JPS62207118A - Protective device for current limiting device - Google Patents

Protective device for current limiting device

Info

Publication number
JPS62207118A
JPS62207118A JP4905086A JP4905086A JPS62207118A JP S62207118 A JPS62207118 A JP S62207118A JP 4905086 A JP4905086 A JP 4905086A JP 4905086 A JP4905086 A JP 4905086A JP S62207118 A JPS62207118 A JP S62207118A
Authority
JP
Japan
Prior art keywords
current
limiting element
vaporization
liquefaction
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4905086A
Other languages
Japanese (ja)
Other versions
JPH0630536B2 (en
Inventor
栄治 渡辺
秋田 真平
篠崎 順彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP61049050A priority Critical patent/JPH0630536B2/en
Publication of JPS62207118A publication Critical patent/JPS62207118A/en
Publication of JPH0630536B2 publication Critical patent/JPH0630536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、限流素子の保護装置に関する。[Detailed description of the invention] A. Industrial application field The present invention relates to a protection device for a current limiting element.

B 発明の概要 本発明は、電力系統に介装されて過電流を抑1til’
する限流素子において、 限流素子の抵抗値変化からその液化及び気化を検出し、
液化検出及び気化検出で限流素子に直列のしゃ断器を引
外し制御し、気化検出で気化回数を求め、限流素子にそ
の連続許容電流が所定時間以上流れたときに該しゃ断器
を引外す構成とすることにより、 限流素子の十分な限流作用を得ながら寿命を延ばしかつ
確実に管理できるようにしたものである。
B. Summary of the Invention The present invention provides a method for suppressing overcurrent by being installed in a power system.
Detects liquefaction and vaporization from changes in resistance of the current-limiting element,
The breaker connected in series with the current limiting element is tripped and controlled by liquefaction detection and vaporization detection, the number of times of vaporization is determined by vaporization detection, and the breaker is tripped when the continuous allowable current flows through the current limiting element for a predetermined period or more. With this structure, the life of the current limiting element can be extended and it can be managed reliably while obtaining sufficient current limiting action.

C0従来の技術 最近の電力系統は、その規模の拡大と系統の広域連係の
強化に伴い、短絡、地絡故障時の過電流かますます増大
してきている。これに伴って、しゃ断器や新路器などの
系統機器や母線などが大電流に耐えるよう大形化し、電
力設備費が増大してくる。更に、電磁誘導障害の増加、
故障地点の損傷増大など多くの問題が出てきている。
BACKGROUND OF THE INVENTION In recent years, as power systems have expanded in scale and strengthened their wide-area connections, overcurrents during short circuits and ground faults have increasingly increased. As a result, system equipment such as circuit breakers and new line switches, as well as busbars, have become larger to withstand higher currents, increasing power equipment costs. Furthermore, an increase in electromagnetic induction interference,
Many problems have arisen, including increased damage at the failure point.

この過電流を抑制する方式の1つとして、大電流が流れ
たときにそのジュール熱によって抵抗値が増大すること
で電流を抑制する限流素子を電力系統に直列に介装する
方式がある。
One method for suppressing this overcurrent is to install a current limiting element in series in the power system, which suppresses the current by increasing its resistance value due to Joule heat when a large current flows.

D8発明が解決しようとする問題点 前記の限流水子は、電流が流れたときの発生ジュール熱
によって固体抵抗が液化さらには気化することによって
急激に抵抗値を増大させて過電流を抑制する。このよう
な限流素子では、素子の限界を越えた高温状態になって
くると素子の寿命を極端に短くし、例えば気化状態まで
電流を流し続けると素子の寿命が数分の1に低下する問
題があった。この素子が寿命に達すると限流機能を果せ
なくなり、電力系統のしゃ断器にしゃ断不能などの故障
波及を起すものであり、限流素子の保護及び確実な管理
が要望される。
D8 Problems to be Solved by the Invention The current limiting water element described above suppresses overcurrent by rapidly increasing the resistance value by liquefying and even vaporizing the solid resistance due to the Joule heat generated when current flows. In such a current limiting element, if the temperature reaches a temperature that exceeds the limit of the element, the life of the element will be extremely shortened. For example, if the current continues to flow until it reaches a vaporized state, the life of the element will be reduced to a fraction of what it is. There was a problem. When this element reaches the end of its lifespan, it will no longer be able to perform its current limiting function, causing failures such as inability to shut off the circuit breaker in the power system, so protection and reliable management of the current limiting element is required.

