JPS62207795A - Molecular beam crystal growth method for iii-v compound semiconductor - Google Patents
Molecular beam crystal growth method for iii-v compound semiconductorInfo
- Publication number
- JPS62207795A JPS62207795A JP4973286A JP4973286A JPS62207795A JP S62207795 A JPS62207795 A JP S62207795A JP 4973286 A JP4973286 A JP 4973286A JP 4973286 A JP4973286 A JP 4973286A JP S62207795 A JPS62207795 A JP S62207795A
- Authority
- JP
- Japan
- Prior art keywords
- molecular beam
- layer
- iii
- plasma
- crystal growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 19
- 150000001875 compounds Chemical class 0.000 title claims description 22
- 238000002109 crystal growth method Methods 0.000 title description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 26
- 239000013078 crystal Substances 0.000 claims abstract description 25
- 239000001257 hydrogen Substances 0.000 claims abstract description 25
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 230000001678 irradiating effect Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052799 carbon Inorganic materials 0.000 abstract description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 abstract description 9
- 239000001301 oxygen Substances 0.000 abstract description 9
- 239000000758 substrate Substances 0.000 abstract description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 2
- 238000009774 resonance method Methods 0.000 abstract description 2
- 238000010348 incorporation Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000012535 impurity Substances 0.000 description 11
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は■−V化合物半導体の分子線結晶成長方法に関
し、特にAj7−V族化合物又はAe−V族化合物と他
のIII−V族化合物の混晶からなる化合物半導体の分
子線結晶成長方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for molecular beam crystal growth of ■-V compound semiconductors, particularly Aj7-V group compounds or Ae-V group compounds and other III-V group compounds. This invention relates to a method for molecular beam crystal growth of compound semiconductors consisting of mixed crystals.
□従来、Ae xGal−xAs、、 (0< x≦1
)1等の^J7−V族化合物半導体又はAf−V族化合
物と池の■〜■族化合物の混晶からなる半導体(以下単
にAeを含むIn−V族化合物半導体と記す)を分子線
結晶成長方法によって成長させる場合に。□Conventionally, Ae xGal-xAs, (0< x≦1
) 1 class ^J7-V group compound semiconductor or a semiconductor consisting of a mixed crystal of Af-V group compound and Ike's ■~■ group compound (hereinafter simply referred to as In-V group compound semiconductor containing Ae) is a molecular beam crystal. When grown using a growing method.
例えば金属Ga、全属人!、固体のヒ素をそれぞれ別の
るつぼに入れ、これを真空中で加熱して分子線とし、基
板結晶表面に供給して、その上に成長層を得ていた。こ
のような方法は、たとえば、エッチ・シー・フレイハー
ルト氏編集の「クリスタルズ:グロース、プロパティー
ズ、アンド アプリケーションズ(Crystals:
grorLh 、 Properties。For example, metal Ga, all belongings! , solid arsenic was placed in separate crucibles, heated in vacuum to form molecular beams, and supplied to the substrate crystal surface to form a growth layer on top. Such methods are described, for example, in "Crystals: Growth, Properties, and Applications" edited by H.C. Freihart.
grorLh, Properties.
and applications)」出版社ス′プリ
ンガーフエアラーク、第93頁のプルーフ氏のレビュー
に記載されている。and applications)," published by Springer Verlag, page 93, in Mr. Plouffe's review.
