JPS62205680A - Semiconductor laser light source - Google Patents

Semiconductor laser light source

Info

Publication number
JPS62205680A
JPS62205680A JP4919386A JP4919386A JPS62205680A JP S62205680 A JPS62205680 A JP S62205680A JP 4919386 A JP4919386 A JP 4919386A JP 4919386 A JP4919386 A JP 4919386A JP S62205680 A JPS62205680 A JP S62205680A
Authority
JP
Japan
Prior art keywords
semiconductor laser
wavelength
temperature
output
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4919386A
Other languages
Japanese (ja)
Inventor
Yoshihiro Matsumoto
松本 好博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4919386A priority Critical patent/JPS62205680A/en
Publication of JPS62205680A publication Critical patent/JPS62205680A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06821Stabilising other output parameters than intensity or frequency, e.g. phase, polarisation or far-fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Abstract

PURPOSE:To make it possible to measure wavelength dispersing characteristics of optical cable only by using one semiconductor laser element, by setting the light emitting central wavelength of the semiconductor laser by controlling the operating temperature. CONSTITUTION:A sine wave 10 having a frequency (f) is supplied to an oscillating semiconductor laser element 1 in a single axial mode through an interface circuit 9. The laser light output undergoes amplitude modulation by the sine wave. The semiconductor laser element 1 is arranged in a closed space formed by a heat shield mechanism 8. A temperature control circuit 6, which receives an external command 7 and the output of a temperature sensor 5, is provided. A thermoelectric cooler 4 is operated, and the temperature of the closed space (the operating temperature of the element 1) is set at the temperature set by the external command 7. Therefore, the operating temperature of the semiconductor laser element 1 is controlled based on the external command 7 and the wavelength of the output laser light can be made to be lambda0+ or -DELTAlambda. The phase difference + or -DELTAphi at the modulating since wave frequency (f) in the output of optical cable is measured, and wavelength dispersion characteristics can be obtained.

Description

【発明の詳細な説明】 炎亙光1 本発明Cま半導体レーザ光源に関し、特に光フアイバケ
ーブルの波長分散特性を測定するための測定用光源に用
いられる半導体レーザ光源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Flame Light 1 The present invention relates to a semiconductor laser light source, and particularly relates to a semiconductor laser light source used as a measurement light source for measuring wavelength dispersion characteristics of an optical fiber cable.

従来技術 一般に、光通イハ用ファイバケーブル(以下光ケーブル
と略記する)の伝送特性としては、伝送10失及び分散
特性が主たるものであり、このうら分散待11には、モ
ード分散特性と波長分散特性の2種類があり、甲−七−
ド光ケーブルでは、後者の波長分散1)性のみを考慮ず
れば良い。特に甲−モード光ケーブルを用いて広帯域か
つ長距離の伝送を実現する場合、光送信装置の発光スペ
クトラム幅の広がり及び波長分散により伝送距離やその
伝送容(d(ビットレート)が制限されるので、波長分
散特性の測定は組型となる。
Prior Art In general, the transmission characteristics of fiber cables for optical communication (hereinafter abbreviated as optical cables) are mainly transmission loss and dispersion characteristics. There are two types:
For optical fiber cables, only the latter chromatic dispersion (1) needs to be considered. In particular, when achieving broadband and long-distance transmission using A-mode optical cables, the transmission distance and transmission capacity (d (bit rate)) are limited by the spread of the emission spectrum width and wavelength dispersion of the optical transmitter. The measurement of wavelength dispersion characteristics is a set type.

かかる波長分散特性の測定には、互いに異なった波長を
右する複数個のレーザ光源を用いるかり1やランン法等
による方法が用いられている。これ等の方法Cは、波長
分散の波長特性を求めることがCさ゛るが、構成が複雑
となるために装置の大型化及び高価格化の要因となって
いる。
To measure such chromatic dispersion characteristics, methods such as the Kari 1 method and the run method using a plurality of laser light sources emitting mutually different wavelengths are used. These methods C require the determination of the wavelength characteristic of chromatic dispersion, but the configuration is complicated, which is a factor in increasing the size and price of the apparatus.

また、光ケーブルにおいて通常使用される波長にJ3け
る波長分散特性のみを求めノζいという要求のある場合
ら多いが、かかる場合には、簡単な測定装量の構成が必
要となり前述の方法は適当ではない。
Additionally, there are many cases where there is a requirement to obtain only the chromatic dispersion characteristics at wavelengths commonly used in optical cables, and in such cases, a simple configuration of measurement equipment is required and the above method is not appropriate. isn't it.