E5問題点を解決するための手段と作用本発明は、限流
素子の抵抗値変化を検出する抵抗値検出手段と、この抵
抗値検出手段の検出信号から限流索子が液化する抵抗値
に達したことを検出して限流索子に直列のしゃ断器を引
外し制御する液化検出手段と、前記抵抗値検出手段の検
出信号から限流素子が気化する抵抗値に達したことを検
出して前記しゃ断器を高速で引外し制御するとともに限
流素子の気化回数を求める気化検出手段と、限流素子の
連続許容電流値以上の電流が所定時間以上流れたときに
前記しゃ断器を引外し制御する限時付き過電流検出手段
とを備え、限流素子がその十分な寿命を得ることができ
る液化状態で検出してしゃ断器を引外すことで比較的小
さい過電流領域で限流素子の寿命に大きく影響する気化
回数を減らし、比較的大きい過電流域では通過電流を抑
制すると共に高速で気化を検出して前記しゃ断器を高速
しゃ断して気化している時間を短くして限流素子の劣化
を少くし、さらに連続許容電流値を少しえる小電流の過
電流状聾の長時間継続で構造物加熱限界を越えないよう
過電流検出による電流しゃ断を行うものである。
Means and Function for Solving Problem E5 The present invention provides a resistance value detection means for detecting a change in the resistance value of a current limiting element, and a detection signal from the resistance value detection means that determines the resistance value at which the current limiting cord liquefies. a liquefaction detection means that detects that the current limiter has reached a value and controls the tripping of a breaker connected in series with the current limiter, and a detection signal from the resistance value detection means that detects that the current limiter has reached a resistance value that causes vaporization. vaporization detection means for tripping the breaker at high speed and determining the number of times the current limiting element is vaporized; The device is equipped with a time-limited overcurrent detection means for controlling the current-limiting element, and detects the current-limiting element in a liquefied state in which the current-limiting element can obtain its sufficient life, and trips the breaker, thereby extending the life of the current-limiting element in a relatively small overcurrent region. It reduces the number of times of vaporization, which has a large effect on The current is cut off by overcurrent detection to minimize deterioration and to prevent the structure heating limit from being exceeded due to a long-term continuation of a small overcurrent condition that slightly exceeds the continuous allowable current value.

F、実施例 第1図は本発明の一実施例を示す回路図である。F. Example FIG. 1 is a circuit diagram showing one embodiment of the present invention.

限流素子1には直列にしゃ断器2が設けられる。A breaker 2 is provided in series with the current limiting element 1 .

このしゃ断器2は限流素子1自体の保護用に用意される
もので、電力系統の既設しゃ断器を利用するものでも良
い。限流素子lには並列に電圧変成器3の一次側が接続
され、その二次側に限流素子1の電圧に比例した電圧信
号が取出される。抵抗値検出回路4は、変成器3の検出
電圧信号と限流素子1に直列の変流器5から、の電流検
出信号から限流素子lの抵抗値を電圧信号として得るよ
うに構成される。
This breaker 2 is prepared for protecting the current limiting element 1 itself, and may be one that utilizes an existing breaker in the power system. The primary side of a voltage transformer 3 is connected in parallel to the current limiting element 1, and a voltage signal proportional to the voltage of the current limiting element 1 is taken out to its secondary side. The resistance value detection circuit 4 is configured to obtain the resistance value of the current limiting element l as a voltage signal from the detected voltage signal of the transformer 3 and the current detection signal from the current transformer 5 connected in series with the current limiting element 1. .

液化検出回路6は抵抗値検出回路4からの抵抗値検出信
号と比較基準との大小を比較することによって限流素子
lが液化状態になったことを検出する。同様に、気化検
出回路7は抵抗値検出信号から限流素子lの気化状態を
検出する。
The liquefaction detection circuit 6 detects that the current-limiting element 1 has entered the liquefaction state by comparing the resistance value detection signal from the resistance value detection circuit 4 with a comparison standard. Similarly, the vaporization detection circuit 7 detects the vaporization state of the current limiting element l from the resistance value detection signal.

