JPS6220463B2 - - Google Patents

Info

Publication number
JPS6220463B2
JPS6220463B2 JP56131495A JP13149581A JPS6220463B2 JP S6220463 B2 JPS6220463 B2 JP S6220463B2 JP 56131495 A JP56131495 A JP 56131495A JP 13149581 A JP13149581 A JP 13149581A JP S6220463 B2 JPS6220463 B2 JP S6220463B2
Authority
JP
Japan
Prior art keywords
evaporator
cooling capacity
refrigeration cycle
compressor
stopped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56131495A
Other languages
Japanese (ja)
Other versions
JPS5833040A (en
Inventor
Hiroki Yoshikawa
Akio Sakazume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56131495A priority Critical patent/JPS5833040A/en
Publication of JPS5833040A publication Critical patent/JPS5833040A/en
Publication of JPS6220463B2 publication Critical patent/JPS6220463B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing

Description

【発明の詳細な説明】 本発明は、冷凍サイクル、たとえばルームエア
コンデイシヨナの冷凍サイクルの制御方法に係
り、特に、断続運転時の成績係数の改善を志向し
た、冷凍サイクルの制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a refrigeration cycle, for example, a refrigeration cycle of a room air conditioner, and more particularly to a method of controlling a refrigeration cycle with the aim of improving the coefficient of performance during intermittent operation. It is.

まず、従来の、冷凍サイクルの制御方法とその
欠点を、ルームエアコンデイシヨナの冷凍サイク
ルを例にとつて説明する。
First, a conventional refrigeration cycle control method and its drawbacks will be explained using the refrigeration cycle of a room air conditioner as an example.

第1図は、ルームエアコンデイシヨナの冷凍サ
イクルのサイクル構成図、第2図は、圧縮機を停
止させたのちの、圧力バランスを示す圧力バラン
ス状況図、第3図は、第1図に係る冷凍サイクル
の動作点を示すモリエル線図である。
Figure 1 is a cycle configuration diagram of the refrigeration cycle of a room air conditioner. Figure 2 is a pressure balance diagram showing the pressure balance after the compressor is stopped. Figure 3 is the same as Figure 1. It is a Mollier diagram showing the operating point of such a refrigeration cycle.

第1図において、圧縮機1で圧縮された高温高
圧のガス冷媒は、凝縮器2で外気と熱交換して熱
を外気に排出し、高圧の液冷媒となる。この高圧
の液冷媒は、減圧器3で低温の二相状態冷媒とな
り、蒸発器4で室内空気と熱交換して室内を冷房
し、前記圧縮機1へ戻りサイクルを完結する。
In FIG. 1, a high-temperature, high-pressure gas refrigerant compressed by a compressor 1 exchanges heat with outside air in a condenser 2 and discharges the heat to the outside air, becoming a high-pressure liquid refrigerant. This high-pressure liquid refrigerant becomes a low-temperature two-phase refrigerant in the pressure reducer 3, exchanges heat with indoor air in the evaporator 4 to cool the room, and returns to the compressor 1 to complete the cycle.

そして、冷房能力に余裕がある場合には、冷凍
サイクルの断続運転を行なうが、この冷凍サイク
ルを停止させるとき、従来、圧縮機1を停止させ
ると同時に、蒸発器4に付着している凝縮水が室
内空気へ再蒸発するのを防止するため、蒸発器用
送風機6も停止させていた。なお、5は凝縮器用
送風機である。
If there is sufficient cooling capacity, the refrigeration cycle is operated intermittently, but conventionally, when the refrigeration cycle is stopped, the compressor 1 is stopped and at the same time the condensed water adhering to the evaporator 4 is stopped. The evaporator blower 6 was also stopped to prevent re-evaporation into the indoor air. Note that 5 is a condenser blower.

ところで、上記冷凍サイクルが定常運転状態に
あるときは、たとえば圧縮機1を高圧チヤンバ形
式のロータリ圧縮機と仮定すると、その圧縮機1
から減圧器3に至るまでの高圧側には、冷凍サイ
クル全体に封入してある冷媒量の70〜75%が集ま
つていることが一般に明らかにされている。
By the way, when the above-mentioned refrigeration cycle is in a steady operating state, for example, assuming that the compressor 1 is a high-pressure chamber type rotary compressor, the compressor 1
It is generally known that 70 to 75% of the amount of refrigerant sealed in the entire refrigeration cycle is collected on the high-pressure side from 1 to 3 to the pressure reducer 3.