発明の目的 本発明の目的は、1個の半導体レーザ索子を用いるのみ
で光ケーブルの波長分散特性を簡便にかつ低価格にて測
定可能な半導体レーザ光源を提供することである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a semiconductor laser light source that allows the wavelength dispersion characteristics of an optical cable to be measured simply and at low cost by using only one semiconductor laser cable.

発明の構成 本発明による半導体レーtJ’光源は、甲−軸モード発
振半導体レーザ素子と、所定周波数の正弦波により前記
半導体レーザ素子の出力光を振幅変調する変調手段と、
前記半導体レーザ素子の動作温度を可変制御する温度制
御手段どを右することを特徴としている。
Structure of the Invention The semiconductor laser tJ' light source according to the present invention includes: a semiconductor laser device that oscillates in the A-axis mode; a modulator that amplitude-modulates the output light of the semiconductor laser device using a sine wave of a predetermined frequency;
The present invention is characterized in that the temperature control means for variably controlling the operating temperature of the semiconductor laser element is controlled.

実施例 以下、本発明の実施例につき述べるが、その前に波長分
散特性の測定につき説明する。
EXAMPLES Below, examples of the present invention will be described, but first, measurement of wavelength dispersion characteristics will be explained.

波長分散特性りは、光の波長をλ(nm)光クープルの
単位長(IKm>当りの遅延時間をt(ps/Kl)と
すると、以下の式にて表わされる。
The wavelength dispersion characteristic is expressed by the following equation, where the wavelength of light is λ (nm) and the delay time per unit length of optical couple (IKm>) is t (ps/Kl).

D=d t/dλ         ・・・・・・(1
)当3(1)式から分る様に、波長分散特性は光の波長
λの関数となり、遅延時間tの波長特性を求めろことに
J、りその波長特性の微分として1rすることができる
ことになる。ここで、遅延l)間tは、1Illl定用
光源を周波数fの正弦波により振幅変調しつつ二′1該
光源の波長を変化させた場合にお1プる上記正弦波の位
相変化△φによって次式で求めることがCさる。
D=d t/dλ (1
) As can be seen from equation 3 (1), the chromatic dispersion characteristic is a function of the wavelength λ of light, and the wavelength characteristic of the delay time t can be calculated as J, and 1r as the differential of the wavelength characteristic. become. Here, the delay l) is the phase change △φ of the sine wave that is 1 when the wavelength of the light source is changed while modulating the amplitude of the 1Illll constant light source with a sine wave of frequency f. Therefore, C can be calculated using the following formula.

Δ1−(△φ/2π「)・(1/ L )・・・・・・
(2)(2)式にJ3いて、しは光ケーブルfu(Km
)(’ある。通常は光源の波長を数種類変化させて(2
)式からΔtを求め、このΔしの式におGJる近似にに
って波長分散特性を求めるものである。
Δ1−(Δφ/2π”)・(1/L)・・・・・・
(2) In equation (2), J3 is used, and optical cable fu (Km
) ('Yes. Usually, by changing several wavelengths of the light source (2
) is used to find Δt, and the chromatic dispersion characteristic is found by approximating this Δt equation.

これに対し、光源の中心波長λ0にJ3ける波長分散D
(λ0)を簡便に求めるために、測定用光源の波長を2
0に対して±Δλだけ変化さけ、その場合の光ケーブル
出力での変調正弦波周波数rにおりる位相差±Δφを測
定して、波長分散特性を求めることができることになる
On the other hand, the chromatic dispersion D at J3 at the center wavelength λ0 of the light source
(λ0), the wavelength of the measurement light source is set to 2.
By avoiding a change of ±Δλ with respect to 0, and measuring the phase difference ±Δφ at the modulated sine wave frequency r at the output of the optical cable in that case, the chromatic dispersion characteristic can be determined.

かかる知見に基づいU49られたのが、第1図に示した
本弁明の実施例の波長分散測定用半導体レーリ゛光源で
ある。図にJ3いて、単一軸U−ド発振半導体レーザ素
子1は光モニタ回路3により光出力がモニタされており
、このモニタ出力によりバイアス制御回路2が動作して
半導体レーザ素子1のバイアスが制御され、よってレー
ザ出力の安定化が図られている。
Based on this knowledge, U49 was developed to create a semiconductor ray light source for wavelength dispersion measurement according to an embodiment of the present invention shown in FIG. At J3 in the figure, the optical output of the single-axis U-doped oscillation semiconductor laser device 1 is monitored by the optical monitor circuit 3, and the bias control circuit 2 is activated by this monitor output to control the bias of the semiconductor laser device 1. Therefore, the laser output is stabilized.

