA is usually cleaved by a method using a restriction endonuclease, but is not particularly limited to this method; for example, a method in which cleavage is performed by physically applying a shearing force may be used. When using a restriction enzyme to cleave donor chromosomal DNA, any restriction endonuclease that does not have a cleavage site in the cellulase-producing gene can be used as long as reaction conditions that cause complete cleavage are used. Furthermore, any restriction endonuclease can be used, provided that reaction conditions that cause only partial cleavage are used. In this way, various restriction enzymes can be selected depending on the conditions used, but from the viewpoint of ease of ligation with the vector, it is preferable to use a restriction enzyme that has a unique cleavage site for the vector used. For example, the plasmid pBR3 as a vector
22, IEcoRI, Sal I
, Bam1l I.

Hindll 、 Pst I等が使用可能である。Hindll, Pst I, etc. can be used.

一方、ベクターとしては、宿主として使用するエシェリ
ヒア属微生物中で複製可能なものであれば、プラスミド
若しくはファージの区別なく使用することができる。
On the other hand, as a vector, any vector can be used regardless of whether it is a plasmid or a phage, as long as it can be replicated in the microorganism of the genus Escherichia used as a host.

ベクターとしてプラスミドを使用する場合、宿主中にお
いて複製可能なものであれば如何なるものでもよいが、
特定の制限酵素による唯一の切断部位を有し、抗生物質
耐性等のマーカーを有するものが、供与染色体DNA断
片との結合および形質転換株の選択容易性から望ましい
、プラスミドの例示としては、psclol、 pcR
l、 pMI19. pBR313゜pBR322,p
BR324,pBR325,pAcYc177、 pA
cYc184などがあげられる。
When using a plasmid as a vector, any plasmid can be used as long as it can be replicated in the host, but
Examples of plasmids that have a unique cleavage site with a specific restriction enzyme and have markers such as antibiotic resistance are preferred from the viewpoint of binding with donor chromosomal DNA fragments and ease of selection of transformed strains. pcR
l, pMI19. pBR313゜pBR322,p
BR324, pBR325, pAcYc177, pA
Examples include cYc184.

切断された供与染色体DNAを、ベクターに挿入し結合
させるには、供与染色体DNAとベクターとを同一の制
限酵素で切断し、然る後にDNAリガーゼを使用し両者
を結合するのが一般的に使用される方法である。しかし
、斯様な方法に限定されることな〈従来知られている如
何なる方法でも実施可能である。
In order to insert and link the cut donor chromosomal DNA into a vector, it is generally used to cut the donor chromosomal DNA and the vector with the same restriction enzyme, and then use DNA ligase to join the two together. This is how it is done. However, the method is not limited to this method; any conventionally known method can be used.

DNAリガーゼの例示としては、大腸菌のDNAリガー
ゼ及びT4ファージのDNAリガーゼがあげられる。
Examples of DNA ligases include E. coli DNA ligase and T4 phage DNA ligase.

斯様にして調整された供与染色体DNA断片とベクター
との結合体である組換えベクターは、ついで宿主である
エシェリヒア属微生物に導入される。
The recombinant vector, which is a conjugate of the donor chromosomal DNA fragment prepared in this manner and the vector, is then introduced into a host microorganism belonging to the genus Escherichia.

宿主として使用されるエシェリヒア属微生物としては、
エシェリヒア・コリの種々の株が使用可能である。例え
ば、C600、χ1776、 LE392.11810
1゜RPI、す3110r−m”、 JM103等が例
示される。
Microorganisms of the genus Escherichia used as hosts include:
Various strains of Escherichia coli can be used. For example, C600, χ1776, LE392.11810
Examples include 1°RPI, 3110r-m'', and JM103.

