JPS62206493A - Method of welding stub tube in pressure vessel for nuclear reactor - Google Patents
Method of welding stub tube in pressure vessel for nuclear reactorInfo
- Publication number
- JPS62206493A JPS62206493A JP61048280A JP4828086A JPS62206493A JP S62206493 A JPS62206493 A JP S62206493A JP 61048280 A JP61048280 A JP 61048280A JP 4828086 A JP4828086 A JP 4828086A JP S62206493 A JPS62206493 A JP S62206493A
- Authority
- JP
- Japan
- Prior art keywords
- stub tube
- pressure vessel
- welding
- reactor pressure
- inconel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 17
- 229910001026 inconel Inorganic materials 0.000 claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 4
- 230000006641 stabilisation Effects 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 2
- 230000035882 stress Effects 0.000 description 20
- 230000007797 corrosion Effects 0.000 description 17
- 238000005260 corrosion Methods 0.000 description 17
- 238000005336 cracking Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 229910001055 inconels 600 Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は原子炉圧力容器下鏡に制御棒駆動機構ハウジン
グのスタブチューブを取付けるに際し、その溶接部及び
溶接熱影響部の耐食性を改良した原子炉圧力容器におけ
るスタブチューブ溶接方法に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention provides an atomic weld that improves the corrosion resistance of welded parts and weld heat-affected zones when attaching a stub tube of a control rod drive mechanism housing to the lower mirror of a reactor pressure vessel. This invention relates to a stub tube welding method in a furnace pressure vessel.
(従来の技術)
原子炉圧力容器には、その下鏡部に制御棒駆動機構ハウ
ジングのスタブチューブが取付けられており、このスタ
ブチューブの中には制御棒駆動機構ハウジングが設けら
れていて、その内部に原子炉出力を調整するための制御
棒を炉心に挿入および引扱きをする制御棒駆動装置を内
臓されている。(Prior art) A stub tube for a control rod drive mechanism housing is attached to the lower end of the reactor pressure vessel, and a control rod drive mechanism housing is provided inside this stub tube. It has a built-in control rod drive device that inserts and handles the control rods into the reactor core to adjust the reactor output.
第6図は原子炉圧力容器の下鏡部付近の断面図であり、
原子炉圧力容器1の下鏡にはニッケル基合金の肉盛溶接
2が施されている。スタブチューブ3は溶接金属4によ
って原子炉圧力容器1と結合されており、制御棒駆動機
構ハウジング5はスタブチューブ3に溶接金属6によっ
て取付けられている。スタブチューブ3は原子炉圧力容
器1の下鏡にこのようにして185本(1100MeW
BWRの場合)林立した状態で取付られている。Figure 6 is a cross-sectional view of the vicinity of the lower mirror of the reactor pressure vessel.
Overlay welding 2 of a nickel-based alloy is applied to the lower mirror of the reactor pressure vessel 1. The stub tube 3 is connected to the reactor pressure vessel 1 by a weld metal 4, and the control rod drive mechanism housing 5 is attached to the stub tube 3 by a weld metal 6. In this way, 185 stub tubes 3 (1100 MeW
(For BWR) They are installed in a row.
第7図は第6図におけるスタブチューブ3と原子炉圧力
容器1との取付は溶接部分を拡大して示したものである
。FIG. 7 is an enlarged view of the welded portion of the attachment between the stub tube 3 and the reactor pressure vessel 1 in FIG. 6.
スタブチューブ3は低合金鋼製原子炉圧力容器1とオー
ステナイトステンレス鋼製制御棒駆動機構ハウジング5
の中間の熱膨張率を有する耐食性の良好なインコネル6
00とにより製造されている。The stub tube 3 includes a reactor pressure vessel 1 made of low alloy steel and a control rod drive mechanism housing 5 made of austenitic stainless steel.
Inconel 6 has good corrosion resistance and has a coefficient of thermal expansion between
Manufactured by 00.
スタブチューブ3と原子炉圧力容器1との溶接を容易に
するために、座肉盛金属4−1が溶接され、その後溶接
金属4−2によってスタブチューブ3と原子炉圧力容器
1とが突き合わせ溶接されている。In order to facilitate welding of the stub tube 3 and the reactor pressure vessel 1, a pad metal 4-1 is welded, and then the stub tube 3 and the reactor pressure vessel 1 are butt-welded with the weld metal 4-2. has been done.