周波数fの正弦波10がインタフェース回路9を介して
半導体レーザ索子1へ供給されでJ′3つ、これにより
レーザ光出力は当該正弦波により振幅変調を受けること
になる。半導体レーザ素子1は熱遮蔽機構8によって閉
塞された空間内に配設されており、この閉塞空間内にお
ける温度がベルチェ素子を用いたサーモエレクトリック
クーラ4にJ二り制御自在となっている。このサーモエ
レクトリッククーラ4はその印加直流電流の大きさや方
向を外部指令により制御することにより、発熱及び冷7
JI機能をなすことができるものである。そのために、
外部指令7及び温度センサ5のセンサ出力を入力とする
温度制御回路6が設けられている。
A sine wave 10 of frequency f is supplied to the semiconductor laser probe 1 via the interface circuit 9, and the laser light output is amplitude-modulated by the sine wave. The semiconductor laser element 1 is disposed in a space closed by a heat shielding mechanism 8, and the temperature in this closed space can be controlled by a thermoelectric cooler 4 using a Vertier element. This thermoelectric cooler 4 can generate heat and cool down by controlling the magnitude and direction of the applied DC current by external commands.
It is capable of performing JI functions. for that,
A temperature control circuit 6 is provided which receives an external command 7 and a sensor output from the temperature sensor 5 as input.

外部指令7による設定温度と温度センサ5による閉塞空
間内の検出温度とが比較され、この差に応じてり一七ル
り1〜リツククーラ4が作動して、外部指令7による設
定調度に当該閉塞空間内温度(リイCわ”) ’ti導
体レーしF素子1の動fl温度)を設定するのである。
The temperature set by the external command 7 and the temperature detected in the closed space by the temperature sensor 5 are compared, and according to this difference, the risk coolers 1 to 4 are operated to adjust the temperature set by the external command 7. The temperature in the space (the dynamic temperature of the conductor and the F element 1) is set.

こう・jることにより、外部指令7によって)半導体レ
ーリ゛素子1の動作温度を制御しC出力レーザ光の波長
をλθ±Δλとすることが可能となり、上述した波長分
散特性の測定ができることになるのである。
By doing this, it becomes possible to control the operating temperature of the semiconductor Rayleigh element 1 (by the external command 7) and set the wavelength of the C output laser beam to λθ±Δλ, making it possible to measure the wavelength dispersion characteristics described above. It will become.

ここで、一般に半導体レーザ素子1の波長の温度変化i
?h GEL O15〜1Δ/’C程度であり、この賄
は予め(14成されているものどする。゛ト導体レーザ
索子1の動作温度変化を±5℃とすると、その波長変化
は±5へとなり、この場合の中心波長1゜55μmでの
測定結果は以下の如くなる。
Here, in general, the temperature change i in the wavelength of the semiconductor laser element 1
? h GEL O is about 15~1Δ/'C, and this compensation has been made in advance (14).If the operating temperature change of the conductive laser cable 1 is ±5°C, the wavelength change is ±5°C. In this case, the measurement results at a center wavelength of 1°55 μm are as follows.

変調周波e、   f=200Hllz尤ケーブル艮 
L=50Km 位相変化G  ±Δφ−32,4゜ 波長分散   D = 18 ps/Km/nm尚、通
常の光ケーブルの長波長域(1〜1.6μm>での波長
分散りは20 ps/Km/nm以下であり、よって本
発明の実施例による測定用光源にで測定したD6白は妥
当なものといえる。
Modulation frequency e, f=200Hllz and cable length
L=50Km Phase change G ±Δφ−32.4° Wavelength dispersion D = 18 ps/Km/nm In addition, the wavelength dispersion in the long wavelength range (1 to 1.6 μm> of normal optical cables is 20 ps/Km/ nm or less, and therefore, the D6 white measured using the measurement light source according to the embodiment of the present invention can be said to be appropriate.

半導体レーザ素子1としては、多軸モードのものを用い
た場合、発光スペクトラムの変動が人さく、安定にその
波長を微小変化させることは困難であり、よって甲−軸
モードのものを用いるのが好適であり、例えば分布帰還
形半導体レーjJ”i子等を用いることができる。
When a multi-axis mode semiconductor laser element 1 is used, the fluctuation of the emission spectrum is noticeable and it is difficult to stably change the wavelength minutely, so it is preferable to use a multi-axis mode semiconductor laser element 1. It is suitable, and for example, a distributed feedback semiconductor laser jJ''i element or the like can be used.