宿主微生物であるエシェリヒア属微生物への組換えベク
ターの導入、すなわち、形質転換法は特に限定されない
が、カルシウムイオン存在下で処理する方法が一般的で
ある。
The method for introducing a recombinant vector into a microorganism of the genus Escherichia, which is a host microorganism, ie, the transformation method, is not particularly limited, but a method in which treatment is performed in the presence of calcium ions is common.

形質転換株から目的とするセルラーゼ生産性遺伝子もし
くは、セルラーゼ生産性遺伝子を含む供与染色体DNA
断片が導入された微生物を選択、分離する方法は特に限
定されないが、ベクターが有する抗生物質耐性等のマー
カー発現を利用し第一次的に選択し次いで宿主のセルラ
ーゼ活性を指標とする第二次的選択をする方法が好適で
ある。
Target cellulase-producing gene from the transformed strain or donor chromosomal DNA containing the cellulase-producing gene
The method for selecting and isolating microorganisms into which the fragments have been introduced is not particularly limited, but the first selection is based on the expression of markers such as antibiotic resistance that the vector has, and the second selection is based on the cellulase activity of the host. A method that makes a selective selection is preferred.

かくして最終的に選択された形rt転換株を使用したセ
ルラーゼの生産、精製法については特に制限はない。
There are no particular limitations on the method for producing and purifying cellulase using the rt-transformed strain thus finally selected.

培養で使用する培地の組成は、エシェリヒア属微生物が
良好に生育し、セルラーゼの生産を順調に行なわしめる
ために適当な炭素源、窒素源あるいは有機栄養源、無機
塩等からなっている。
The composition of the medium used for culturing includes appropriate carbon sources, nitrogen sources, organic nutrient sources, inorganic salts, etc. in order to allow the microorganisms of the genus Escherichia to grow well and to smoothly produce cellulase.

〔作 用〕[For production]

絶対嫌気性菌であるルミノコッカス属に属するセルラー
ゼ生産菌より、セルラーゼをコードする染色体DNA断
片を選択的に分取し、これを組換えベクターとして、次
いで好気条件下で培養可能なエシェリヒア・コリに形質
転換法にて導入し、セルラーゼを生産させることができ
る。
A chromosomal DNA fragment encoding cellulase was selectively isolated from a cellulase-producing bacterium belonging to the genus Ruminococcus, which is an obligate anaerobic bacterium, and this was used as a recombinant vector to produce Escherichia coli, which can be cultivated under aerobic conditions. cellulase can be produced by introducing the cellulase into a cellulose by a transformation method.

〔発明の効果〕〔Effect of the invention〕

嫌気性菌のセルラーゼ生産性遺伝子をクローニングする
ことにより、好気条件下で、嫌気性菌のセルラーゼを効
率よく生産できる。
By cloning cellulase-producing genes of anaerobic bacteria, cellulase of anaerobic bacteria can be efficiently produced under aerobic conditions.

〔実施例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

実施例1(染色体DNAの調整法) ルミノコッカス・アルプスより染色体DNAを調製する
際には9次に示す完全合成培地450■1を用い、完全
嫌気性下で生育させた。
Example 1 (Preparation method of chromosomal DNA) When chromosomal DNA was prepared from Ruminococcus alpus, the complete synthetic medium 450.1 shown below was used and grown under complete anaerobic conditions.