溶接金属は強度および熱応力等の設計上の要求から、イ
ンコネル82またはインコネル182を使用している。Inconel 82 or Inconel 182 is used as the weld metal due to design requirements such as strength and thermal stress.
座肉盛溶接及び突き合せ溶接部は溶接後溶接残留応力除
去のため、600°C前後で計10時間熱処理される。After welding, the spot weld and butt weld are heat treated at around 600°C for a total of 10 hours to remove welding residual stress.
(発明が解決しようとする問題点)
ところで、このスタブチューブ3の取付溶接部は原子炉
圧力容器1の最下部に位置しているので、一次冷却水漏
洩防止の観点から極めて高い信頼性が要求される。また
スタブチューブ3は前記したように185本が林立した
形で取付けられ、取付は後炉水に接しているので、万一
割れが発生した場合にはその補修が非常に困難である。(Problem to be Solved by the Invention) By the way, since the mounting weld of the stub tube 3 is located at the lowest part of the reactor pressure vessel 1, extremely high reliability is required from the viewpoint of preventing primary cooling water leakage. be done. Furthermore, as described above, 185 stub tubes 3 are installed in a row, and the installation is in contact with the rear reactor water, so if a crack should occur, it would be very difficult to repair it.
従来は、スタブチューブ3と原子炉圧力容器1との溶接
には耐食性の良好なインコネル82またはインコネル1
82が用いられてきたが、最近の研究によってこれらの
溶接金属も厳しい環境条件下では応力腐食割れ(SCC
)感受性を有することが分った。同様にインコネル60
0製スタブチユーブの溶接熱影響部も応力腐食割れ(S
CC)感受性を有することが分った。すなわち本発明者
らは、溶存酸素をa ppm含む290℃純水中でイン
コネル82, 182, 600溶接金属から摂取した
試験片にステンレス鋼ホイルを巻きつけて、引張速度7
x 10−6mm/secの一定速度で引張試験を行
ない、破断伸びおよび破断面の形態を調べた。Conventionally, Inconel 82 or Inconel 1, which has good corrosion resistance, was used for welding the stub tube 3 and the reactor pressure vessel 1.
However, recent research has shown that these weld metals also suffer from stress corrosion cracking (SCC) under severe environmental conditions.
) was found to be susceptible. Similarly Inconel 60
The weld heat-affected zone of the stub tube made of
CC) was found to be susceptible. That is, the present inventors wrapped a stainless steel foil around a specimen taken from Inconel 82, 182, 600 weld metal in 290 °C pure water containing a ppm of dissolved oxygen, and
A tensile test was conducted at a constant speed of x 10-6 mm/sec to examine the elongation at break and the morphology of the fracture surface.
その結果を次頁の第1表に示す。The results are shown in Table 1 on the next page.
(以下余白)
第1表
この試験は、実際の原子炉条件よりかなり厳しい条件下
で行なわれたものであるが、上記の結果からみるとNo
、1のインコネル82の溶接のまま材とNo、 5のイ
ンコネル600を溶体化熱処理後、安定化熱処理した材
料以外は、応力腐食割れ(SCC)感受性があることが
分かる。この結果からスタブチューブの溶接部の信頼性
をより高度に確保するためには、炉水と接する部分に残
留応力除去焼鈍を受けた溶接金属を使用しないこと、ざ
らに、スタブチューブ母材熱影響部を炉水に接しさせな
いようにしなければならない。(Leaving space below) Table 1 This test was conducted under much harsher conditions than the actual reactor conditions, but judging from the above results, No.
It can be seen that the materials other than the as-welded Inconel 82 material of No. 1 and the Inconel 600 of No. 5 subjected to solution heat treatment and stabilization heat treatment are susceptible to stress corrosion cracking (SCC). Based on this result, in order to ensure a higher degree of reliability of the stub tube welded part, it is important to avoid using weld metal that has undergone residual stress relief annealing in the parts that come into contact with reactor water, and to avoid the effects of thermal effects on the stub tube base material. parts must not come into contact with reactor water.