過電流検出回路8は、変流器5の検出電流から限流素子
lに流れる電流がその連続通電許容値を越えたことを検
出し、この検出信号を入力とするタイマ9は該検出信号
が設定時限以上継続したことを検出する。
The overcurrent detection circuit 8 detects that the current flowing through the current limiting element l from the current detected by the current transformer 5 exceeds its continuous energization tolerance, and the timer 9 receives this detection signal as input. Detects that the process has continued beyond the set time limit.

オアゲート10は、タイマ9と、液化検出回路6と、気
化検出回路7の少なくとも1つに検出出力があるときに
しゃ断器2のトリップ出力を得る。
The OR gate 10 obtains the trip output of the breaker 2 when at least one of the timer 9, the liquefaction detection circuit 6, and the vaporization detection circuit 7 has a detection output.

液化表示器11は液化検出回路6の検出信号で限流素子
1の液化表示及び必要に応じて監視室への送信信号とし
て出力する。同様に気化表示器12は気化検出回路7の
検出信号を表示及び出力する。
The liquefaction indicator 11 outputs the detection signal of the liquefaction detection circuit 6 as an indication of liquefaction of the current limiting element 1 and, if necessary, as a transmission signal to the monitoring room. Similarly, the vaporization indicator 12 displays and outputs the detection signal of the vaporization detection circuit 7.

気化回数針13は気化検出回路7の検出信号を回数とし
て計数することで限流素子lが気化状態になった回数を
表示及び必要に応じて監視室への送信信号として出力す
る。
The vaporization count hand 13 counts the detection signal of the vaporization detection circuit 7 as the number of times to display the number of times the current-limiting element 1 is in the vaporization state, and outputs it as a transmission signal to the monitoring room if necessary.

こうした構成による限流素子lの保護動作を以下に詳細
に説明する。
The protective operation of the current limiting element 1 with such a configuration will be explained in detail below.

まず、限流素子lの特質を説明する。限流素子lに電流
が流れたときの発生ジュール熱は、その電流値Iと抵抗
値RについてIRの関係にあり、電流値Iが限流素子の
連続通電許容値より大きくなって限流素子が液化しはじ
めると抵抗値Rも大きくなる。従って、限流素子の発生
ジュール熱は電流値Iに対して指数関数的に増大してく
る。このような発生ジュール熱と電、流との関係から、
限流素子は流れた電流の大小によってその液化、さらに
は気化するまでの時間が極端に変化する。
First, the characteristics of the current limiting element l will be explained. The Joule heat generated when current flows through the current-limiting element l has a relationship of IR between the current value I and the resistance value R, and when the current value I becomes larger than the continuous current permissible value of the current-limiting element, the current-limiting element When the liquid begins to liquefy, the resistance value R also increases. Therefore, the Joule heat generated by the current limiting element increases exponentially with respect to the current value I. From this relationship between generated Joule heat and electric current,
The time it takes for a current-limiting element to liquefy or even vaporize varies depending on the magnitude of the current flowing through it.

第2図は限流素子1の電流に対する液化時間。FIG. 2 shows the liquefaction time versus the current of the current-limiting element 1.

気化時間特性を示す。同図は連続通電許容値0.5KA
(rms)の限流素子の特性を示し、液化時間特性A及
び気化時間特性Bに示すように素子電流が小さいとき(
但し連続通電許容値以上)には液化、気化に至る時間は
極めて長い時間(数百秒乃至数千秒)になる。一方、液
化時間特性A及び気化時間特性Bは共に素子電流の増大
によって液化時間及び気化時間が指数関数的に短かくな
り、また素子電流が大きくなるほど液化と気化の時間差
が指数関数的に小さくなる。
Shows vaporization time characteristics. The figure shows the continuous current tolerance of 0.5KA.
(rms), and as shown in liquefaction time characteristic A and vaporization time characteristic B, when the element current is small (
However, if the continuous energization is above the allowable value, the time required for liquefaction and vaporization is extremely long (several hundred seconds to several thousand seconds). On the other hand, for both liquefaction time characteristic A and vaporization time characteristic B, the liquefaction time and vaporization time become exponentially shorter as the element current increases, and as the element current increases, the time difference between liquefaction and vaporization becomes exponentially smaller. .