R,albusの完全合成培地(,1fi当り)塩類溶
液、             75諺lK、I(PO
40,45g Na、 Co、、               4 
、0gL−システィン塩酸          0.2
5gNa、S・911,0             
0.25*Fe50. ・7H,OO、01#c ZnSO4・71120             0
.01gMnSO4・4〜61(200,0IHCoC
]、 ・6 夏f、0               
              0.01 fCレサズリ
ンナトリウム        1.0ml揮発性脂肪酸
混液b         3.1+slピリドキシン塩
酸          2.OmgP−アミノ安息香酸
          0.IHビオチン       
       0・05mgし一アルギニン     
      0.02gボールミル・セルロース   
   5.0ga : 0.6%KH,PO,,1,2
%NaC1,1,2%(NH4)、So、。
R. albus complete synthetic medium (per 1 fi) saline solution, 75 proverbs K, I (PO
40.45g Na, Co,, 4
,0gL-cystine hydrochloric acid 0.2
5gNa, S・911.0
0.25*Fe50.・7H,OO, 01#c ZnSO4・71120 0
.. 01gMnSO4・4~61(200,0IHCoC
], ・6 Summer f, 0
0.01 fC resazurin sodium 1.0ml volatile fatty acid mixture b 3.1+sl pyridoxine hydrochloric acid 2. OmgP-aminobenzoic acid 0. IH biotin
0.05mg mono-arginine
0.02g ball mill cellulose
5.0ga: 0.6%KH,PO,,1,2
%NaCl, 1, 2% (NH4), So.

0.12%Mg5O,−78,0,0,12%CaC1
,ab=酢酸17−1、プロピオン酸6m1.n−酪酸
4ml。
0.12%Mg5O, -78,0,0,12%CaCl
, ab=acetic acid 17-1, propionic acid 6ml. 4 ml of n-butyric acid.

イソ酪酸1m1. n−吉草酸1ml、イソ吉草酸1醜
1. OL−α−メチル酪酸1−1゜集菌後、リゾチー
ム溶液(0,15MNaC1,0,1M EDTA。
1 ml of isobutyric acid. 1 ml of n-valeric acid, 1 ml of isovaleric acid, 1. After collecting OL-α-methylbutyric acid 1-1°, lysozyme solution (0,15M NaCl, 0,1M EDTA).

pH8,0,リゾチーム5鳳g10+1) 5 mlに
て、37℃60分間反応させてプロトプラスト化し、次
いでSDS溶液(0,1M トリスバッファーpH9,
0,0,1%SO5,0,1M NaC1)を加えて、
60℃で溶菌させた。これをフェノールで処理し遠心分
離して得られるDNA溶液から、認容のエタノールで糸
状沈澱としてDNAが回収された。更にRNA分解酵素
、蛋白分解酵素で処理して、精fiDNAを約2.5B
得た。
pH 8.0, 5 ml of lysozyme 5 g10+1) was reacted at 37°C for 60 minutes to form protoplasts, and then SDS solution (0.1 M Tris buffer pH 9,
Add 0,0,1% SO5, 0,1M NaCl),
Bacteriolysis was carried out at 60°C. This was treated with phenol and centrifuged to obtain a DNA solution, from which DNA was recovered as a filamentous precipitate with acceptable ethanol. Furthermore, it is treated with RNA degrading enzyme and proteolytic enzyme to reduce the refined fiDNA to about 2.5B.
Obtained.

実施例2(組換えプラスミドの構築と調整)実施例1で
得られた染色体DNAをHind mにて37℃、2時
間で完全分解を行なった。又、別にプラスミドpBR3
22はHind IIIにて完全分解した後、アルカリ
フォスファターゼによって5′−リン酸残基を切除した
Example 2 (Construction and Adjustment of Recombinant Plasmid) The chromosomal DNA obtained in Example 1 was completely degraded in Hind m at 37°C for 2 hours. Additionally, plasmid pBR3
After 22 was completely degraded with Hind III, the 5'-phosphate residue was excised with alkaline phosphatase.

ついで両者を混合し、T4ファージ由来のDNAリガー
ゼを用いて、16℃16時間リゲーシすン反応を行なっ
た。
Then, both were mixed and a ligation reaction was performed at 16° C. for 16 hours using DNA ligase derived from T4 phage.

リゲーションが完全に行なわれたことは、アガロースゲ
ル電気泳動によって確認した。
Complete ligation was confirmed by agarose gel electrophoresis.

実施例3(コンピテントセル調整と形質転換)コンピテ
ントセル調整と形質転換は、MolecularClo
ning A Laboratory Manual 
p249(1982)に従った。
Example 3 (Competent cell preparation and transformation) Competent cell preparation and transformation were carried out using Molecular Clo
ning A Laboratory Manual
p249 (1982).