本発明は、上記事情に鑑みてなされたもので、その目的
は原子炉圧力容器下鏡とスタブチューブとの溶接部及び
溶接熱影響部の応力腐食割れ感受性をなくし、この部分
の信頼性を向上させる原子炉圧力容器におけるスタブチ
ューブの溶接方法を提供することにある。The present invention has been made in view of the above circumstances, and its purpose is to eliminate the stress corrosion cracking susceptibility of the welded part and weld heat affected zone between the reactor pressure vessel lower head and the stub tube, and to improve the reliability of this part. An object of the present invention is to provide a method for welding a stub tube in a nuclear reactor pressure vessel.
[発明の構成]
(問題点を解決するため′の手段)
本発明は上記目的を達成するために、原子炉圧力容器に
おけるスタブチューブの溶接方法において、スタブチュ
ーブの外面の1部または全部をインコネル82で肉盛溶
接した後、スタブチューブを原子炉圧力容器の下鏡に溶
接結合するようにし、ざらに、その1部のみが肉盛溶接
されている場合には熱処理した後に原子炉圧力容器の下
鏡に溶接結合するようにしたものである。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for welding a stub tube in a nuclear reactor pressure vessel, in which part or all of the outer surface of the stub tube is made of Inconel. After overlay welding in step 82, the stub tube is welded to the lower mirror of the reactor pressure vessel, and if only one part of the stub tube is overlay welded, the stub tube is welded to the lower mirror of the reactor pressure vessel after heat treatment. It is designed to be welded to the lower mirror.
(作用)
したがって、本発明によればスタブチューブの外面の全
部がインコネル82で肉盛溶接されており、原子炉圧力
容器内の炉水が直接スタブチューブの材料であるインコ
ネル600に接触しないため、応力腐蝕割れが起きない
。また、その1部のみがインコネル82で肉盛溶接され
ている場合は露出しているインコネル600は熱処理さ
れているためスタブチューブには応力腐蝕割れが起きな
い。(Function) Therefore, according to the present invention, the entire outer surface of the stub tube is welded with Inconel 82, and the reactor water in the reactor pressure vessel does not directly contact Inconel 600, which is the material of the stub tube. No stress corrosion cracking occurs. Furthermore, if only a portion of the stub tube is overlay welded with Inconel 82, the exposed Inconel 600 has been heat treated, so stress corrosion cracking does not occur in the stub tube.
(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.
本発明の一実施例を第1図、第2図および第3図を用い
て説明する。An embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3.
第1図ないし第3図において、1は原子炉圧力容器、2
は原子炉圧力容器の肉盛部、3はスタブチューブ、4−
1および4−2はスタブチューブと原子炉圧力容器1と
の溶接部、7はインコネル82による肉盛溶接部、9は
スタブチューブのインコネル82による肉盛部である。In Figures 1 to 3, 1 is a reactor pressure vessel, 2 is
is the built-up part of the reactor pressure vessel, 3 is the stub tube, 4-
1 and 4-2 are welded portions between the stub tube and the reactor pressure vessel 1, 7 is an overlay welded portion made of Inconel 82, and 9 is an overlaid portion made of Inconel 82 of the stub tube.
次に、本実施例による溶接方法を説明する。Next, a welding method according to this embodiment will be explained.
まず、第1工程は第2図に示すようにインコネル600
製のスタブチューブ3の外面の一部を、耐応力腐食割れ
(SCC)の良好なインコネル82で符号9に示すよう
に肉盛溶接する。これはインコネル600はスタブチュ
ーブ3と原子炉圧力容器1の下鏡との溶接により生じる
熱により応力腐食割れ(SCC)感受性を有するように
なるからである。First, the first step is to use Inconel 600 as shown in Figure 2.
A part of the outer surface of the stub tube 3 made of aluminum is overlay welded with Inconel 82, which has good stress corrosion cracking resistance (SCC), as shown by reference numeral 9. This is because Inconel 600 becomes susceptible to stress corrosion cracking (SCC) due to the heat generated by welding the stub tube 3 and the lower head of the reactor pressure vessel 1.
