JPS622059A - Diagnostic device for trouble in continuously variable transmission - Google Patents

Diagnostic device for trouble in continuously variable transmission

Info

Publication number
JPS622059A
JPS622059A JP14078685A JP14078685A JPS622059A JP S622059 A JPS622059 A JP S622059A JP 14078685 A JP14078685 A JP 14078685A JP 14078685 A JP14078685 A JP 14078685A JP S622059 A JPS622059 A JP S622059A
Authority
JP
Japan
Prior art keywords
pulley
speed
continuously variable
variable transmission
gear ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14078685A
Other languages
Japanese (ja)
Other versions
JPH0758110B2 (en
Inventor
Masaaki Ogami
正明 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP60140786A priority Critical patent/JPH0758110B2/en
Publication of JPS622059A publication Critical patent/JPS622059A/en
Publication of JPH0758110B2 publication Critical patent/JPH0758110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To discover a belt slip in an early period, by deciding a trouble through signals from speed sensors of a main pulley and a subpulley. CONSTITUTION:After an electromagnetic dust type clutch 1 comes to be directly coupled together with action of a switching clutch 22 in a pulley-type continuously variable transmission, a device, inputting signals of an engine speed and a car speed by sensors 50, 51 to a speed change ratio calculating part 54, calculates actual speed change ratio (i). While a rise up of line pressure is delayed in rapid acceleration, and if a belt slip is generated, the device generates an output H in a comparator 56 by increasing the speed change ratio (i), on the contrary the line pressure decreases in inertia running, and if the belt slip is generated, the device generates an output H in a comparator 58 by decreasing the speed change ratio (i). In this way, the device, inputting a signal of trouble decision to a counter 65 from an OR gate 64, turns on an alarm lamp 53 if the frequency of said signal increases.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、車両用のベルト式無段変速機の故障診断装置
に関し、詳しくは、ベルトの滑り状態を検出して走行不
能に至る前に未然に故障を判定して警報を発するものに
関する。
The present invention relates to a failure diagnosis device for a belt-type continuously variable transmission for a vehicle, and more particularly to a device that detects a slipping state of a belt, determines a failure before it becomes impossible to drive, and issues an alarm.

【従来の技術】[Conventional technology]

この種の無段変速機は、例えば特開昭55−65755
号公報に示すように構成されている。即ち、入力側の主
プーリと出力側の副プーリとの間に駆動ベルトが掛けて
あり、ライン圧がかかった油圧サーボ機構によりプーリ
間隔を変化させることで自動的に無段変速するようにな
っている。そしてこの場合のライン圧は、ベルトの滑り
を防止するため、伝動トルクの大きい低速段では高く、
高速段になるに従って低下するように制御され、常に伝
達トルクに見合ったプーリ押付は力を保持するものであ
る− 従って、上記構成においては、ベルトの滑りの有無が非
常に重要な要素であり、ベルト滑りを生じると変速制御
が不能になるのみならず、出力側に動力伝達しなくなっ
て走行不能を招くことになる。ここでベルト滑りは、プ
ーリ部、ベルトの摩耗、損傷や油圧系のオイル洩れ等に
より生じる可能性があるが、これらが進行して現実に不
具合を生じた段階で故障判定したのでは、既にMい。 このことから、ベルトの滑り状態を監視して、走行不能
に至る前に故障を判定し、警報を発してユーザに整備を
促すことが必要となる。 しかし、上記ベルト式無段変速機における故障診断は未
だ行われていない。一般に車両等において提案されてい
る故障診断は、主として電気的に制御して動作する電気
系統に関するものである。
This type of continuously variable transmission is known, for example, from Japanese Patent Application Laid-open No. 55-65755.
It is configured as shown in the publication. In other words, a drive belt is placed between the main pulley on the input side and the auxiliary pulley on the output side, and a hydraulic servo mechanism applied with line pressure automatically changes the speed by changing the pulley spacing. ing. In this case, the line pressure is high in low speed gears where the transmission torque is large to prevent belt slippage.
The pulley pressure is controlled to decrease as the speed increases, and the pulley pressure is always maintained in proportion to the transmitted torque. Therefore, in the above configuration, whether or not the belt slips is a very important factor. If belt slippage occurs, not only will gear change control become impossible, but power will no longer be transmitted to the output side, resulting in an inability to drive. Belt slippage can occur due to wear and tear on the pulleys and belt, oil leakage from the hydraulic system, etc., but if these problems have progressed and a malfunction has actually occurred, it would have been determined that the belt has failed. stomach. For this reason, it is necessary to monitor the slippage of the belt, determine a failure before the vehicle becomes unable to run, and issue a warning to prompt the user to carry out maintenance. However, failure diagnosis for the belt-type continuously variable transmission has not yet been performed. Fault diagnosis that is generally proposed for vehicles and the like mainly concerns electrical systems that operate under electrical control.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