いま、この定常運転状態にある冷凍サイクルを
停止させると(すなわち、圧縮機1を停止させる
と)、高圧側の圧力7は、第2図に示すように、
dより下り始め、一方、減圧器3から圧縮機1
までの低圧側の圧力8はPsより上り始める。そ
して、圧縮機1を停止させてから時間tb後に高
圧側の圧力7と低圧側の圧力8がバランス圧力P
bでバランスし等しくなる。圧縮機1を停止させ
てから圧力バランスまでの時間tbは、JISの始動
試験では3分を指定している関係上、通常2.5〜
3分に設定されている。
Now, when the refrigeration cycle in the steady state of operation is stopped (that is, when the compressor 1 is stopped), the pressure 7 on the high pressure side becomes as shown in FIG.
It starts to descend from P d , while the pressure decreaser
The pressure 8 on the low pressure side up to P s begins to rise. Then, after a time t b after the compressor 1 is stopped, the pressure 7 on the high pressure side and the pressure 8 on the low pressure side become the balance pressure P
Balance and become equal at b . The time t b from stopping the compressor 1 until pressure balance is normally 2.5 to 3 minutes, as the JIS startup test specifies 3 minutes.
It is set to 3 minutes.

上記冷凍サイクルの動作を、第3図のモリエル
線図上に表わすと、圧縮過程は状態11から状態
12、凝縮過程は状態12から状態13、減圧過
程は状態13から状態14、蒸発過程は状態14
から状態11である。冷凍サイクルが停止する
と、凝縮圧力Pd、蒸発圧力Psは前記バランス圧
力Pbにそれぞれ近づいて行く。また、圧力バラ
ンス後の高圧側の温度は、圧縮終了温度Tdとバ
ランス圧力における飽和温度Tbの間の温度とな
るため、高圧側はすべて過熱ガス冷媒(第3図に
おける範囲Aの冷媒)で満されることになる。こ
のとき高圧側にある過熱ガス冷媒の総量は、全体
の10〜15%程度であるため、前記した定常状態で
運転していた時高圧側に存在していた冷媒の80〜
85%は、圧縮機1を停止させたのち、圧力がバラ
ンスするまでに減圧器3を通つて低圧側へ流入し
たことになる。
When the operation of the refrigeration cycle is represented on the Mollier diagram in Figure 3, the compression process is from state 11 to state 12, the condensation process is from state 12 to state 13, the decompression process is from state 13 to state 14, and the evaporation process is from state 14. 14
, the state is 11. When the refrigeration cycle is stopped, the condensing pressure P d and the evaporating pressure P s each approach the balance pressure P b . Also, the temperature on the high pressure side after pressure balance is between the compression end temperature T d and the saturation temperature T b at the balance pressure, so all the high pressure side is superheated gas refrigerant (refrigerant in range A in Figure 3). It will be filled with. At this time, the total amount of superheated gas refrigerant on the high pressure side is about 10 to 15% of the total, so 80 to 80% of the refrigerant that was on the high pressure side when operating in the steady state described above
This means that after the compressor 1 is stopped, 85% of the water has flowed into the low pressure side through the pressure reducer 3 before the pressure is balanced.

この低圧側へ流入した冷媒のほとんどは、低エ
ンタルピの液冷媒であり、その温度は、次第に上
りつつある低圧側の圧力の、そのときどきの飽和
温度である。
Most of the refrigerant flowing into the low pressure side is a low enthalpy liquid refrigerant, and its temperature is the saturation temperature of the pressure on the low pressure side, which is gradually increasing.

したがつて、前記低圧側へ流入した液冷媒は室
内空気と熱交換可能であり、冷房能力として利用
できるにもかかわらず、従来は前述したように、
圧縮機1を停止させると同時に蒸発器用送風機6
も停止させていたために、前記液冷媒が持つ冷房
能力を何ら利用していないという欠点があつた。
Therefore, although the liquid refrigerant flowing into the low pressure side can exchange heat with indoor air and can be used as cooling capacity, conventionally, as described above,
At the same time as the compressor 1 is stopped, the evaporator blower 6
Since the liquid refrigerant was also stopped, there was a drawback that the cooling capacity of the liquid refrigerant was not utilized at all.