インコネル82は、ASHE 5ecI[、Part
CにERNICr−3として規定されているもので、次
の元素組成を有する合金である。Inconel 82 is ASHE 5ecI [, Part
It is specified as ERNICr-3 in C and is an alloy having the following elemental composition.
すなわち、重量%でCO,10以下、Mn 2.5〜3
.5 、Fe 3.0以下、P O,03以下、30.
015以下、3i0.50以下、C1J O,50以下
、Ni67.0以上(附随的Coを含む) 、GO0,
12以下、lio、75以下、Cr 18.0〜22.
0. Cb+Ta 2.0〜3.0 (ただし、la
は0.30以下)およびその他の元素総量0.50以下
。That is, in weight % CO, 10 or less, Mn 2.5-3
.. 5, Fe 3.0 or less, P O, 03 or less, 30.
015 or less, 3i 0.50 or less, C1J O, 50 or less, Ni 67.0 or more (including incidental Co), GO0,
12 or less, lio, 75 or less, Cr 18.0-22.
0. Cb+Ta 2.0~3.0 (However, la
is 0.30 or less) and the total amount of other elements is 0.50 or less.
またインコネル600はJIS G4901 NCF
600とし゛ て規定されているものである。Also, Inconel 600 is JIS G4901 NCF
600.
次の第2工程は第1工程終了後のスタブチューブを溶体
化熱処理する。ここで溶体化熱処理とは合金を固溶体の
溶解度曲線より高い温度に加熱し、溶質原子の均一な分
布を確保してから急冷する処理をいう。In the next second step, the stub tube after the first step is subjected to solution heat treatment. Here, solution heat treatment refers to a process in which an alloy is heated to a temperature higher than the solubility curve of a solid solution, a uniform distribution of solute atoms is ensured, and then the alloy is rapidly cooled.
第3工程は第2工程終了後スタブチユーブを820°C
以上900℃以下で約1時間安定化熱処理する。The third step is to heat the stub tube to 820°C after the second step.
Stabilization heat treatment is performed at 900° C. or lower for about 1 hour.
第4工程は第3工程終了後のスタブチューブを原子炉圧
力容器の下鏡にインコネル82または182の溶接金属
で溶接結合する。第3図では肉盛溶接4−1.4.−2
で示す。In the fourth step, the stub tube after the third step is welded to the lower mirror of the reactor pressure vessel using Inconel 82 or 182 weld metal. In Fig. 3, overlay welding 4-1.4. -2
Indicated by
そして最後の第5工程は第4工程により原子炉圧力容器
に取付けられたスタブチューブを600°Cで約10時
間残留応力除去焼鈍する。In the fifth and final step, the stub tube attached to the reactor pressure vessel in the fourth step is annealed to remove residual stress at 600° C. for about 10 hours.
なお、前記第4工程において、溶接がインコネル182
の溶接金属でなされた場合は前記原子炉圧力容器と前記
スタブチューブの溶接結合部4−1゜4−2を覆うよう
にインコネル82で肉盛溶接する工程が施されている。In addition, in the fourth step, welding is performed using Inconel 182.
When the weld metal is used, a step of overlay welding with Inconel 82 is performed so as to cover the welded joint parts 4-1 and 4-2 of the reactor pressure vessel and the stub tube.
これは残留応力除去焼鈍されたインコネル182は耐応
力腐食割れ(SCC)感受性を有しないからである。第
1図において符号7で表わす。This is because residual stress relief annealed Inconel 182 is not susceptible to stress corrosion cracking (SCC). It is represented by the reference numeral 7 in FIG.
以上説明した第1工程〜第5工程により原子炉圧力容器
の下鏡にスタブチューブが溶接される。The stub tube is welded to the lower head of the reactor pressure vessel through the first to fifth steps explained above.
次に、本発明の他の実施例を第4図おにび第5図を参照
して説明する。Next, another embodiment of the present invention will be described with reference to FIG. 4 and FIG. 5.
第4図および第5図は本実施例に係る溶接方法により溶
接するスタブチューブの断面図である。4 and 5 are cross-sectional views of a stub tube to be welded by the welding method according to this embodiment.