すなわち、エシェリヒア・コリC600(F−、thi
−1゜thr−1,1auB6.1acY1. tor
A21.5upE44.λ−)をL培地で対数増殖初期
迄培養後、集菌し水冷下で、塩化カルシウム溶液(pH
8,10mM hリスバッファー。
That is, Escherichia coli C600 (F-, thi
-1°thr-1,1auB6.1acY1. tor
A21.5upE44. λ-) in L medium until the early stage of logarithmic growth, the bacteria were collected, cooled with water, and added to a calcium chloride solution (pH
8,10mM hlis buffer.

50mM CaC1□)に懸濁して、コンピテントセル
とした。
The cells were suspended in 50mM CaC1□) to prepare competent cells.

L培地(IQ当り) ペプトン             10gイースト・
エキス           5gNaC,I    
              5RpH7,2 次いで、この細胞懸濁液に実施例2で調整した組換えプ
ラスミドを加えて、水冷下3つ分間反応させた後、42
℃にて5分間熱シヨツクを与え前記プラスミドを細胞内
にとり込ませた。これに5倍量のL−培地を加えて37
℃にて1時間静置し、形質転換反応を行なった。
L medium (per IQ) Peptone 10g Yeast
Extract 5gNaC,I
5R pH 7.2 Next, the recombinant plasmid prepared in Example 2 was added to this cell suspension and reacted for 3 minutes under water cooling.
A heat shock was applied at 0.degree. C. for 5 minutes to incorporate the plasmid into the cells. Add 5 times the amount of L-medium to this and
The mixture was left standing at ℃ for 1 hour to perform a transformation reaction.

これを、アンピシリン入りのL寒天培地にまきプラスミ
ド含有株のコロニーを形成させて、マスタープレートと
した。次に、これをL寒天培地(アンピシリン入り)に
レプリカして増殖させた後0.5%CMC1Lsg/耐
のリゾチームを含む寒天を′!「層137℃にて4時間
反応させた。
This was plated on L agar medium containing ampicillin to form colonies of plasmid-containing strains, which were used as master plates. Next, this was replicated on L agar medium (containing ampicillin) and grown, and then agar containing 0.5% CMC1Lsg/resistant lysozyme was added. "The layer was reacted at 137°C for 4 hours.

目的のCMCase、J伝子を有する株は、コンゴーレ
ッド染色法により、CMC含有寒天平板上で透明なハロ
ーをコロニー周辺に形成する。
A strain having the target CMCase and J gene forms a transparent halo around the colony on a CMC-containing agar plate by Congo red staining.

得られた菌株を、エシェリヒア・コリC600(pRA
l)と命名した。本菌株はFERM P−8668とし
て、微工研へ寄託された。
The obtained strain was transformed into Escherichia coli C600 (pRA
It was named l). This bacterial strain was deposited at the Microtech Institute as FERM P-8668.

実施例4(プラスミドpRA lの確認)エシェリヒア
・コリC600(PRAI)、FERM P−8668
を、M9CA培地で対数増殖中期迄培養後、クロラムフ
ェニコールを添加して更に一夜培養した。
Example 4 (Confirmation of plasmid pRA1) Escherichia coli C600 (PRAI), FERM P-8668
was cultured in M9CA medium until mid-logarithmic growth, then chloramphenicol was added and cultured overnight.

培養菌体を溶菌して得られたクリアードライゼー1〜を
塩化セシウム密度勾配遠心することにより、プラスミド
pHAIの存在が確認された。
The presence of plasmid pHAI was confirmed by centrifuging Clear Lyse 1~ obtained by lysing the cultured bacterial cells in a cesium chloride density gradient.