本発明は、上記した従来技術の欠点をなくし、
圧縮機停止後に低圧側へ流入した冷媒が持つ冷房
能力を有効に利用し、断続運転時の成績係数を改
善した、冷凍サイクルの制御方法の提供を、その
目的とするものである。
The present invention eliminates the above-mentioned drawbacks of the prior art,
The purpose of the present invention is to provide a refrigeration cycle control method that effectively utilizes the cooling capacity of the refrigerant that flows into the low-pressure side after the compressor is stopped, and improves the coefficient of performance during intermittent operation.

本発明の特徴は、少なくとも、圧縮機、凝縮
器、蒸発器、この蒸発器へ送風する蒸発器用送風
機を備えた冷凍サイクルの制御方法において、断
続運転時、圧縮機を停止させたのち、蒸発器へ流
入した低エンタルピの冷媒による冷房能力が前記
蒸発器に付着している凝縮水の再蒸発による冷房
能力とほぼ等しくなるまでの間だけ、蒸発器用送
風機を運転するようにした冷凍サイクルの制御方
法にある。
A feature of the present invention is that in a method for controlling a refrigeration cycle that includes at least a compressor, a condenser, an evaporator, and an evaporator blower that blows air to the evaporator, during intermittent operation, after the compressor is stopped, the evaporator A method for controlling a refrigeration cycle in which an evaporator blower is operated only until the cooling capacity of the low-enthalpy refrigerant flowing into the evaporator becomes approximately equal to the cooling capacity due to re-evaporation of condensed water adhering to the evaporator. It is in.

さらに詳しくは、ルームエアコンデイシヨナの
冷凍サイクルの制御方法において、断続運転時、
冷凍サイクル停止後、蒸発器の冷媒温度が室内空
気の湿球温度とほぼ等しくなるまでの間だけ、蒸
発器用送風器を運転し、その後は冷凍サイクル再
起動時まで前記蒸発器用送風機を停めることによ
り、蒸発器に付着している凝縮水の室内空気中へ
の再蒸発を少なく抑えながら、冷凍サイクルの成
績係数を改善するようにしたものである。
More specifically, in the method of controlling the refrigeration cycle of a room air conditioner, during intermittent operation,
After the refrigeration cycle is stopped, the evaporator blower is operated only until the refrigerant temperature of the evaporator becomes approximately equal to the wet bulb temperature of the indoor air, and then the evaporator blower is stopped until the refrigeration cycle is restarted. This is designed to improve the coefficient of performance of the refrigeration cycle while minimizing re-evaporation of condensed water adhering to the evaporator into the indoor air.

実施例の説明に入る前に、本発明の基本的事項
を、第4〜6図を使用して説明する。
Before entering into the description of the embodiments, the basic matters of the present invention will be explained using FIGS. 4 to 6.

第4〜6図は、本発明の基本的事項を説明する
ためのものであり、第4図は、圧縮機を停止させ
たのちの、低圧側に係る蒸発器の表面状態を説明
するための空気線図、第5図は、圧縮機を停止さ
せたのちも蒸発器用送風機の運転を継続した場合
の、当該冷凍サイクルの冷房能力の変化を示す冷
房能力変化図、第6図は、第5図に係る冷房能力
を、蒸発器へ流入した低エンタルピの冷媒による
冷房能力と、凝縮水の再蒸発による冷房能力に分
けて示した冷房能力変化図である。
Figures 4 to 6 are for explaining the basic matters of the present invention, and Figure 4 is for explaining the surface condition of the evaporator on the low pressure side after the compressor is stopped. The psychrometric diagram, Figure 5, is a cooling capacity change diagram showing the change in the cooling capacity of the refrigeration cycle when the evaporator blower continues to operate even after the compressor is stopped. FIG. 2 is a cooling capacity change diagram showing the cooling capacity shown in the figure divided into cooling capacity due to low enthalpy refrigerant flowing into the evaporator and cooling capacity due to re-evaporation of condensed water.

第4図において、縦軸は絶対湿度、横軸は温
度、9は飽和線、10は等湿球温度線をそれぞれ
示す。
In FIG. 4, the vertical axis shows absolute humidity, the horizontal axis shows temperature, 9 shows the saturation line, and 10 shows the isohumid bulb temperature line.