本実施例では上記第1の実施例のうち第1工程、第4工
程および第5工程だけによって原子炉圧力容器の下鏡に
スタブチューブが溶接されるものである。ただし、第1
工程はスタブチューブの1部ではなくスタブチューブの
全部が対象になっている点で上記実施例と相違する。す
なわち、本実施例による第1工程は第4図に示すように
スタブチューブ3の外面の金体を耐応力腐食割れ(SC
C)感受性の良好なインコネル82で肉盛溶接する。こ
のときスタブチューブ3は、全外表面を耐応力腐食割れ
(SCC)感受性が良好なインコネル82で覆われてい
るためインコネル600に対する応力腐食割れ(SCC
)感受性の改善のための安定化熱処理が不用である。In this embodiment, the stub tube is welded to the lower head of the reactor pressure vessel only in the first, fourth, and fifth steps of the first embodiment. However, the first
The process differs from the above embodiment in that the entire stub tube is targeted instead of a portion of the stub tube. That is, in the first step according to this embodiment, as shown in FIG.
C) Overlay welding with Inconel 82, which has good sensitivity. At this time, the entire outer surface of the stub tube 3 is covered with Inconel 82, which has good stress corrosion cracking (SCC) susceptibility.
) Stabilizing heat treatment to improve sensitivity is not required.
次の第2工程であるスタブチューブ3を原子炉圧力容器
1の下鏡に溶接結合する工程、ざらに第3工程の残留応
力焼鈍工程は、上記第1実施例における第4工程と第5
工程と同様であるので、その詳細な説明は省略するもの
とする。なお、前記第2工程において、溶接がインコネ
ル182の溶接金属でなされた場合は前記原子炉圧力容
器1と前記スタブチューブ3の溶接結合部4−1.4−
2を覆うようにインコネル82で肉盛溶接する工程が施
されている。これは残留応力除去焼鈍されたインコネル
182は耐応力腐食割れ(SCC)感受性を有しないか
らである。The next second step, which is the step of welding the stub tube 3 to the lower head of the reactor pressure vessel 1, and the third step, the residual stress annealing step, are similar to the fourth and fifth steps in the first embodiment.
Since the steps are the same, detailed explanation thereof will be omitted. In addition, in the second step, when welding is performed with weld metal of Inconel 182, the welded joint portion 4-1.4- of the reactor pressure vessel 1 and the stub tube 3
A process of overlay welding with Inconel 82 is performed so as to cover 2. This is because residual stress relief annealed Inconel 182 is not susceptible to stress corrosion cracking (SCC).
以上説明した第1〜第3工程により原子炉圧力容器の下
鏡にスタブチューブを溶接するものである。The stub tube is welded to the lower mirror of the reactor pressure vessel through the first to third steps described above.
[発明の効果]
以上説明したように、本発明の溶接方法によれば、スタ
ブチューブ母材熱影響部および原子炉圧力容器下鏡との
溶接部における応力除去焼鈍により加速される応力腐食
割れ(SCC)感受性を有する部分が、耐応力腐食割れ
(SCC)感受性良好なインコネル82で覆われること
により炉水と接することがなくなり、この溶接部にお(
プる耐応力腐食割れ(SCC)感受性についての信頼性
が高まるというすぐれた効果を奏する。[Effects of the Invention] As explained above, according to the welding method of the present invention, stress corrosion cracking ( By covering the parts susceptible to stress corrosion cracking (SCC) with Inconel 82, which has good resistance to stress corrosion cracking (SCC), they no longer come into contact with reactor water, and this welded part is protected against (
This has the excellent effect of increasing reliability regarding stress corrosion cracking (SCC) susceptibility.