M9CA培地 IQ当り Na2HP0.              6gに1
1□PO43g NaCl                 0.5g
N114CI                IgM
gSO,(1M溶液)             2m
lグルコース(2%溶液)         10m1
CaC1,(1M溶液)             0
.1mlカザミノ              2pH
7,4 プラスミドPRAIの制限酵素切断地図を第1図に示す
、制限酵素を用いた解析によりプラスミドpRA1は、
ルミノコッカス・アルプスに由来する約3.6kbの挿
入断片を有することが確認された。
M9CA medium Na2HP0 per IQ. 1 in 6g
1□PO43g NaCl 0.5g
N114CI IgM
gSO, (1M solution) 2m
l Glucose (2% solution) 10ml
CaCl, (1M solution) 0
.. 1ml Casamino 2pH
7,4 The restriction enzyme cleavage map of plasmid PRAI is shown in Figure 1. By analysis using restriction enzymes, plasmid pRA1 was
It was confirmed that it had an insert fragment of approximately 3.6 kb derived from Ruminococcus alpus.

実施例5 (CMCaseの生産) エシェリヒア・コリC600(pRAl)を、L培地に
て培養後、集菌し、超音波で菌体破砕を行なうことによ
って、粗酵素液とした。CMCを基質として粗酵素液を
作用させたところ、粘度低下及び還元糖生成によりCM
Case活性が確認された。
Example 5 (Production of CMCase) After culturing Escherichia coli C600 (pRA1) in L medium, the cells were harvested and the cells were disrupted using ultrasound to obtain a crude enzyme solution. When a crude enzyme solution was applied to CMC as a substrate, CM
Case activity was confirmed.

PRAIにコードされているC M Cassの性質を
第2図、第3図、第4図に示した。
The properties of C M Cass encoded in PRAI are shown in FIGS. 2, 3, and 4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、プラスミドρItA1の制限酵素切断地図で
ある。カッコ内は、kbを表している。 第2図は、CMCaseの性質を粘度低下刃(縦軸)と
還元糖生成力(横軸)との関係で示す図である。 ここで。 η5p=t/1o−1t :オストワルド型粘度計での
反応後の流下時間 tO:緩衝液の流下時間 Δη5p−1=ηSρ−1−η5pb−1ηspb :
失活酵素液でのηSρの値第3図は、CMCaseの至
適pHを生成還元糖測定により調べた図である。 第4図は、CMCaseの至適温度を生成還元糖測定に
より調べた図である。 代理人 弁理士 戸 1)親 男 第  3  図             第  4 
 図pH(’C) 第  1  図 ヒラ vuII 第  2  図 (μg/m文) 手続ネ11ff正書 昭和61年 4月15日
FIG. 1 is a restriction enzyme cleavage map of plasmid ρItA1. The value in parentheses represents kb. FIG. 2 is a diagram showing the properties of CMCase in terms of the relationship between the viscosity reducing blade (vertical axis) and the ability to produce reducing sugars (horizontal axis). here. η5p=t/1o-1t: Flow time after reaction in Ostwald viscometer tO: Flow time of buffer solution Δη5p-1=ηSρ-1-η5pb-1ηspb:
Value of ηSρ in inactivated enzyme solution Figure 3 shows the optimum pH of CMCase investigated by measuring the reducing sugar produced. FIG. 4 is a diagram showing the optimum temperature of CMCase investigated by measuring the reducing sugar produced. Agent Patent Attorney 1) Parent Male Figure 3 Figure 4
Figure pH ('C) Figure 1 Gila vuII Figure 2 (μg/m text) Procedure Ne 11ff Original Book April 15, 1986

Claims (2)