蒸発器表面温度は、圧縮機を停止させると、定
常運転状態における温度Teから、バランス状態
における冷媒の飽和温度Tbまで上昇する。圧縮
機を停止させたとき、蒸発器表面が凝縮水により
濡れた状態であるときには、その表面状態は飽和
線9上を状態aから状態b(圧力バランス時の表
面状態)まで移動し、その後乾燥し、等湿球温度
線10に沿つて、そのときの室内空気の状態cに
至る。この過程で、前記状態aから、状態cの絶
対湿度にほぼ等しい絶対湿度の状態d(このとき
の蒸発器表面温度To)までは、蒸発器表面での
凝縮水の再蒸発はなく、それ以降の状態dから状
態bで再蒸発が行なわれる。
When the compressor is stopped, the evaporator surface temperature increases from the temperature T e in the steady operating state to the saturation temperature T b of the refrigerant in the balanced state. When the compressor is stopped and the evaporator surface is wet with condensed water, the surface state moves from state a to state b (surface state at pressure balance) on the saturation line 9, and then dries. Then, along the isohumid bulb temperature line 10, the indoor air condition at that time reaches c. In this process, from state a to state d (evaporator surface temperature T o at this time) where the absolute humidity is almost equal to the absolute humidity of state c, there is no re-evaporation of condensed water on the evaporator surface; Re-evaporation is performed from subsequent state d to state b.

上記した第4図に係る蒸発器表面状態と関連
し、圧縮機を停止させたのちも蒸発器用送風機の
運転を継続して、蒸発器へ流入した低エンタルピ
の冷媒の冷房能力を利用し場合の、当該冷凍サイ
クルの冷房能力の変化を示したのが、第5図であ
る。
In connection with the evaporator surface condition shown in Figure 4 above, the evaporator blower continues to operate even after the compressor is stopped, and the cooling capacity of the low enthalpy refrigerant that has flowed into the evaporator is utilized. FIG. 5 shows the change in cooling capacity of the refrigeration cycle.

この第5図において、縦軸は冷房能力、横軸は
時間をそれぞれ目盛つたものであり、15は冷房
能力の変化を示す。
In FIG. 5, the vertical axis is the cooling capacity, the horizontal axis is the time scale, and 15 indicates the change in the cooling capacity.

冷房能力15の範囲Bは、第4図における状態
aから状態dまでに蒸発器へ流入した低エンタル
ピの冷媒による冷房能力の範囲、範囲Cは、同じ
く状態dから状態bまでに蒸発器へ流入した低エ
ンタルピの冷媒による冷房能力と凝縮水の再蒸発
による冷房能力の和の範囲、範囲Dは、状態bに
おいて凝縮水が再蒸発することによつて得られる
冷房能力の範囲である。なお、tbは、圧縮機を
停止させてから圧力バランスするまでの時間であ
る。
Range B of the cooling capacity 15 is the range of cooling capacity due to the low enthalpy refrigerant flowing into the evaporator from state a to state d in FIG. Range D, which is the sum of the cooling capacity by the low enthalpy refrigerant and the cooling capacity by re-evaporation of condensed water, is the range of the cooling capacity obtained by re-evaporation of condensed water in state b. Note that t b is the time from when the compressor is stopped until the pressure is balanced.

第5図に係る冷房能力を、蒸発器へ流入した低
エンタルピの冷媒による冷房能力Rと、凝縮水の
再蒸発による冷房能力Wに分けて示すと第6図の
ようになる。この第6図において、縦軸は冷房能
力、横軸は時間を、それぞれ目盛つたものであ
る。
FIG. 6 shows the cooling capacity shown in FIG. 5 divided into cooling capacity R due to low enthalpy refrigerant flowing into the evaporator and cooling capacity W due to re-evaporation of condensed water. In FIG. 6, the vertical axis represents cooling capacity, and the horizontal axis represents time.