第1図は本発明の一実施例の縦断面図、第2図は第1図
におけるスタブチューブの縦断面図、第3図は第1図に
おけるスタブチューブと原子炉圧力容器との溶接部の縦
断面図、第4図は本発明の他の実施例のスタブチューブ
の縦断面図、第5図は第4図におけるスタブチューブと
原子炉圧力容器との溶接部の縦断面図、第6図は本発明
が適用される原子炉圧力容器の下鏡部の縦断面図、第7
図は従来のスタブチューブと原子炉圧力容器との溶接部
の拡大断面図である。
1・・・原子炉圧力容器
2・・・原子炉圧力容器の肉盛部
3・・・スタブチューブ
4・・・スタブチューブと原子炉圧力容器との溶接部
5・・・制御棒駆動機構ハウジング
7・・・インコネル82による肉盛溶接部9・・・イン
コネル82による肉盛部
(8733)代理人・弁理士 猪 股 祥 晃(ほか1
名)
第1図
第2図
第3図
第5図
端7図FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of the stub tube in FIG. 1, and FIG. 3 is a longitudinal cross-sectional view of the stub tube in FIG. 4 is a longitudinal sectional view of a stub tube according to another embodiment of the present invention; FIG. 5 is a longitudinal sectional view of a welded portion between the stub tube and the reactor pressure vessel in FIG. 4; FIG. 7 is a vertical sectional view of the lower mirror portion of the reactor pressure vessel to which the present invention is applied;
The figure is an enlarged sectional view of a welded portion between a conventional stub tube and a reactor pressure vessel. 1... Reactor pressure vessel 2... Reactor pressure vessel build-up portion 3... Stub tube 4... Welded portion between stub tube and reactor pressure vessel 5... Control rod drive mechanism housing 7... Overlay welded part with Inconel 82 9... Overlay part with Inconel 82 (8733) Agent/patent attorney Yoshiaki Inomata (and 1 others)
Figure 1 Figure 2 Figure 3 Figure 5 End figure 7
Claims (6)
以下に示すような工程により原子炉圧力容器にスタブチ
ューブを溶接することを特徴とする原子炉圧力容器にお
けるスタブチューブの溶接方法。 スタブチューブの外面の1部をインコネル82で肉盛溶
接する第1工程、 前記第1工程終了後のスタブチューブを溶体化熱処理す
る第2工程、 前記第2工程終了後のスタブチューブを安定化熱処理す
る第3工程、 前記第3工程終了後のスタブチューブを原子炉圧力容器
の下鏡に溶接結合する第4工程、 前記第4工程により原子炉圧力容器に取り付けられたス
タブチューブを残留応力除去焼鈍する第5工程(1) In the method of manufacturing a control rod drive mechanism housing,
A method for welding a stub tube in a nuclear reactor pressure vessel, the method comprising welding the stub tube to the reactor pressure vessel by the steps shown below. A first step of welding a part of the outer surface of the stub tube with Inconel 82, a second step of solution heat treatment of the stub tube after the first step, and stabilization heat treatment of the stub tube after the second step. a fourth step of welding the stub tube after the third step to the lower mirror of the reactor pressure vessel; annealing the stub tube attached to the reactor pressure vessel in the fourth step to remove residual stress; The fifth step to
ている特許請求の範囲第1項記載の原子炉圧力容器にお
けるスタブチューブの溶接方法。(2) The method for welding a stub tube in a nuclear reactor pressure vessel according to claim 1, wherein the welding in the fourth step is performed using Inconel 82.
ブの溶接結合部を覆うようにインコネル82で肉盛溶接
する工程を行なっている特許請求の範囲第1項記載の原
子炉圧力容器におけるスタブチューブの溶接方法。(3) In the reactor pressure vessel according to claim 1, wherein after the fifth step, a step of overlay welding with Inconel 82 is performed so as to cover the welded joint between the reactor pressure vessel and the stub tube. How to weld stub tubes.
以下に示すような工程により原子炉圧力容器にスタブチ
ューブを溶接することを特徴とする原子炉圧力容器にお
けるスタブチューブの溶接方法。 スタブチューブの外面の全部をインコネル82で肉盛溶
接する第1工程、 前記第1工程終了後のスタブチューブを原子炉圧力容器
の下鏡に溶接結合する第2工程、 前記第2工程により原子炉圧力容器に取付けられたスタ
ブチューブを残留応力除去焼鈍する第3工程(4) In the method of manufacturing a control rod drive mechanism housing,
A method for welding a stub tube in a nuclear reactor pressure vessel, the method comprising welding the stub tube to the reactor pressure vessel by the steps shown below. A first step of welding the entire outer surface of the stub tube with Inconel 82. A second step of welding the stub tube after the first step to the lower head of the reactor pressure vessel. A nuclear reactor is produced by the second step. Third step of annealing the stub tube attached to the pressure vessel to remove residual stress
なっている特許請求の範囲第4項記載の原子炉圧力容器
におけるスタブチューブの溶接方法。(5) The method for welding a stub tube in a nuclear reactor pressure vessel according to claim 4, wherein the welding in the second step is performed using Inconel 82.