上述の従来例から明らかなように、無段変速機の故障診
断が実施されないと、車両に搭載した場合に、既に述べ
たように走行不能を招く場合がある。 ここで、故障診断の基礎になるベルト滑りをいかにして
検出するかについて述べる。先ず、入力側のエンジン回
転数と出力側の車速の比、または両プーリの回転数の比
により、実際の変速比iを求める。この変速比1は、ベ
ルト滑りが無い場合は例えば0.5<i < 2.5の
範囲内で変化する。 ところで、低速時に高速段側にシフトする状態においで
、アクセルの踏込みにより急加速してエンジンの回転数
および出力を急激に上昇させた場合に、ライン圧が追随
して上昇しないと、ベルト滑りにより車速が上らないこ
とが起こる。このとき変速比iは、最も低速段の値2.
5よりも大きい値になる。また、アクセル開放で下り坂
を惰行する場合にライン圧が不足していると、ベルト滑
りにより車速が高くなり、変速比iはオーバドライブの
値0.5より小さな値になる。こうして、変速比1の値
からベルト滑りを検出することができる。 一方、変速比の変化速度ldi/dtlは、通常例えば
1秒当り0.2〜0.3であるが、過渡的な加減速域で
ベルト滑りが生じると、この値を越える現象が見られる
。このことから、変速比iの変化速度からもベルト滑り
を検出することができるのであり、これによりベルト滑
りに関する故障診断を早期に行うことが可能となる。 本発明は、このような点に鑑みてなされたもので、無段
変速機においてベルト滑りに関する故障診断を、ベルト
滑りの微少な早期の段階で的確に行うことが可能な無段
変速機の故障診断装置を捷供することを目的としている
As is clear from the above-mentioned conventional examples, if a continuously variable transmission is not diagnosed for failure, when it is installed in a vehicle, it may become unable to run as described above. Here, we will discuss how to detect belt slippage, which is the basis for failure diagnosis. First, the actual gear ratio i is determined from the ratio of the engine rotation speed on the input side and the vehicle speed on the output side, or the ratio of the rotation speeds of both pulleys. This gear ratio 1 changes within the range of 0.5<i<2.5, for example, when there is no belt slippage. By the way, when shifting to a high gear at low speed, if you suddenly accelerate by pressing the accelerator and suddenly increase the engine speed and output, if the line pressure does not increase accordingly, belt slippage may occur. It happens that the vehicle speed does not increase. At this time, the gear ratio i is the lowest gear value 2.
The value will be greater than 5. Furthermore, if the line pressure is insufficient when coasting downhill with the accelerator released, the vehicle speed increases due to belt slippage, and the gear ratio i becomes a value smaller than the overdrive value of 0.5. In this way, belt slippage can be detected from the value of the gear ratio 1. On the other hand, the speed ratio change rate ldi/dtl is normally, for example, 0.2 to 0.3 per second, but if belt slippage occurs in a transient acceleration/deceleration range, a phenomenon that exceeds this value is observed. Therefore, belt slippage can be detected from the rate of change of the gear ratio i, thereby making it possible to diagnose belt slippage at an early stage. The present invention has been made in view of the above-mentioned problems, and it is possible to accurately perform a failure diagnosis regarding belt slippage in a continuously variable transmission at an early stage when the belt slippage is minute. The purpose is to provide diagnostic equipment.