このような方法で高品質のGaAsやGaxlnl−x
Asの分子線結晶成長層が得られているが17を含む■
−V族化合物半導体、例えばke xGal−xAsや
^1!xln1−xAsでは^!が酸素や炭素と強い結
合エネルギーを持つなめに、成長中にこれらの原子を結
晶内に取込む確率が高くなる。このような不純物は結晶
中でアクセプタや深い不純物と準位を形成し結晶品質を
悪くする。そのためn+不純物を意識的にドーピングし
ないでこれらの結晶を成長させると高抵抗となる。また
不純物の量が多い場合には多量のn型不純物をドーピン
グしなければn型結晶が得られず、キャリア濃度の制御
がむずかしい。更にまた、これらの不純物準位による非
発光再結合過程が増加するために、結晶の光学的特性も
良くない。In this way, high quality GaAs and Gaxlnl-x
A molecular beam crystal growth layer of As has been obtained, but it contains 17■
-V group compound semiconductors, such as ke xGal-xAs and ^1! In xln1-xAs ^! Because these atoms have strong bonding energy with oxygen and carbon, there is a high probability that these atoms will be incorporated into the crystal during growth. Such impurities form levels with acceptors and deep impurities in the crystal, resulting in poor crystal quality. Therefore, if these crystals are grown without intentionally doping with n+ impurities, they will have high resistance. Furthermore, when the amount of impurities is large, an n-type crystal cannot be obtained unless a large amount of n-type impurity is doped, making it difficult to control the carrier concentration. Furthermore, since non-radiative recombination processes due to these impurity levels increase, the optical properties of the crystal are also poor.
水素を導入することによるAe xGal−xAs結晶
の品質向上が報告されている。例えば近藤氏等は、ジャ
パニーズ・ジャーナル・オブ・アプライド・フィジック
ス(Japanese Joprnal of App
lied Ph−ysics)、第22巻、1983年
の第L121頁からL123頁において、AI!0.2
Gao4^Sの成長時に10−’nm IIgの水素を
照射することによりホトルミネッセンスの強度が数倍向
上したと述べている。It has been reported that the quality of Ae xGal-xAs crystals is improved by introducing hydrogen. For example, Kondo et al.
AI! 0.2
It is stated that the photoluminescence intensity was improved several times by irradiating 10-'nm IIg of hydrogen during the growth of Gao4^S.
ただし、発明者の実験ではこの方法によってもAe x
lnl−xAsの品質向上はあまり得られていない。However, in the inventor's experiments, even with this method, Ae x
The quality of lnl-xAs has not improved much.
水素を用いることによりAe xGal−xAsの結晶
品質の向上がもたらされる理由は水素がhe xGal
−x^S表面上の酸素あるいは炭素と結合し、H2O又
はC114等の分子となって脱離するからである。とこ
ろが、^l! In1−xAsのように基板温度を上げ
ることがで、きない材料では上記の分子がうまく生成し
ない、あるいは脱離しない等の理由によって効果的に不
純物濃度を減少させ得ないものと考えられる。これらの
反応は熱力学的に起こりやすさが決まると考えられるの
で、水素の分圧を大きくすれば良いのであるが、そうす
ると分圧が高くなりすぎて分子流ではなくなる。あるい
は反射電子線回折装置が使えないなどの不具合が生ずる
。The reason why the crystal quality of Ae xGal-xAs is improved by using hydrogen is that hydrogen
This is because it bonds with oxygen or carbon on the -x^S surface and becomes molecules such as H2O or C114 and is desorbed. However, ^l! It is conceivable that the impurity concentration cannot be effectively reduced in materials such as In1-xAs, which cannot be oxidized by raising the substrate temperature, because the above-mentioned molecules are not generated or desorbed. Since the ease with which these reactions occur is thought to be determined thermodynamically, it would be better to increase the partial pressure of hydrogen, but if this were done, the partial pressure would become too high and molecular flow would no longer occur. Alternatively, problems such as the inability to use a reflection electron beam diffraction device may occur.
上述した従来の■−■化合物半導体の分子線結晶成長方
法は、結晶成長層に酸素や炭素を収込むのを効果的に防
止する生立を講じていないので、高品質の^lを含む■
−■化合物半導体の結晶成長層が得られないという欠点
があった。The conventional ■-■ molecular beam crystal growth method for compound semiconductors described above does not take measures to effectively prevent oxygen and carbon from being trapped in the crystal growth layer, so high-quality ^l-containing ■
-■ There was a drawback that a crystal growth layer of compound semiconductor could not be obtained.