このような特性を持つ限流素子1は、発生ジュール熱で
液化に至るら気化状態になることをできるだけ少なくし
てその寿命を延ばすのが望ましくX。
It is desirable for the current limiting element 1 having such characteristics to extend its life by reducing as much as possible the occurrence of liquefaction due to generated Joule heat and vaporization.

そこで、本実施例では第1図に示すように限流素子1と
直列にしゃ断器2を設け、限流素子1の気化する萌すな
わち液化開始をその抵抗値変化から液化検出回路6で検
出し、この検出信号によってオアゲートIOからしゃ断
器2の引外しを行い、限流素子lが気化するのを防止す
る。ここて、抵抗値変化からの液化検出は、素子電流に
対する液化時間を第2図の特性Aから求め、この時間で
しゃ断器2を引外す場合に較べて素子電流の変動や限流
素子の特性変化に影響されることなく確実な液化検出を
可能にし、しかも気化検出との時間的な協調がくずれる
ことも原理的にない。
Therefore, in this embodiment, as shown in FIG. 1, a breaker 2 is provided in series with the current limiting element 1, and the liquefaction detection circuit 6 detects the vaporization of the current limiting element 1, that is, the start of liquefaction from the change in resistance value. , This detection signal causes the OR gate IO to trip the circuit breaker 2, thereby preventing the current limiting element l from being vaporized. Here, in order to detect liquefaction from a change in resistance value, the liquefaction time with respect to the element current is determined from the characteristic A in Fig. 2, and compared to the case where the breaker 2 is tripped during this time, the fluctuation of the element current and the characteristics of the current limiting element are determined. It enables reliable liquefaction detection without being affected by changes, and in principle there is no possibility that temporal coordination with vaporization detection will be lost.

上記液化検出によるじや多段器2の引外し制御において
、液化検出時から電流しゃ断までにしゃ断器2の動作時
間などある程度の遅れがある。この逼れ時間は、第2図
の特性A、B間の液化から気化までの時間よりし大きく
なる大Nm領域では限流素子の気化を沼く。すなわち、
液化検出によるしゃ断器2の引外しによる電流しゃ断時
間は、第2図中に破線で示す特性Cのようになり、限流
素子の液化から気化までの時間が短くなる大電流領域で
は液化時間特性Aから外れ、素子電流2.5KA以上で
は限流素子1が気化した後に電流しゃ断になり、限流素
子lの劣化は避けられない。そこで、本実施例では限流
素子lの気化を気化検出回路7で高速に検出し、表示器
12による表示に加えて気化回数計13で気化回数を積
算記憶しておき、素子寿命の管理を確実、容易にする。
In the tripping control of the breaker 2 due to the liquefaction detection described above, there is a certain amount of delay, such as the operating time of the breaker 2, from the time of liquefaction detection until the current is cut off. This lag time is longer than the time from liquefaction to vaporization between characteristics A and B in FIG. 2, and in the large Nm region, the current limiting element is not vaporized. That is,
The current cutoff time due to tripping of the circuit breaker 2 due to liquefaction detection is as shown by the broken line C in Figure 2, and in the high current region where the time from liquefaction to vaporization of the current limiting element is short, the liquefaction time characteristic is If the current limit element 1 deviates from A and the element current exceeds 2.5 KA, the current is cut off after the current limit element 1 is vaporized, and deterioration of the current limit element 1 is unavoidable. Therefore, in this embodiment, the vaporization of the current limiting element l is detected at high speed by the vaporization detection circuit 7, and in addition to being displayed on the display 12, the vaporization count is accumulated and stored in the vaporization counter 13 to manage the element life. Make it sure and easy.

さらに、気化検出回路7の出力はオアゲート1oを通し
てしゃ断器2の引外しにも利用し、液化検出との二重化
しゃ断によって限流素子1の電流しゃ断を確実にすると
共に気化の高速検出によって気化状態の時間をできるだ
け短くして素子の劣化を少なくする。
Furthermore, the output of the vaporization detection circuit 7 is also used to trip the circuit breaker 2 through the OR gate 1o, ensuring current cutoff of the current limiting element 1 by double blocking with liquefaction detection, and detecting the vaporization state by high-speed detection of vaporization. To reduce element deterioration by shortening the time as much as possible.