【問題点を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明は、プーリ間隔可変の
主プーリと副プーリに駆動ベルトを掛け、それらの各プ
ーリの油圧サーボ装置にライン圧を供給して、プーリの
巻付は径の比を変えることにより無段変速する無段変速
機において、主プーリ側と副プーリ側の回転数を検出す
る回転センサを有し、該回転センサからの信号により1
IIIIllユニツトで変速比を算出し、該変速比の値
、変化速度の・値から故障を判定し、該故障判定の回数
により警報を発するように構成されている。
In order to achieve the above object, the present invention extends a drive belt around a main pulley and an auxiliary pulley with variable pulley spacing, supplies line pressure to a hydraulic servo device of each of these pulleys, and adjusts the winding of the pulleys at a ratio of their diameters. In a continuously variable transmission that continuously changes speed by changing the
The unit is configured to calculate the gear ratio, determine a failure from the value of the gear ratio and the value of the speed of change, and issue a warning based on the number of times the failure is determined.

【作  用】[For production]

上記構成に基づき、変速機作動中に実際の変速比が常に
検出されており、その変速比が最大または最小の値を越
えたり、変化速廖が設定値以上になると故障判定し、そ
の頻度が多くなると警報を発してユーザに整備を促すこ
とになる。こうして、ベルト滑りに関する故障の実態を
早期に見出して、これに対処することが可能となる。
Based on the above configuration, the actual gear ratio is always detected while the transmission is operating, and if the gear ratio exceeds the maximum or minimum value or the change gear ratio exceeds the set value, a failure is determined and the frequency of occurrence is reduced. If the number increases, a warning will be issued to prompt the user to perform maintenance. In this way, it becomes possible to discover the actual state of failure related to belt slippage at an early stage and to deal with it.