本発明の目的は、酸素や炭素を取込みが少なく、八lを
含むI−V族化合物半導体の高品質の結晶成長層を得る
ことができる■−■化合物半導体の分子線結晶成長方法
を提供することにある。An object of the present invention is to provide a method for molecular beam crystal growth of compound semiconductors that can obtain a high-quality crystal growth layer of IV group compound semiconductors that incorporates less oxygen and carbon and that contains 8L. There is a particular thing.
本発明の■−■化合物半導体の分子線結晶成長方法は、
水素プラズマを照射しながら、^lを含む■−■化合物
半導体層を形成する工程を少なくとも有するものである
。The method for molecular beam crystal growth of compound semiconductors of the present invention includes:
This method includes at least a step of forming a 1-2 compound semiconductor layer containing ^l while irradiating hydrogen plasma.
水素プラズマを用いると、水素プラズマ中の各種の活性
種は平衡状態では非常に少ないものなのでそれに平衡す
べき水素分圧は非常に大きなものとなる。いいかえると
化学反応の観点からいって、大きな分圧の水素が存在し
ているのと等価と考えられるから炭素や酸素の除去が著
しく促進される。実際、GaAs基板上の炭素や酸素が
この手法によって除去されることが確認されている(河
合氏等、第45回応用物理学会学術講演会予稿集、19
84年、第617頁)。この報告は一旦大気にさらした
GaAsの表面をクリーニングする技術として報告され
ているが、本願の発明者はこの手法を更に^j’XGa
1−X^SやAe xlnl−xAsの成長に応用でき
ることを確認したものである。When hydrogen plasma is used, there are very few active species in the hydrogen plasma in an equilibrium state, so the hydrogen partial pressure that must be balanced against it becomes very large. In other words, from the viewpoint of chemical reactions, this is equivalent to the presence of a large partial pressure of hydrogen, which greatly accelerates the removal of carbon and oxygen. In fact, it has been confirmed that carbon and oxygen on the GaAs substrate are removed by this method (Mr. Kawai et al., Proceedings of the 45th Annual Conference of the Japan Society of Applied Physics, 19
1984, p. 617). This report has been reported as a technique for cleaning the surface of GaAs once exposed to the atmosphere, but the inventor of this application has further developed this technique into
It was confirmed that this method can be applied to the growth of 1-X^S and Ae xlnl-xAs.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の■−V化合物半導体の分子線結晶成長
方法に使用するのに好適な分子線結晶装置の模式図であ
る。 ゛
まず、第1の実施例について説明する。FIG. 1 is a schematic diagram of a molecular beam crystallization apparatus suitable for use in the method of molecular beam crystal growth of a -V compound semiconductor of the present invention. ``First, a first example will be described.
まず超高真空容器1の中に純度99.99999%の^
rの分子線源2、純度99.9999%のGaの分子線
源3、純度99.99999%のAsの分子線源4、H
2プラズマ発生装置5を装着した。プラズマは電子サイ
クロトロン共鳴法(ECR法)により作成し基板に照射
した。 GaAsからなる基板7の温度を600℃に設
定し、人e I)、3 G;5o−tAS層を成長速度
1μm/hで形成するが、まず、水素プラズマを当てな
いで厚さ0.5μm成長させ、次にバリアブルリ−クバ
ルブ6を調節してII2をE CRプラズマ発生装置内
部の11□分圧が10−’mm l1gとなるように流
すことにより水素プラズマを照射しながら厚さ1μIn
成長させた。First, in ultra-high vacuum container 1, there is a substance with a purity of 99.99999%.
r molecular beam source 2, Ga molecular beam source 3 with purity 99.9999%, As molecular beam source 4 with purity 99.99999%, H
2. A plasma generator 5 was attached. Plasma was created by electron cyclotron resonance method (ECR method) and was irradiated onto the substrate. The temperature of the substrate 7 made of GaAs is set to 600°C, and a 3G;5o-tAS layer is formed at a growth rate of 1 μm/h. Then, by adjusting the variable leak valve 6 and flowing II2 so that the 11□ partial pressure inside the ECR plasma generator becomes 10-'mm l1g, a 1μIn thick film is grown while irradiating hydrogen plasma.