上述までのことから、液化検出回路6は限流素子lの抵
抗増加が液化に至る値の初期段階を検出するようその比
較基準を小さく設定し、気化検出回路7は限流素子lの
抵抗増加が気化に至る値の後期の段階を検出するように
その比較基準を大きく設定する。
From the above, the liquefaction detection circuit 6 sets its comparison standard small so as to detect the initial stage of the value where the resistance increase of the current limiting element l reaches liquefaction, and the vaporization detection circuit 7 sets the comparison standard to a small value so as to detect the initial stage of the value where the resistance increase of the current limiting element l reaches the point where the resistance increase The standard of comparison is set large enough to detect the late stage of the value leading to vaporization.

ここで、気化検出回路7は液化検出回路6の比較基準よ
りも高い値になることから、高速検出機能を持たせても
ノイズ等に対して強く設計できるため、超高速検出が可
能になり、気化状態になったときに素子電流を最大限早
くしゃ断して素子の寿命への影響を最大限少なくできる
Here, since the value of the vaporization detection circuit 7 is higher than the comparison standard of the liquefaction detection circuit 6, it can be designed to be strong against noise etc. even if it has a high-speed detection function, so ultra-high-speed detection is possible. When the device enters a vaporized state, the device current can be cut off as quickly as possible to minimize the effect on the device life.

次に、限流素子1の連続通電許容値(図示では0.5に
^)を多少越えた過電流領域では、前述のように素子の
液化、気化すなわち素子抵抗の増加が極めて遅くなる。
Next, in an overcurrent region in which the continuous energization tolerance of the current limiting element 1 is slightly exceeded (0.5 in the figure), the liquefaction and vaporization of the element, that is, the increase in element resistance, become extremely slow as described above.

一方、限流素子1の耐熱限界は第2図に特性りで示すよ
うに構造物の耐熱限界から許容通電時間が制限される。
On the other hand, the heat resistance limit of the current limiting element 1 is limited by the allowable energization time due to the heat resistance limit of the structure, as shown by the characteristics in FIG.

この構造物耐熱限界りは小電流領域で液化時間、気化時
間よりも短い時間になる。そこで、本実施例では限流素
子lの電流がその連続通電許容値を越えたことを過電流
検出回路8で検出し、この検出状態がタイマ9の時限以
上になるときにしゃ断器2を引外し、構造物耐熱限界か
ら限流素子lを保護する。このときタイマ9の時限は限
流素子1の液化、気化時間に較べて構造物耐熱限界時間
が長くなる付近に設定され、第2図示では特性Eとして
100秒に設定される。このとき、限流素子lの液化前
での電流しゃ断では該限流素子lが十分に限流動作をし
ていないが、過電流値が十分に小さく、小さいしゃ断容
量のしゃ断器2によって過電流をしゃ断できる。
The heat resistance limit of this structure is shorter than the liquefaction time and vaporization time in the small current region. Therefore, in this embodiment, the overcurrent detection circuit 8 detects that the current of the current limiting element l exceeds its continuous current permissible value, and when this detection state exceeds the time limit of the timer 9, the breaker 2 is triggered. Remove it to protect the current limiting element l from the structure's heat resistance limit. At this time, the time limit of the timer 9 is set near the time when the structure heat resistance limit time is longer than the liquefaction and vaporization time of the current limiting element 1, and is set to 100 seconds as characteristic E in the second diagram. At this time, when the current limiting element 1 is cut off before it is liquefied, the current limiting element 1 does not perform a sufficient current limiting operation, but the overcurrent value is sufficiently small and the overcurrent is can be cut off.

第3図は本発明の他の実施例を示す。同図か第1図と異
なる部分は、限流素子lの抵抗値検出手段として限流素
子lに並列に抵抗14を設け、この抵抗14の電流を変
流器15で検出し、この検出信号と変流器15からの電
流検出信号から抵抗値検出回路4Aが抵抗値を求めるよ
うにしている。
FIG. 3 shows another embodiment of the invention. The difference from the same figure or FIG. The resistance value detection circuit 4A determines the resistance value from the current detection signal from the current transformer 15.