【実 施 例】【Example】

以下、図面を参照して本発明の一実施例を具体的に説明
する。 まず、第1図において本発明が適用される無段変速機の
一例として、電磁粉式クラッチ付無段変速機について説
明すると、符号1は電磁粉式クラッチ、2は無段変速機
であり、無段変速機2は大別すると前、後進の切換8I
I3、プーリ比変換部4、終減速部5及び油圧制御部6
から構成されている。 電磁粉式クラッチ1は、エンジンからのクランク軸1に
コイル8を内蔵したドライブメンバ9が一体結合、これ
に対し変速機入力軸10にドリブンメンバ11が回転方
向に一体的にスプライン結合し、これらのドライブおよ
びドリブンメンバ9.11がギャップ12を介して遊嵌
して、このギャップ12にパウダ室13から電磁粉を集
積するようになっている。また、ドライブメンバ9には
ホルダ14を介してスリップリング15が設置され、ス
リップリング15に給電用のブラシ16が摺接してコイ
ル8にクラッチ電流を流すようにしである。 こうして、コイル8にクラッチ電流を流すと、ドライブ
およびドリブンメンバ9,11の間に生じる磁力線によ
り両者のギャップ12に電磁粉が鎖状に結合して集積し
、これによる結合力でドライブメンバ9に対しドリブン
メンバ11が滑りながら一体結合して接続した状態にな
る。一方、クラッチ電流をカットすると、電磁粉による
ドライブおよびドリブンメンバ9.11の結合力が消失
してクラッチ切断状態になる。そしてこの場合のクラッ
チ電流の供給およびカットを無段変速機2の切換部3を
シフトレバ−等で操作する際に連動して行うようにすれ
ば、P(パーキング)またはNにュートラル)レンジか
らD(ドライブ)、L(ロー)またはR(リバース)レ
ンジへの切換時に自動的にクラッチ1が捨所して、クラ
ッチペダル操作は不要になる。 次いで無段変速機2において、切換al13は、上記ク
ラッチ1からの入力軸10とこれに同軸上に配置された
無段変速112の主軸17との間に設けられるもので、
入力軸10に一体結合する後進用ドライブギヤ18と主
軸17に回転自在に嵌合する後進用ドリブンギヤ19と
がカウンタギヤ20およびアイドラギヤ21を介して噛
合い構成され、更にこれらの主軸17とギヤ18.19
の間に切換クラッチ22が設けられる。そしてPまたは
Nレンジの中立位置から切換クラッチ22をギヤ18側
に係合すると、入力軸10に主軸17が直結してDまた
はしレンジの前進状態にし、切換クラッチ22をギヤ1
9側に係合すると、入力軸10の動力がギヤ18ないし
21により減速逆転してRレンジの後進状態にする。 プーリ比変換部4は、上記主軸17に対しnJ軸23が
平行配置され、これらの両輪17.23にそれぞれ主プ
ーリ24. @プーリ25が設けられ、且つプーリ24
、25の間にエンドレスの駆動ベルト26が掛は渡しで
ある。プーリ24.25はいずれも2分割に構成され、
可動側プーリ半体24a 、 25aには油圧サーボ装
置27.28が付設されてプーリ間隔を可変にしである
。そしてこの場合に、主プーリ24は、固定側プーリ半
体24bに対して可動側プーリ半体24aを近づけてプ
ーリ間隔を順次狭くさせ、副プーリ25は、逆に固定側
プーリ半体25bに対し可動側プーリ半体25aを遠ざ
けてプーリ間隔を順次広げ、これにより駆動ベルト26
のプーリ24.25における巻付は径の比を変化させて
無段変速した動力を副軸23に取出すようになっている
。 終減速部5は、上記副軸23に中間減速ギヤ29を介し
て連結される出力軸30の出力ギヤ31に大径のファイ
ナルギヤ32が噛合い、このファイナルギヤ32から差
動機構33を介して左右の駆動輪の車軸34゜35に伝
動構成される。 更に油圧11Jtl11部6は、主プーリ24側に、そ
の主軸17および入力軸10の内部を貫通してエンジン
クランク軸7に直結するポンプ駆動軸36でエンジン運
転中常に油圧を生じるように油圧ポンプ37が設けられ
る。そしてこのポンプ油圧が、油圧t、II ’a回路
38でアクセルの踏込みに応じたスロットル開度および
エンジン回転数等により制御され、油路39゜40を介
して主プーリ24および副プーリ25側の各油圧サーボ
装[27,28に供給され、無段変速部3の無段変速制
御を行うように構成される。 第2図において、上記無段変速機の故障診断について説
明すると、エンジン回転および車速を検出するエンジン
回転センサ50.車速センサ51を有し、これらのエン
ジン回転センサ50.車速センサ51が、制御ユニット
52を介して警報ランプ53に回路接続される。 制御ユニット52は、上記エンジン回転センサ50゜車
速センサ51の出力により変速比iを算出する変速比算
出部54を有し、この変速比算出部54が最も低速段の
変速比i −2,5に相当する基準値55を有するコン
パレータ56、および最も高速段の変速比+ −0,5
に相当する基準値57を有するコンパレータ58に接続
し、これらのコンパレータ56.58がORゲート59
に接続する。また、変速比算出部54は、変速比算出部
g l di/dt lの変速比変−比速度算出部60
.絶対値算出部61を介して一定値1di/dtl=1
に相当する基準値62を有するコンパレータ63に接続
し、上記ORゲート59とコンパレータ63とが、OR
ゲート64を介して故障判定の回数のカウンタ65に接
続する。そしてカウンタ65は、基準値66を有するコ
ンパレータ61に接続し、このコンパレータ67の出力
により警報ランプ53を点灯するようになっている。 なお、電磁粉式クラッチ1が切れていたり、または半ク
ラッチの場合、または切換クラッチ22がニュートラル
位置の場合には、変速比を算出し得ない。そこで、電磁
粉式クラッチ1のクラッチ電流が流れて一定時間後のク
ラッチ直結以降、およびニュートラルスイッチがオフに
なった場合に1制御ユニツト52に各センサso、 s
iの出力を取り入れるようになっている。 次いで、このように構成された故障診断装置の作用につ
いて説明する。 先ず、発進時にDまたはRレンジにシフトされて切換ク
ラッチ22が動作した状態でアクセルを踏込むと、エン
ジン回転数の上昇に伴いクラッチ電流が流れて電磁粉式
クラッチ1は接続し始め、動力が、切換部3.プーリ比
変換部4.終減速部5を介して車輪に伝達し、走り始め
る。このとき、油圧サーボ装置2Bのライン圧の作用で
駆動ベルト26が最も副プーリ25の側に移行しており
、変速比iは最大の2.5になっている。こうして、変
速比最大の低速段で走行を、開始すると、車速により電
磁粉式クラッチ1は接続状態に保持され、これ以降はア
クセルの踏込みと車速により油圧サーボ装置27にライ
ン圧が供給されて、駆動ベルト26を主プーリ24側に
移行することで、変速比が減じてシフトアップする。そ
して変速比1が0.5の最小のオーバドライブに達する
。 そこで上記無段変速機において、切換クラッチ22の動
作と共に電磁粉式クラッチ1が直結になった以降、各セ
ンサso、 siによるエンジン回転数と車速の信号が
変速比算出部54に入力して、実際の変速比Iが算出さ
れる。そして正常に変速制御する場合は、コンパレータ
56.58.63の出力がいずれもLになり、カウンタ
65には故障判定の信号が入力しないので、警報も発し
ない。 一方、急加速時にライン圧の立上りが遅れてベルト滑り
を生じると、変速比iが大きくなることでコンパレータ
5Gの出力がHになり、惰行時のライン圧が低下してベ
ルト滑りを生じると、変速比iが小さくなることでコン
パレータ58の出力がHになる。また、加減速の過渡時
にライン圧の追随性の悪化等によりベルト滑りを生じて
変速比変化速度1 di/dt lが増大すると、コン
パレータ63の出力がHになる。こうして、ORゲート
64からカウンタ65に故障判定の信号が入力すること
になり、この回数が多くなるとコンパレータ67により
故障を生じる可能性が大きいと判定され、その出力信号
により警報ランプ53が点灯して警報を発するのである
。 なお、上記作用をマイコン等でソフト的に処理しても良
く、一定時間毎、イグニッションパルスに同期して一定
のインタラブド毎に行えば良い。 以上、本発明の一実施例について述べたが、いかなるギ
ヤトレーン無段変速機にも適用し得る。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. First, a continuously variable transmission with an electromagnetic powder clutch will be described as an example of a continuously variable transmission to which the present invention is applied in FIG. Continuously variable transmission 2 can be roughly divided into forward and reverse switching 8I.
I3, pulley ratio conversion section 4, final reduction section 5, and hydraulic control section 6