【特許請求の範囲】[Claims] (1)ルミノコッカス属に属するセルラーゼ生産菌のセ
ルラーゼ生産性染色体DNAを含有せしめた組換えベク
ター。
(1) A recombinant vector containing cellulase-producing chromosomal DNA of a cellulase-producing bacterium belonging to the genus Ruminococcus.
(2)ルミノコッカス属に属するセルラーゼ生産菌のセ
ルラーゼ生産性染色体DNAを含有せしめた組換えベク
ターによって形質転換されたエシエリヒア属に属するセ
ルラーゼ生産菌。
(2) A cellulase-producing bacterium belonging to the genus Escherichia transformed with a recombinant vector containing cellulase-producing chromosomal DNA of a cellulase-producing bacterium belonging to the genus Ruminococcus.
JP4848286A 1986-03-07 1986-03-07 Recombinant vector and bacterium containing same Pending JPS62208283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4848286A JPS62208283A (en) 1986-03-07 1986-03-07 Recombinant vector and bacterium containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4848286A JPS62208283A (en) 1986-03-07 1986-03-07 Recombinant vector and bacterium containing same

Publications (1)

Publication Number Publication Date
JPS62208283A true JPS62208283A (en) 1987-09-12

Family

ID=12804602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4848286A Pending JPS62208283A (en) 1986-03-07 1986-03-07 Recombinant vector and bacterium containing same

Country Status (1)

Country Link
JP (1) JPS62208283A (en)

Similar Documents

Publication Publication Date Title
CA1183090A (en) Genetically engineered microorganisms for massive production of amylolytic enzymes and process for preparing same
WO2022179591A1 (en) Engineered bacillus subtilis for efficient exogenous protein expression and high-density culture
KR102246356B1 (en) Method and application to improve production of Bacillus licheniformis fermentation enzyme through spoⅡQ and pcf gene knockout
EP0057976B1 (en) a process for cloning the gene coding for a thermostable alpha-amylase into escherichia coli and bacillus subtilis
CN101463358B (en) Nitrile hydratase gene cluster and use thereof
US5418156A (en) Agarase enzyme system from alteromonas strain 2-40
US4806480A (en) Novel E. coli hybrid plasmid vector conferring sucrose fermenting capacity
US4464471A (en) Biologically engineered plasmid coding for production of β-glucosidase, organisms modified by this plasmid and methods of use
US4612287A (en) Plasmids containing a gene coding for a thermostable pullulanase and pullulanase-producing strains of Escherichia coli and Bacillus subtilis containing the plasmids
JP2003531620A (en) Site-specific insertion method in Zymomonas mobilis
JPS62208283A (en) Recombinant vector and bacterium containing same
JP2558249B2 (en) Positive retroregulation factor
JPH05284973A (en) Recombinant plasmid and process for secreting and producing foreign protein using the plasmid as vector
EP0162725B1 (en) Chimeric plasmid vector
NL7907345A (en) PROCESS FOR PREPARING GLUCOSE ISOMERASE.
JPS6229982A (en) Novel plasmid and novel microorganism transformed by said plasmid
KR20050093757A (en) Plasmid-free clone of e. coli strain dsm 6601
Leza et al. Xanthomonas campestris as a host for the production of recombinant Pseudomonas aeruginosa lipase
RU2441916C1 (en) RECOMBINANT PLASMID DNA pACYC-LANS(KM), STRAINS OF Escherichia coli BL21(DE3), TRANSFORMED RECOMBINANT DNA pACYC-LANS(KM) AND METHOD FOR PRODUCING A SUBSTANCE OF THE RECOMBINANT L-ASPARAGINASE FROM Erwinia carotovora
US8735160B2 (en) Methods for targetted mutagenesis in gram-positive bacteria
JP2500312B2 (en) Human growth hormone production method
JPH02286077A (en) Bacillus-s-p, dna fragment containing l-lactic acid dehydrogenase gene, gene recombinant plasmid containing the same gene, l-lactic acid dehydrogenase gene and gene recombinant plasmid containing the same gene
JP2005261421A (en) Pentose fermentative transformed microorganism of genus zymobacter
JP2005500851A (en) Method for producing vitamin B12
JP3014717B2 (en) DNA fragment encoding purine nucleoside phosphorylase