本実施例においても前述の実施例と同様の作用効果を得
ることができるのは明らかで、その説明は省略する。
It is obvious that the same effects as those of the above-mentioned embodiments can be obtained in this embodiment as well, and the explanation thereof will be omitted.

G9発明の効果 以上のとおり、本発明によれば、限流素子の抵抗値変化
からの液化検出及び気化検出で直列のしゃ断器による電
流しゃ断をし、気化検出で気化回数を求め、さらに限流
素子の過電流が構造物加熱限界を越えないよう電流しゃ
断を行うようにしたため、次のような効果がある。
Effects of the G9 Invention As described above, according to the present invention, current is cut off by a series circuit breaker by detecting liquefaction and vaporization from changes in the resistance value of the current limiting element, the number of vaporizations is determined by vaporization detection, and further current limiting is performed. Since the current is cut off so that the overcurrent of the element does not exceed the structure heating limit, the following effects are achieved.

(1)  限流素子の液化状態で素子電流をしゃ断する
ため小さい過電流には素子寿命に影響を与える気化状態
が無(なる。
(1) Since the element current is cut off in the liquefied state of the current limiting element, there is no vaporization state that affects the life of the element for small overcurrents.

(2)限流素子の液化が極端に遅れる小さい過電流の継
続には過電流検出による電流しゃ断で構造物が耐熱限界
で焼損、破壊することが無くなる。
(2) When a small overcurrent continues, which extremely delays the liquefaction of the current limiting element, the current is cut off by overcurrent detection, which prevents the structure from burning out or breaking down at its heat resistance limit.

(3)大きい過電流にはしゃ断器の動作遅れ等から気化
前の?tii7tEしゃ断は難しいが、気化検出には高
速検出による高速しゃ断によって素子寿命への影響を最
大限小さくできる限流素子の過電流抑制効果によってし
ゃ断器のしゃ断容量が小さくてすむ。
(3) Due to large overcurrent, there is a delay in the operation of the circuit breaker, etc. before vaporization. Although it is difficult to cut off tii7tE, the breaking capacity of the breaker can be small due to the overcurrent suppressing effect of the current limiting element, which can minimize the effect on the element life through high-speed cutting due to high-speed detection for vaporization detection.

(4)大きい過電流による気化が発生したときにはその
気化回数の情報から素子寿命を確実に管理することがで
きる。
(4) When vaporization occurs due to a large overcurrent, the element life can be reliably managed from information on the number of vaporizations.

(5)限流素子の抵抗値変化から液化、気化を検出する
ため、変動の大きい過電流や限流素子の特性変化にも液
化、気化を確実に検出して確実に保護動作を得ることが
できる。
(5) Since liquefaction and vaporization are detected from changes in the resistance value of the current-limiting element, it is possible to reliably detect liquefaction and vaporization and obtain protective action even when there are large fluctuations in overcurrent or changes in the characteristics of the current-limiting element. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は限流
素子の液化、気化特性を示す図、第3図は本発明の他の
実施例を示す回路図である。 l・・・限流素子、2・・・しゃ断器、4・・・抵抗値
検出回路、6・・・液化検出回路、7・・・気化検出回
路、8・・・過電流検出回路、9・・・タイマ、11・
・・液化表示器、12・・・気化表示器、13・・・気
化回数針、14・・・抵抗、4A・・・抵抗値検出回路
。 −鼓d弓電克(rms)
FIG. 1 is a circuit diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing liquefaction and vaporization characteristics of a current limiting element, and FIG. 3 is a circuit diagram showing another embodiment of the present invention. l... Current limiting element, 2... Breaker, 4... Resistance value detection circuit, 6... Liquefaction detection circuit, 7... Vaporization detection circuit, 8... Overcurrent detection circuit, 9 ...Timer, 11.
... Liquification indicator, 12... Vaporization indicator, 13... Vaporization count hand, 14... Resistance, 4A... Resistance value detection circuit. - Drum d Yudenkatsu (rms)

Claims (1)