It consists of In the electromagnetic powder clutch 1, a drive member 9 with a built-in coil 8 is integrally connected to a crankshaft 1 from the engine, and a driven member 11 is integrally connected in the rotational direction by a spline to a transmission input shaft 10. The drive and driven member 9.11 is loosely fitted through the gap 12 in order to collect electromagnetic powder from the powder chamber 13 in this gap 12. Further, a slip ring 15 is installed on the drive member 9 via a holder 14, and a brush 16 for power supply is in sliding contact with the slip ring 15 so that a clutch current flows through the coil 8. In this way, when a clutch current is passed through the coil 8, electromagnetic particles are combined and accumulated in a chain in the gap 12 between the drive and driven members 9 and 11 due to the lines of magnetic force generated between the drive and driven members 9 and 11. On the other hand, the driven member 11 slides and becomes integrally connected. On the other hand, when the clutch current is cut, the drive due to the electromagnetic powder and the coupling force between the driven members 9 and 11 disappear, resulting in a clutch disengaged state. In this case, if the clutch current is supplied and cut in conjunction with the operation of the switching section 3 of the continuously variable transmission 2 using a shift lever, etc., it is possible to change the clutch current from P (parking) or neutral to N. When switching to (drive), L (low) or R (reverse) range, clutch 1 is automatically disengaged, making clutch pedal operation unnecessary. Next, in the continuously variable transmission 2, the switching AL13 is provided between the input shaft 10 from the clutch 1 and the main shaft 17 of the continuously variable transmission 112 disposed coaxially therewith,
A reverse drive gear 18 integrally coupled to the input shaft 10 and a reverse driven gear 19 rotatably fitted to the main shaft 17 are meshed with each other via a counter gear 20 and an idler gear 21, and furthermore, these main shaft 17 and gear 18 .19
A switching clutch 22 is provided between the two. Then, when the switching clutch 22 is engaged from the neutral position of the P or N range to the gear 18 side, the main shaft 17 is directly connected to the input shaft 10, and the switching clutch 22 is moved to the forward state of the D or H range.
When engaged on the 9 side, the power of the input shaft 10 is decelerated and reversed by the gears 18 to 21, resulting in a reverse drive state in the R range. In the pulley ratio converter 4, an nJ axis 23 is arranged parallel to the main shaft 17, and main pulleys 24. @Pulley 25 is provided, and pulley 24
, 25, an endless drive belt 26 runs between them. Both pulleys 24 and 25 are divided into two parts,
Hydraulic servo devices 27 and 28 are attached to the movable pulley halves 24a and 25a to make the pulley intervals variable. In this case, the main pulley 24 brings the movable pulley half 24a closer to the fixed pulley half 24b to gradually narrow the pulley interval, and conversely, the sub pulley 25 moves the movable pulley half 24a closer to the fixed pulley half 25b. By moving the movable pulley half 25a away from each other and gradually increasing the pulley interval, the drive belt 26
The winding around the pulleys 24 and 25 changes the diameter ratio so that continuously variable speed output power is extracted to the subshaft 23. In the final reduction section 5, a large-diameter final gear 32 meshes with an output gear 31 of an output shaft 30 connected to the subshaft 23 via an intermediate reduction gear 29, and a large-diameter final gear 32 meshes with an output gear 31 of an output shaft 30 connected to the subshaft 23 via an intermediate reduction gear 29. The power is transmitted to the axles 34 and 35 of the left and right drive wheels. Further, the hydraulic pressure 11Jtl11 section 6 is provided with a hydraulic pump 37 on the main pulley 24 side so as to constantly generate oil pressure during engine operation at a pump drive shaft 36 that passes through the main shaft 17 and the input shaft 10 and is directly connected to the engine crankshaft 7. is provided. This pump oil pressure is controlled by the oil pressure t, II 'a circuit 38 according to the throttle opening and engine rotation speed according to the depression of the accelerator, and is applied to the main pulley 24 and sub pulley 25 through oil passages 39 and 40. It is supplied to each hydraulic servo device [27, 28] and is configured to perform continuously variable speed control of the continuously variable transmission section 3. Referring to FIG. 2, failure diagnosis of the continuously variable transmission will be explained. Engine rotation sensor 50 detects engine rotation and vehicle speed. It has a vehicle speed sensor 51, and these engine rotation sensors 50. A vehicle speed sensor 51 is circuit-connected to a warning lamp 53 via a control unit 52 . The control unit 52 has a gear ratio calculating section 54 that calculates a gear ratio i based on the outputs of the engine rotation sensor 50 and the vehicle speed sensor 51, and this gear ratio calculating section 54 calculates the gear ratio i -2,5 of the lowest gear. A comparator 56 having a reference value 55 corresponding to