蒸発器へ流入した低エンタルピの冷媒による冷
房能力Rは、時間と共に減少し、バランス時間t
bで零となる。また、凝縮水の再蒸発による冷房
能力Wは蒸発器表面温度が温度To(第4図参
照)となつたとき、時間にして、圧縮機の停止時
から時間to経過後から始まり、蒸発器表面が乾
き終るまで続く。この凝縮水の再蒸発により得ら
れる冷房能力Wは、次に冷凍サイクルが起動した
とき、再度その凝縮水を室内空気から回収する必
要があるので、実冷房能力とはなり得ない。
The cooling capacity R due to the low enthalpy refrigerant flowing into the evaporator decreases with time, and the balance time t
It becomes zero at b . In addition, the cooling capacity W due to re-evaporation of condensed water starts when the evaporator surface temperature reaches the temperature T o (see Figure 4), and the time t o has elapsed since the compressor stopped, and the evaporation This continues until the surface of the vessel is completely dry. The cooling capacity W obtained by reevaporation of this condensed water cannot be the actual cooling capacity because the condensed water needs to be recovered from the indoor air again when the refrigeration cycle is started next time.

そこで、第6図における冷房能力の時間積分値 ∫ (R−W)dt がほぼ最大になつたとき、すなわち、 d/dt∫ (R−W)dt=R−W≒0 換言すれば、蒸発器へ流入した低エンタルピの
冷媒による冷房能力Rが、凝縮水の再蒸発による
冷房能力Wとがほぼ等しくなつた時点tfで、蒸
発器用送風機を停止することにより、最大の成績
係数が得られることがわかる。
Therefore, when the time integral value ∫ t 0 (R-W) dt of the cooling capacity in Fig. 6 almost reaches the maximum, that is, d/dt ∫ t 0 (R-W) dt = R-W≒0. Then, the maximum performance can be achieved by stopping the evaporator blower at the time t f when the cooling capacity R due to the low enthalpy refrigerant flowing into the evaporator becomes almost equal to the cooling capacity W due to re-evaporation of condensed water. It can be seen that the coefficients are obtained.

以上に説明した理由によつて、断続運転時、圧
縮機を停止させたのちも、蒸発器へ流入した低エ
ンタルピの冷媒による冷房能力が、前記蒸発器に
付着している凝縮水の再蒸発による冷房能力とほ
ぼ等しくなるまでの間だけ、蒸発器用送風機を運
転することにより、前記低エンタルピの冷媒の冷
房能力を利用し、実冷房能力を増加させ、冷凍サ
イクルの成績係数を改善することができる。
For the reasons explained above, even after the compressor is stopped during intermittent operation, the cooling capacity of the low enthalpy refrigerant that flows into the evaporator is reduced by the re-evaporation of the condensed water adhering to the evaporator. By operating the evaporator blower only until the cooling capacity is approximately equal to the cooling capacity, the cooling capacity of the low enthalpy refrigerant can be used, the actual cooling capacity can be increased, and the coefficient of performance of the refrigeration cycle can be improved. .

そして前記した蒸発器へ流入した低エンタルピ
の冷媒による冷房能力Rが、凝縮水の再蒸発によ
る冷房能力Wと等しくなる時点tfは、蒸発器の
冷媒温度TRが上昇して室内空気の湿球温度TW
一致するときである。
Then, at the time t f when the cooling capacity R of the low-enthalpy refrigerant flowing into the evaporator becomes equal to the cooling capacity W of the re-evaporation of condensed water, the refrigerant temperature T R of the evaporator rises and the humidity of the indoor air increases. This is when the temperature matches the bulb temperature T W .

上記した本発明の基本的事項に基づき、以下実
施例を説明する。
Examples will be described below based on the basic matters of the present invention described above.

第7図は、本発明の一実施例に係る、ルームエ
アコンデイシヨナの冷凍サイクルの制御方法の実
施に供せられる制御装置のブロツク図、第8図
は、第7図に係る制御方法を実施した冷凍サイク
ルの成績係数を、従来の制御方法を実施した冷凍
サイクルの成績係数と比較して示す成績係数線図
である。
FIG. 7 is a block diagram of a control device used to implement a method for controlling the refrigeration cycle of a room air conditioner stationer according to an embodiment of the present invention, and FIG. It is a coefficient of performance diagram showing the coefficient of performance of the implemented refrigeration cycle in comparison with the coefficient of performance of the refrigeration cycle that implemented the conventional control method.