ューブの溶接結合部を覆うようにインコネル82で肉盛
溶接する工程を行なっている特許請求の範囲第4項記載
の原子炉圧力容器におけるスタブチューブの溶接方法。(6) After the third step, the reactor pressure vessel according to claim 4 is subjected to a step of overlaying with Inconel 82 so as to cover the welded joint between the reactor pressure vessel and the stub tube. stub tube welding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61048280A JPS62206493A (en) | 1986-03-07 | 1986-03-07 | Method of welding stub tube in pressure vessel for nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61048280A JPS62206493A (en) | 1986-03-07 | 1986-03-07 | Method of welding stub tube in pressure vessel for nuclear reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62206493A true JPS62206493A (en) | 1987-09-10 |
Family
ID=12799020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61048280A Pending JPS62206493A (en) | 1986-03-07 | 1986-03-07 | Method of welding stub tube in pressure vessel for nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62206493A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004170413A (en) * | 2002-11-18 | 2004-06-17 | Babcock & Wilcox Canada Ltd | Nuclear reactor head having integrated nozzle |
WO2013150750A1 (en) * | 2012-04-03 | 2013-10-10 | 株式会社 東芝 | Structure for protecting penetrating part of reactor pressure vessel, and reactor |
-
1986
- 1986-03-07 JP JP61048280A patent/JPS62206493A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004170413A (en) * | 2002-11-18 | 2004-06-17 | Babcock & Wilcox Canada Ltd | Nuclear reactor head having integrated nozzle |
WO2013150750A1 (en) * | 2012-04-03 | 2013-10-10 | 株式会社 東芝 | Structure for protecting penetrating part of reactor pressure vessel, and reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2422919B1 (en) | Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same | |
JPH0242387A (en) | Fuel assembly for nuclear reactor, its manufacture, and its member | |
JPS60211388A (en) | Coated pipe for nuclear fuel element | |
US5022936A (en) | Method for improving property of weld of austenitic stainless steel | |
US4040876A (en) | High temperature alloys and members thereof | |
US5190721A (en) | Zirconium-bismuth-niobium alloy for nuclear fuel cladding barrier | |
JPH07224373A (en) | Method of improving corrosion resistance of barrier coating made of zirconium or zirconium alloy | |
JPH0369620B2 (en) | ||
JPS62206493A (en) | Method of welding stub tube in pressure vessel for nuclear reactor | |
JP2622530B2 (en) | Welding material for austenitic steel with excellent high-temperature strength | |
JP2831051B2 (en) | Austenitic stainless steel welding wire | |
EP0574194A1 (en) | Method for producing heat treated composite nuclear fuel containers | |
JP2000254776A (en) | Stress corrosion crack prevention method for atomic reactor-inside piping welded part | |
JP2865749B2 (en) | Piping reforming method | |
JPS6144136B2 (en) | ||
RU2082805C1 (en) | Nickel-base alloy | |
JP2500165B2 (en) | Method for manufacturing fuel cladding tube | |
JPH0649915B2 (en) | Stainless steel for nuclear reactor core equipment and manufacturing method thereof | |
JPS58154487A (en) | Method for welding tubular member | |
RU2089642C1 (en) | Nickel-based alloy and its modification | |
JPS6072682A (en) | Welding method of high-purity ferritic stainless steel | |
Votinov et al. | Vanadium alloys as structural materials for fusion reactor blanket | |
JPS6284886A (en) | Electroslag buildup welding method for obtaining padding metal excellent in corrosion resistance and neutron irradiation embrittlement resistance characteristic | |
JPS6036863B2 (en) | Welding method for austenitic stainless steel | |
JPS6039118A (en) | Manufacture of austenitic stainless steel containing boron and having superior resistance to intergranular corrosion and intergranular stress corrosion cracking |