are connected to a comparator 58 having a reference value 57 corresponding to
Connect to. In addition, the gear ratio calculation unit 54 includes the gear ratio change-specific speed calculation unit 60 of the gear ratio calculation unit g l di / dt l.
.. Constant value 1di/dtl=1 via absolute value calculation unit 61
The OR gate 59 and the comparator 63 are connected to a comparator 63 having a reference value 62 corresponding to
It is connected via a gate 64 to a counter 65 for the number of failure determinations. The counter 65 is connected to a comparator 61 having a reference value 66, and the output of the comparator 67 lights up the alarm lamp 53. Note that the gear ratio cannot be calculated if the electromagnetic powder clutch 1 is disengaged or in a partially engaged state, or if the switching clutch 22 is in the neutral position. Therefore, after the clutch current of the electromagnetic powder clutch 1 flows and the clutch is directly connected after a certain period of time, and when the neutral switch is turned off, each sensor so, s is sent to the 1 control unit 52.
It is designed to take in the output of i. Next, the operation of the fault diagnosis device configured as described above will be explained. First, when you step on the accelerator while shifting to D or R range and operating the switching clutch 22 at the time of starting, the clutch current flows as the engine speed increases and the electromagnetic powder clutch 1 starts to connect, and the power is reduced. , switching section 3. Pulley ratio converter 4. It is transmitted to the wheels via the final reduction unit 5 and starts running. At this time, the drive belt 26 has moved furthest toward the auxiliary pulley 25 due to the action of the line pressure of the hydraulic servo device 2B, and the gear ratio i has become the maximum 2.5. In this way, when driving is started in the low gear with the maximum gear ratio, the electromagnetic powder clutch 1 is kept in the connected state due to the vehicle speed, and from this point on, line pressure is supplied to the hydraulic servo device 27 by pressing the accelerator and the vehicle speed. By shifting the drive belt 26 to the main pulley 24 side, the gear ratio is reduced and upshifted. Then, the gear ratio 1 reaches the minimum overdrive of 0.5. Therefore, in the above-mentioned continuously variable transmission, after the electromagnetic powder clutch 1 is directly connected with the operation of the switching clutch 22, the engine rotation speed and vehicle speed signals from each sensor so and si are input to the gear ratio calculation section 54. The actual gear ratio I is calculated. When the speed change control is performed normally, the outputs of the comparators 56, 58, and 63 all become L, and no failure determination signal is input to the counter 65, so no alarm is issued. On the other hand, if the line pressure rises late during sudden acceleration and belt slip occurs, the gear ratio i increases and the output of comparator 5G becomes H, and if the line pressure decreases during coasting and belt slip occurs, As the gear ratio i becomes smaller, the output of the comparator 58 becomes H. Further, when the speed ratio change rate 1 di/dt l increases due to belt slippage due to deterioration of followability of the line pressure during transient acceleration/deceleration, the output of the comparator 63 becomes H. In this way, a failure determination signal is input from the OR gate 64 to the counter 65, and when this number increases, the comparator 67 determines that there is a high possibility of a failure, and the output signal causes the alarm lamp 53 to light up. It gives a warning. Note that the above-mentioned action may be processed by software using a microcomputer or the like, and may be performed at predetermined intervals and at predetermined intervals in synchronization with the ignition pulse. Although one embodiment of the present invention has been described above, it can be applied to any continuously variable gear train transmission.