第7図において、16は、蒸発器の風上側風路
上に前記蒸発器に接しないように、且つ凝縮水が
常に補給されるように設置され、室内空気の湿球
温度を検出するサーミスタ式の湿球温度検出器、
17は、湿球温度検出器16で検出した室内空気
の湿球温度TWをデジタル信号に変換するA/D
変換器、18は、蒸発器の冷媒配管上のフインの
付いてない部分に断熱して設置され、蒸発器の冷
媒温度を検出するサーミスタ式の冷媒温度検出
器、19は、冷媒温度検出器18で検出した蒸発
器の冷媒温度TRをデジタル信号に変換するA/
D変換器、20は、両A/D変換器17,19か
らのデジタル信号を比較し、所定誤差の範囲でT
WがTRと一致したとき(すなわち、TRがTWとほ
ぼ等しくなつたとき)信号を発する比較器、21
は、比較器20からの信号によつてリレー切断信
号を発するマイクロコンピユータ、22は、マイ
クロコンピユータ21からのリレー切断信号によ
つて、蒸発器用送風機6を停止させるリレーであ
る。
In FIG. 7, 16 is a thermistor-type device that is installed on the windward side of the evaporator so as not to touch the evaporator and so that condensed water is constantly replenished, and that detects the wet bulb temperature of the indoor air. wet bulb temperature detector,
17 is an A/D that converts the indoor air wet bulb temperature T W detected by the wet bulb temperature detector 16 into a digital signal;
A converter 18 is a thermistor-type refrigerant temperature detector that is installed in a heat-insulated manner on a part of the refrigerant pipe of the evaporator that does not have fins and detects the refrigerant temperature of the evaporator, and 19 is a refrigerant temperature detector 18. Converts the refrigerant temperature T R of the evaporator detected by A/ to a digital signal.
A D converter 20 compares the digital signals from both A/D converters 17 and 19, and calculates T within a predetermined error range.
a comparator 21 which emits a signal when W matches T R (i.e. when T R becomes approximately equal to T W );
is a microcomputer that issues a relay cutoff signal in response to a signal from the comparator 20, and 22 is a relay that stops the evaporator blower 6 in response to a relay cutoff signal from the microcomputer 21.

このように構成したので、蒸発器用送風機6
は、圧縮機(図示せず)を停止させたときには停
止せず、冷媒温度検出器18で検出した蒸発器の
冷媒温度TRが上昇して湿球温度検出器16で検
出した室内空気の湿球温度TWとほぼ一致したと
き停止する。すなわち、蒸発器用送風機6は、圧
縮機停止時からほぼ時間tf(第6図参照)経過
後に停止するものである。
With this configuration, the evaporator blower 6
does not stop when the compressor (not shown) is stopped, and the refrigerant temperature T R of the evaporator detected by the refrigerant temperature sensor 18 rises, causing the indoor air humidity detected by the wet bulb temperature sensor 16 to rise. It stops when the temperature almost matches the bulb temperature T W . That is, the evaporator blower 6 stops after approximately time t f (see FIG. 6) has elapsed since the compressor stopped.

このように制御した当該冷凍サイクルの成績係
数を、従来の冷凍サイクルと比較し示すと、第8
図のようになる。
When the coefficient of performance of the refrigeration cycle controlled in this way is compared with that of the conventional refrigeration cycle, the 8th
It will look like the figure.

この第8図において、横軸は運転時間/(運転
時間+停止時間)をとり、縦軸は断続運転時の成
績係数/連続運転時の成績係数をとつたものであ
り、本実施例の成績係数を実線で示す。これに対
して、従来の冷凍サイクル圧縮機を停止させると
同時に蒸発器用送風機を停めた場合の成績係数は
破線のようになる。いずれの場合も運転時間の割
合が小さくなるに従い成績係数が低下していく
が、本実施例では、その低下する割合が小さく、
所期の効果を奏するものである。
In Fig. 8, the horizontal axis represents operating time/(operating time + stop time), and the vertical axis represents the coefficient of performance during intermittent operation/the coefficient of performance during continuous operation. The coefficients are shown as solid lines. On the other hand, when the conventional refrigeration cycle compressor is stopped and the evaporator blower is stopped at the same time, the coefficient of performance is as shown by the broken line. In either case, the coefficient of performance decreases as the operating time ratio decreases, but in this example, the rate of decrease is small;
This has the desired effect.