Made it grow.
二次イオン質量分析器で膜の中の炭素濃度と酸素濃度分
布を調べたところ、水素プラズマを照射しながら形成し
た膜ではそうでないものにくらべてこれらの濃度が11
5〜17/8ぐらいに減少しており、不純物の混入を少
なくすることができた。また、ホトルミネッセンス強度
も水素プラズマを当てないものに較べて5倍となり明る
くなった。When we investigated the distribution of carbon and oxygen concentrations in the film using a secondary ion mass spectrometer, we found that these concentrations were 11% higher in films formed while irradiating hydrogen plasma than in films that were not.
The ratio was reduced to about 5 to 17/8, and it was possible to reduce the amount of impurities mixed in. In addition, the photoluminescence intensity was five times brighter than in the case where hydrogen plasma was not applied.
次に、第2の実施例について説明する。Next, a second example will be described.
第1の実施例と同じ装置を用い、Gaの分子線源の代り
に純度99.9999%のInを入れたInの分子線源
を装着した。基板温度を550℃に設定し、Ae o、
51nl)、+;AS層を1 u、 m / hの成長
速度で形成するが、まず水素プラズマを照射しないで厚
さ0.5μmn成長させ、次に、水素プラズマを第1の
実施例と同じ手法により照射して厚さ1.0μm成長さ
せた。二次イオン質量分析器で炭素と酸素の濃度分布を
調べたところ、水素プラズマを当てながら成長させた膜
ではこれらの濃度が1/6〜1/12に減少しており、
不純物の混入を少なくすることができた。またホール測
定を行なったところ、水素プラズマを当てた^47 g
、5In0.5AS層は不純物をドーピングしなくても
n型の伝導を示し、キャリヤ濃度は6 X 1 、O1
5C1ll−3であった。水素プラズマを当てない^(
! a−5■no−5ks層は高抵抗を示し、水素プラ
ズマにより深い準位を少なくできることがわかった。The same equipment as in the first example was used, but instead of the Ga molecular beam source, an In molecular beam source containing In with a purity of 99.9999% was installed. Set the substrate temperature to 550°C,
51nl), +; An AS layer is formed at a growth rate of 1 u, m/h, but first it is grown to a thickness of 0.5 μm without hydrogen plasma irradiation, and then hydrogen plasma is applied as in the first example. The film was irradiated to a thickness of 1.0 μm using this method. When we investigated the concentration distribution of carbon and oxygen using a secondary ion mass spectrometer, we found that these concentrations were reduced by 1/6 to 1/12 in films grown while applying hydrogen plasma.
It was possible to reduce the amount of impurities mixed in. In addition, when we performed Hall measurements, we found that hydrogen plasma was applied^47 g.
, 5In0.5AS layer exhibits n-type conduction even without doping with impurities, and the carrier concentration is 6 X 1 , O1
5C1ll-3. Do not apply hydrogen plasma ^(
! It was found that the a-5■no-5ks layer exhibited high resistance and that the deep levels could be reduced by hydrogen plasma.
なお、第1.第2の実施例においては、まず水素プラズ
マを照射しない状態で膜形成をしたのは、比較のために
行ったものであり、必しすら必要ではない。実用上は、
不要であるのはいうまでもない。In addition, 1. In the second example, the film was formed without irradiating hydrogen plasma for comparison purposes, and is not absolutely necessary. In practical terms,
Needless to say, this is unnecessary.
以上説明したように、本発明は、水素プラズマを照射し
ながら結晶層を成長させることによりAJ?を含む■−
V族化合物半導体中の炭素や酸;濃度を小さくできるの
で、深い準位の不純物の:ない高品質の成長層を得るこ
とができるという;果がある。As explained above, the present invention provides AJ? by growing a crystal layer while irradiating hydrogen plasma. Including ■−
Since the concentration of carbon and acid in the V group compound semiconductor can be reduced, a high-quality grown layer free of deep-level impurities can be obtained.