【特許請求の範囲】[Claims] 電力系統に介装されて過電流時に発生ジュール熱で抵抗
値を増大して該過電流を抑制する限流素子において、限
流素子の抵抗値変化を検出する抵抗値検出手段と、この
抵抗値検出手段の検出信号から限流素子が液化する抵抗
値に達したことを検出して限流素子に直列のしゃ断器を
引外し制御する液化検出手段と、前記抵抗値検出手段の
検出信号から限流素子が気化する抵抗値に達したことを
検出して前記しゃ断器を引外し制御するとともに限流素
子の気化回数を求める気化検出手段と、限流素子の連続
許容電流値以上の電流が所定時間以上流れたときに前記
しゃ断器を引外し制御する限時付き過電流検出手段とを
備えたことを特徴とする限流素子の保護装置。
In a current-limiting element installed in a power system that suppresses an overcurrent by increasing its resistance value using Joule heat generated during an overcurrent, there is provided a resistance value detection means for detecting a change in resistance value of the current-limiting element, and the resistance value of the current-limiting element. Liquefaction detection means detects from the detection signal of the detection means that the current-limiting element reaches a resistance value at which it liquefies and controls the circuit breaker connected in series with the current-limiting element to trip; vaporization detection means for detecting that the current limiting element has reached a resistance value at which it vaporizes and controlling the tripping of the breaker and determining the number of times the current limiting element vaporizes; 1. A protection device for a current-limiting element, comprising: a time-limited overcurrent detection means for tripping and controlling the breaker when the current flows for a period of time or more.
JP61049050A 1986-03-06 1986-03-06 Current limiting device protection device Expired - Lifetime JPH0630536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049050A JPH0630536B2 (en) 1986-03-06 1986-03-06 Current limiting device protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049050A JPH0630536B2 (en) 1986-03-06 1986-03-06 Current limiting device protection device

Publications (2)

Publication Number Publication Date
JPS62207118A true JPS62207118A (en) 1987-09-11
JPH0630536B2 JPH0630536B2 (en) 1994-04-20

Family

ID=12820254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049050A Expired - Lifetime JPH0630536B2 (en) 1986-03-06 1986-03-06 Current limiting device protection device

Country Status (1)

Country Link
JP (1) JPH0630536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64626A (en) * 1987-06-22 1989-01-05 Mitsubishi Electric Corp Current-limiting circuit breaker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111742U (en) * 1973-01-23 1974-09-25
JPS5947233U (en) * 1983-08-18 1984-03-29 富士電機株式会社 current limiting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111742U (en) * 1973-01-23 1974-09-25
JPS5947233U (en) * 1983-08-18 1984-03-29 富士電機株式会社 current limiting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64626A (en) * 1987-06-22 1989-01-05 Mitsubishi Electric Corp Current-limiting circuit breaker

Also Published As

Publication number Publication date
JPH0630536B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
KR100200432B1 (en) Method of and device for protecting electrical power system
EP2053716B1 (en) Alternating current series arc fault detection method
US4636910A (en) Varistor overvoltage protection system with temperature systems
US5530613A (en) Current limiting circuit controller
JP2007157700A (en) Power circuit protection device using superconductor
EP2356728B1 (en) Overload protection of a voltage reduction device
JP4619975B2 (en) Superconducting current limiter, superconducting current limiting system, and superconducting current limiting control method
JPH0586052B2 (en)
JPS62207118A (en) Protective device for current limiting device
GB2439764A (en) Fault current limiting
EP0661790B2 (en) overcurrent protection circuit
US2307598A (en) Protective system for series capacitors
KR20150031729A (en) Fault current limiter with reclose fuction
KR100506197B1 (en) Over current relay satisfying arbitrary coordination condition
JP3227653B2 (en) Power system protection controller
JPS60105123A (en) High speed current limiting breaker
JP3419168B2 (en) Grounding type transformer
RU2088010C1 (en) Protective relay
WO2013139382A1 (en) Current control apparatus
EP4063888B1 (en) Method and apparatus for detection of a fuse failure
JPH05260649A (en) Superconducting current limiter
US2579303A (en) Series capacitor protective scheme for tie lines
JP3307063B2 (en) Power system protection apparatus and method
JP2016163523A (en) Separator and separation method
JPH05135660A (en) Current limiting breaker