以上詳細に説明したように本発明によれば、少
なくとも、圧縮機、凝縮器、蒸発器、この蒸発器
へ送風する蒸発器用送風機を備えた冷凍サイクル
の制御方法において、断続運転時、圧縮機を停止
させたのち、蒸発器へ流入した低エンタルピの冷
媒による冷房能力が前記蒸発器に付着している凝
縮水の再蒸発による冷房能力とほぼ等しくなるま
での間だけ、蒸発器用送風機を運転するようにし
たので、圧縮機停止後に低圧側へ流入した冷媒が
持つ冷房能力を有効に利用し、断続運転時の成績
係数を改善した、冷凍サイクルの制御方法を提供
することができる。
As described in detail above, according to the present invention, in a method for controlling a refrigeration cycle that includes at least a compressor, a condenser, an evaporator, and an evaporator blower that blows air to the evaporator, the compressor is not operated during intermittent operation. After the evaporator is stopped, the evaporator blower is operated only until the cooling capacity of the low enthalpy refrigerant that has flowed into the evaporator becomes approximately equal to the cooling capacity of the re-evaporation of condensed water adhering to the evaporator. Therefore, it is possible to provide a refrigeration cycle control method that effectively utilizes the cooling capacity of the refrigerant that flows into the low-pressure side after the compressor is stopped and improves the coefficient of performance during intermittent operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ルームエアコンデイシヨナの冷凍サ
イクルのサイクル構成図、第2図は、圧縮機を停
止させたのちの、圧力バランスを示す圧力バラン
ス状況図、第3図は、第1図に係る冷凍サイクル
の動作点を示すモリエル線図、第4〜6図は、本
発明の基本的事項を説明するためのものであり、
第4図は、圧縮機を停止させたのちの、低圧側に
係る蒸発器の表面状態を説明するための空気線
図、第5図は、圧縮機を停止させたのちも蒸発器
用送風機の運転を継続した場合の、当該冷凍サイ
クルの冷房能力の変化を示す冷房能力変化図、第
6図は、第5図に係る冷房能力を、蒸発器へ流入
した低エンタルピの冷媒による冷房能力と、凝縮
水の再蒸発による冷房能力に分けて示した冷房能
力変化図、第7図は、本発明の一実施例に係る、
ルームエアコンデイシヨナの冷凍サイクルの制御
方法の実施に供せられる制御装置のブロツク図、
第8図は、第7図に係る制御方法を実施した冷凍
サイクルの成績係数を、従来の制御方法を実施し
た冷凍サイクルの成績係数と比較して示す成績係
数線図である。 1…圧縮機、2…凝縮器、4…蒸発器、6…蒸
発器用送風器、16…湿球温度検出器、18…冷
媒温度検出器、22…リレー。
Figure 1 is a cycle configuration diagram of the refrigeration cycle of a room air conditioner. Figure 2 is a pressure balance diagram showing the pressure balance after the compressor is stopped. Figure 3 is the same as Figure 1. The Mollier diagram and FIGS. 4 to 6 showing the operating points of the refrigeration cycle are for explaining the basic matters of the present invention,
Figure 4 is an psychrometric diagram to explain the surface condition of the evaporator on the low-pressure side after the compressor has been stopped, and Figure 5 is the operation of the evaporator blower even after the compressor has been stopped. Fig. 6 is a cooling capacity change diagram showing changes in the cooling capacity of the refrigeration cycle when the refrigeration cycle is continued. FIG. 7, which is a cooling capacity change diagram divided into cooling capacities due to water re-evaporation, is a diagram showing cooling capacity changes according to an embodiment of the present invention.
A block diagram of a control device used to implement a method for controlling the refrigeration cycle of a room air conditioner,
FIG. 8 is a coefficient of performance diagram showing a comparison of the coefficient of performance of a refrigeration cycle using the control method according to FIG. 7 with that of a refrigeration cycle using a conventional control method. 1... Compressor, 2... Condenser, 4... Evaporator, 6... Evaporator blower, 16... Wet bulb temperature detector, 18... Refrigerant temperature detector, 22... Relay.