第1図は本発明■−■化合物半導体の分子線1晶成長方
法に使用するのに好適な分子線結晶成装置の模式図であ
る。
1・・・超高真空容器、2・・・keの分子線源、3G
aの分子線源、4・・・Asの分子線源、5・・・11
2プラマ発生装置、6・・・バリアプルリークバルブ、
7基板。FIG. 1 is a schematic diagram of a molecular beam crystallization apparatus suitable for use in the molecular beam single crystal growth method of compound semiconductors of the present invention. 1... Ultra-high vacuum container, 2... Ke molecular beam source, 3G
Molecular beam source of a, 4... Molecular beam source of As, 5...11
2 plasma generator, 6... barrier pull leak valve,
7 boards.
Claims (1)
物半導体層を形成する工程を少なくとも有することを特
徴とするIII−V化合物半導体の分子線結晶成長方法。A method for growing molecular beam crystals of a III-V compound semiconductor, the method comprising at least the step of forming a III-V compound semiconductor layer containing Al while irradiating hydrogen plasma.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4973286A JPS62207795A (en) | 1986-03-06 | 1986-03-06 | Molecular beam crystal growth method for iii-v compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4973286A JPS62207795A (en) | 1986-03-06 | 1986-03-06 | Molecular beam crystal growth method for iii-v compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62207795A true JPS62207795A (en) | 1987-09-12 |
Family
ID=12839360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4973286A Pending JPS62207795A (en) | 1986-03-06 | 1986-03-06 | Molecular beam crystal growth method for iii-v compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62207795A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04132699A (en) * | 1990-09-25 | 1992-05-06 | Nec Corp | Growing method of semiconductor crystal |
-
1986
- 1986-03-06 JP JP4973286A patent/JPS62207795A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04132699A (en) * | 1990-09-25 | 1992-05-06 | Nec Corp | Growing method of semiconductor crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kolodziejski et al. | Molecular beam epitaxy of Cd1− x Mn x Te | |
US3751310A (en) | Germanium doped epitaxial films by the molecular beam method | |
Chichibu et al. | Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire (0001) substrates | |
JPS6355926A (en) | Growing process of compound semiconductor thin film | |
JPS59208822A (en) | Semiconductor structure and method of producing same | |
JPS62207795A (en) | Molecular beam crystal growth method for iii-v compound semiconductor | |
Kawai et al. | Ge segregation and its suppression in GaAs epilayers grown on Ge (111) substrate | |
Chow et al. | Electrical and optical properties of InP grown by molecular beam epitaxy using cracked phosphine | |
JPH02258688A (en) | Method for epitaxial growth of compound semiconductor | |
Rao et al. | Photoluminescence investigation of the band around 1.41 eV in heated n‐GaAs samples | |
Méndez-Garcı́a et al. | Improvement in the crystal quality of ZnSe films on Si (111) substrates with a nitrogen surface treatment | |
JPH0787179B2 (en) | Method for manufacturing superlattice semiconductor device | |
JPS63174314A (en) | Method for doping iii-v compound semiconductor crystal | |
Yanka et al. | A novel technique for the MBE growth of twin-free HgCdTe | |
JPS5992997A (en) | Method for forming thin film using molecular beam epitaxial growth method | |
JPH0243720A (en) | Molecular beam epitaxial growth method | |
JPS6144424A (en) | Vapor growth of compound semiconductor | |
JPH01101622A (en) | Molecular beam crystal growth method for iii-v compound semiconductor | |
JPH02153892A (en) | Process for molecular beam epitaxial growth | |
JPH03195016A (en) | Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus | |
JPS589795B2 (en) | Molecular beam crystal growth method | |
JPS6245107A (en) | Formation of semiconductor thin-film | |
JP2721683B2 (en) | Method for growing compound semiconductor thin film crystal | |
JPS6328030A (en) | Method for crystal growth of compound semiconductor | |
JPH02248035A (en) | Epitaxy method |