【発明の効果】【Effect of the invention】

以上述べてきたように、本発明によれば、急加速、惰行
等のベルト滑りを生じ易い走行条件の変速比、変速比変
化速度によりベルト滑りを検出するので、微少な早期の
段階でベルト滑りを確実に検出し得る。そして、この検
出結果をカウントして故障の警報を発生するので、走行
不能に至る前に的確な故障診断を行うことができる。 また、上記故障診断装置の内容を車検等において読取る
ことにより、未然にチェックを行うことも可能である。
As described above, according to the present invention, belt slippage is detected based on the gear ratio and the speed of change of the gear ratio under driving conditions that are likely to cause belt slippage, such as sudden acceleration or coasting, so belt slippage can be detected at an early stage. can be reliably detected. Since the detection results are counted and a failure warning is issued, accurate failure diagnosis can be performed before the vehicle becomes unable to run. Further, it is also possible to perform a check in advance by reading the contents of the failure diagnosis device at a vehicle inspection or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される無段変速機の一例を示すス
ケルトン図、第2図は本発明の故障診断装置の実施例を
示す回路図である。 2・・・無段変速機、4・・・プーリ比変換部、24・
・・主プーリ、25−・・副プーリ、26・・・駆動ベ
ルト、27.28・・・油圧サーボ装置、50・・・エ
ンジン回転センサ51・・・車速センサ、52・・・制
御ユニット、53・・・警報ランプ、54・・・変速比
算出部、60・・・変速比変化速度算出部。
FIG. 1 is a skeleton diagram showing an example of a continuously variable transmission to which the present invention is applied, and FIG. 2 is a circuit diagram showing an embodiment of the failure diagnosis device of the present invention. 2...Continuously variable transmission, 4...Pulley ratio conversion section, 24.
... Main pulley, 25 - Sub-pulley, 26 - Drive belt, 27.28 - Hydraulic servo device, 50 - Engine rotation sensor 51 - Vehicle speed sensor, 52 - Control unit, 53... Alarm lamp, 54... Gear ratio calculation unit, 60... Gear ratio change speed calculation unit.

Claims (1)