Claims (1)

【特許請求の範囲】 1 すくなくとも、圧縮機、凝縮器、蒸発器、こ
の蒸発器へ送風する蒸発器用送風機を備えた冷凍
サイクルの制御方法において、断続運転時、圧縮
機を停止させたのち、蒸発器へ流入した低エンタ
ルピの冷媒による冷房能力が前記蒸発器に付着し
ている凝縮水の再蒸発による冷房能力とほぼ等し
くなるまでの間だけ、蒸発器用送風機を運転する
ようにしたことを特徴とする冷凍サイクルの制御
方法。 2 圧縮機を停止させたのち、蒸発器の冷媒温度
が室内空気の湿球温度とほぼ等しくなるまでの間
だけ、蒸発器用送風機を運転するようにしたもの
である特許請求の範囲第1項記載の冷凍サイクル
の制御方法。
[Scope of Claims] 1. A method for controlling a refrigeration cycle equipped with at least a compressor, a condenser, an evaporator, and an evaporator blower for blowing air to the evaporator, wherein during intermittent operation, after stopping the compressor, The evaporator blower is operated only until the cooling capacity of the low-enthalpy refrigerant flowing into the evaporator becomes approximately equal to the cooling capacity of the re-evaporation of condensed water adhering to the evaporator. refrigeration cycle control method. 2. The evaporator blower is operated only after the compressor is stopped until the temperature of the refrigerant in the evaporator becomes approximately equal to the wet bulb temperature of indoor air. refrigeration cycle control method.
JP56131495A 1981-08-24 1981-08-24 Method of controlling refrigeration cycle Granted JPS5833040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56131495A JPS5833040A (en) 1981-08-24 1981-08-24 Method of controlling refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131495A JPS5833040A (en) 1981-08-24 1981-08-24 Method of controlling refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5833040A JPS5833040A (en) 1983-02-26
JPS6220463B2 true JPS6220463B2 (en) 1987-05-07

Family

ID=15059331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131495A Granted JPS5833040A (en) 1981-08-24 1981-08-24 Method of controlling refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5833040A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197940A (en) * 1985-02-28 1986-09-02 Fujitsu General Ltd Operation control method of air conditioner
JPS6388099A (en) * 1986-10-02 1988-04-19 Zenzo Shimada Pretreatment in methane fermenting method
JPS63173400U (en) * 1987-04-30 1988-11-10
US4735054A (en) * 1987-08-13 1988-04-05 Honeywell Inc. Method for minimizing off cycle losses of a refrigeration system during a cooling mode of operation and an apparatus using the method
JP2014102041A (en) * 2012-11-21 2014-06-05 Fujitsu General Ltd Air conditioner
JP2020148389A (en) * 2019-03-13 2020-09-17 株式会社富士通ゼネラル Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113939A (en) * 1980-02-14 1981-09-08 Matsushita Electric Ind Co Ltd Reevaporation preventing device for room cooling apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011353U (en) * 1973-05-26 1975-02-05
JPS5151648U (en) * 1974-10-18 1976-04-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113939A (en) * 1980-02-14 1981-09-08 Matsushita Electric Ind Co Ltd Reevaporation preventing device for room cooling apparatus

Also Published As

Publication number Publication date
JPS5833040A (en) 1983-02-26

Similar Documents

Publication Publication Date Title
US20050081539A1 (en) Apparatus and method for controlling supper-heating degree in heat pump system
GB2143628A (en) Air conditioner
JP2004233046A (en) Power dehumidification operating method for air conditioner
JPH11501114A (en) Feedforward control of expansion valve
CN111023435A (en) Control method and system for expansion valve of air conditioner and air conditioner
JP4043756B2 (en) Air conditioner and control method thereof
JPS6220463B2 (en)
JP2536258B2 (en) Operation control device for air conditioner
JPH0498040A (en) Operation control device for air conditioner
JP2000161830A (en) Refrigerator and its controlling method
JPH1030853A (en) Controller for air conditioner
CN1101919C (en) Dehumidifying operation control method for air conditioner
JP2658691B2 (en) Dehumidifier
JPS6222962A (en) Refrigerator
JP3225738B2 (en) Air conditioner
JP2904354B2 (en) Air conditioner
JPS5912942B2 (en) Refrigeration equipment
JPH025319Y2 (en)
JPH03213957A (en) Air conditioner
JPH0359351A (en) Air conditioner
JPS581738Y2 (en) Air conditioning equipment
JPH0218461Y2 (en)
KR100439059B1 (en) Dehumidification method
JPS63259353A (en) Refrigerator
JPS5844179B2 (en) air conditioner