発明の効果 以上述べた如く、本発明によれば、動作湿度の制御によ
り半導体レー豪ア素子の発光中心波長を設定するように
して、比較的筒中な構成で光ケーブルの波長分散を測定
することかできるという効果がある。
Effects of the Invention As described above, according to the present invention, the wavelength dispersion of an optical cable can be measured with a relatively compact configuration by setting the emission center wavelength of a semiconductor laser element by controlling the operating humidity. There is an effect that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図である。 主要部分の符号の説明 1・・・・・・半導体レー’f累子 4・・・・・・サーモエレクトリッククーラ5 ・・・
 ・・・ 渇 1覚 し ン (す6・・・・・・温度
制御回路
FIG. 1 is a block diagram of an embodiment of the present invention. Explanation of symbols of main parts 1... Semiconductor relay 'f' resistor 4... Thermoelectric cooler 5...
...Thirst 1. (S6...Temperature control circuit)

Claims (1)

【特許請求の範囲】[Claims] 単一軸モード発振半導体レーザ素子と、所定周波数の正
弦波により前記半導体レーザ素子の出力光を振幅変調す
る変調手段と、前記半導体レーザ素子の動作温度を可変
制御する温度制御手段とを有することを特徴とする半導
体レーザ光源。
It is characterized by having a single-axis mode oscillation semiconductor laser element, a modulation means for amplitude modulating the output light of the semiconductor laser element with a sine wave of a predetermined frequency, and a temperature control means for variably controlling the operating temperature of the semiconductor laser element. A semiconductor laser light source.
JP4919386A 1986-03-06 1986-03-06 Semiconductor laser light source Pending JPS62205680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4919386A JPS62205680A (en) 1986-03-06 1986-03-06 Semiconductor laser light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4919386A JPS62205680A (en) 1986-03-06 1986-03-06 Semiconductor laser light source

Publications (1)

Publication Number Publication Date
JPS62205680A true JPS62205680A (en) 1987-09-10

Family

ID=12824175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4919386A Pending JPS62205680A (en) 1986-03-06 1986-03-06 Semiconductor laser light source

Country Status (1)

Country Link
JP (1) JPS62205680A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178395A (en) * 1981-04-28 1982-11-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS57210685A (en) * 1981-06-19 1982-12-24 Toshiba Corp Wavelength selecting laser
JPS59204292A (en) * 1983-05-06 1984-11-19 Canon Inc Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178395A (en) * 1981-04-28 1982-11-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS57210685A (en) * 1981-06-19 1982-12-24 Toshiba Corp Wavelength selecting laser
JPS59204292A (en) * 1983-05-06 1984-11-19 Canon Inc Semiconductor device

Similar Documents

Publication Publication Date Title
US7483143B2 (en) Method and apparatus for conducting heterodyne frequency-comb spectroscopy
AU755090B2 (en) Optical phase detector
US6233262B1 (en) Device and method for monitoring and controlling laser wavelength
JPS62134535A (en) Fiber optic dispersion method and device
US4595292A (en) Apparatus for detecting coherent radiation and unequal path interferometers
TWI381601B (en) External cavity laser tuning element dither servo control
JPH0810776B2 (en) Narrow spectrum short pulse light source device and voltage detection device
US6560255B1 (en) Method and apparatus for characterizing laser modules
JPS62205680A (en) Semiconductor laser light source
JP2002519709A (en) Improved grating entry system
JPH02299277A (en) Method and apparatus for stabilizing optical component temperature
JP3200161B2 (en) Optical oscillation frequency stabilizing method and apparatus
JP2501484B2 (en) Wavelength stabilization laser device
US4765738A (en) Method and apparatus of measuring frequency response in an optical receiving system
CN111628408A (en) Frequency stabilization system of semiconductor laser
JPH02244782A (en) Frequency stabilized semiconductor laser driver
JPS62136088A (en) Oscillation wavelength stabilizer of semiconductor laser device
JPS61205848A (en) Crib coupling cavity laser driving system for measuring small signal
JP3843323B2 (en) Broadband, high-speed optical dispersion measurement system
JPH0325989A (en) Single axis mode semiconductor laser characteristic measuring apparatus
JP3090229B2 (en) Optical path length stabilizer
JP3180927B2 (en) Phase fluctuation measurement device
JPH0327859B2 (en)
US20050111502A1 (en) Method for automatically revising wavelength of electro-absorption modulator integrated laser diode
JP3211850B2 (en) Optical fiber chromatic dispersion measuring device