【特許請求の範囲】 プーリ間隔可変の主プーリと副プーリに駆動ベルトを掛
け、それらの各プーリの油圧サーボ装置にライン圧を供
給して、プーリの巻付け径の比を変えることにより無段
変速する無段変速機において、 主プーリ側と副プーリ側の回転数を検出する回転センサ
を有し、 該回転センサからの信号により制御ユニットで変速比を
算出し、少なくとも該変速比の値、変化速度の値のいず
れかの値から故障を判定し、該故障判定の回数により警
報を発する無段変速機の故障診断装置。
[Claims] A drive belt is applied to the main pulley and sub pulley with variable pulley spacing, line pressure is supplied to the hydraulic servo device of each pulley, and the ratio of the winding diameters of the pulleys is changed. A continuously variable transmission that changes speed has a rotation sensor that detects the rotation speed of a main pulley side and a sub pulley side, and a control unit calculates a gear ratio based on a signal from the rotation sensor, and calculates at least the value of the gear ratio, A failure diagnosis device for a continuously variable transmission that determines a failure based on any value of the rate of change and issues an alarm based on the number of times the failure is determined.
JP60140786A 1985-06-26 1985-06-26 Belt type continuously variable transmission failure diagnosis device Expired - Lifetime JPH0758110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140786A JPH0758110B2 (en) 1985-06-26 1985-06-26 Belt type continuously variable transmission failure diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140786A JPH0758110B2 (en) 1985-06-26 1985-06-26 Belt type continuously variable transmission failure diagnosis device

Publications (2)

Publication Number Publication Date
JPS622059A true JPS622059A (en) 1987-01-08
JPH0758110B2 JPH0758110B2 (en) 1995-06-21

Family

ID=15276706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140786A Expired - Lifetime JPH0758110B2 (en) 1985-06-26 1985-06-26 Belt type continuously variable transmission failure diagnosis device

Country Status (1)

Country Link
JP (1) JPH0758110B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027540A1 (en) 2001-09-28 2003-04-03 Toyota Jidosha Kabushiki Kaisha Slippage detection system and method for continuously variable transmutations
JP2006046568A (en) * 2004-08-06 2006-02-16 Mazda Motor Corp Control device for transmission
EP2650571A1 (en) * 2012-04-10 2013-10-16 Suzuki Motor Corporation Abnormality determining device for belt-type continuously variable transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157553A (en) * 1984-01-26 1985-08-17 Toyota Motor Corp Diagnostic device for stepless transmission for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157553A (en) * 1984-01-26 1985-08-17 Toyota Motor Corp Diagnostic device for stepless transmission for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027540A1 (en) 2001-09-28 2003-04-03 Toyota Jidosha Kabushiki Kaisha Slippage detection system and method for continuously variable transmutations
US7806790B2 (en) 2001-09-28 2010-10-05 Toyota Jidosha Kabushiki Kaisha Slippage detection system and method for continuously variable transmissions
JP2006046568A (en) * 2004-08-06 2006-02-16 Mazda Motor Corp Control device for transmission
EP2650571A1 (en) * 2012-04-10 2013-10-16 Suzuki Motor Corporation Abnormality determining device for belt-type continuously variable transmission

Also Published As

Publication number Publication date
JPH0758110B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
JP3590939B2 (en) Transmission control apparatus and method based on detection of drive system torque
JPS61119860A (en) Electronic control device for continuously variable transmission
PL205630B1 (en) Slippage detection system and method for continuously variable transmutations
US4805751A (en) System for controlling a clutch for a motor vehicle
JPH0532256B2 (en)
JPS62238126A (en) Automatic clutch control device for vehicle
WO2012174969A1 (en) Self-protection system of automotive transmission system and control method thereof
JPS60161221A (en) Electromagnetic clutch controller for car
CN110217102A (en) The control device of vehicle
JPH0581769B2 (en)
JP3857240B2 (en) Failure determination device for continuously variable transmission
JPH01244930A (en) Automatic clutch control device for vehicle
JPS622059A (en) Diagnostic device for trouble in continuously variable transmission
JPS62255247A (en) Automatic clutch control device for vehicle
JP2811910B2 (en) Control device for automatic transmission for vehicles
JP2003336666A (en) Method for adjusting slip of clutch arranged in automatic transmission
CN106660550A (en) Vehicle control device and control method
JP5118859B2 (en) Control device for automatic transmission
JP4389462B2 (en) Slip detection device for continuously variable transmission
JP4474832B2 (en) Control device for continuously variable transmission
JPS6362954A (en) Belt slip detecting method for v-belt type continuously variable transmission
JPH04347047A (en) Belt-driving type continuously variable transmission
JPS63214548A (en) Failure diagnosing device for vehicle speed sensor
JPS62251249A (en) Control device for automatic clutch in vehicle
JP2017211051A (en) Route changeover control device of power transmission device for vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term