JPS62203766A - Method of treating surface of cemented and quenched layer - Google Patents

Method of treating surface of cemented and quenched layer

Info

Publication number
JPS62203766A
JPS62203766A JP4485786A JP4485786A JPS62203766A JP S62203766 A JPS62203766 A JP S62203766A JP 4485786 A JP4485786 A JP 4485786A JP 4485786 A JP4485786 A JP 4485786A JP S62203766 A JPS62203766 A JP S62203766A
Authority
JP
Japan
Prior art keywords
abnormal
layer
carburized
steel piece
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4485786A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Ogawa
小川 一義
Haruhiko Yamada
春彦 山田
Katsuji Sarugi
猿木 勝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP4485786A priority Critical patent/JPS62203766A/en
Publication of JPS62203766A publication Critical patent/JPS62203766A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To enhance the fatigue strength of a gas-cemented and quenched steel piece, by chemically dissolving the surface of the piece to remove an abnormal cemented layer, and thereafter shot-peening the surface. CONSTITUTION:After gas cementation and quenching, an abnormal cemented layer is chemically dissolved away. For the chemical dissolution, an aqueous solution of a strong acid such as hydrochloric acid and nitric acid or an aqueous solution of FeCl3 or the like for chemical etching is used so that a steel piece is immersed in the aqueous solution or the solution is applied or sprayed to the steel piece. The removed quantity of the abnormal cemented layer is calculated or it is judged whether or not the hardness of the surface of the steel piece subjected to the chemical dissolution is equal to that of the internal cementation-hardened layer of the piece, to find out whether the abnormal cemented layer is all removed. The surface of the steel piece is then shot-peened by shots which are made of such a material of relatively high density as steel and whose hardness, form, diameter and so forth are appropriately selected. As a result of the shot-peening, the residual compressive stress of the steel piece near the treated surface thereof is made higher than that before the chemical dissolution, because to abnormal cemented layer is removed to increase the hardness of the treated surface. For that reason, the fatigue strength of the steel piece is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、浸炭焼入れした部品の表面に生成する浸炭異
常層を除去したのち、該表面をシーツトビ−ユングする
ことにより、該鋼製部品の機械的強度、特に疲労強度、
を向上させる表面処理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention removes the abnormal carburized layer that forms on the surface of a carburized and quenched part, and then sheets-builds the surface. Mechanical strength, especially fatigue strength,
The present invention relates to a surface treatment method that improves surface treatment.

〔従来技術およびその問題点〕[Prior art and its problems]

浸炭焼入れ処理法は、鋼製部品の表面を硬化させる方法
として広く使われている。この処理法に、まず9部品全
体を炭素量の低い鋼でつくシ。
Carburizing and quenching is widely used as a method for hardening the surface of steel parts. The first step in this treatment method is to make all nine parts of steel with a low carbon content.

該部品が耐疲労性、耐摩耗性を必要とする表面部分のみ
に浸炭処理を行って、炭素含有量を高めたのち1部品全
体を焼入れ処理するものである。これによって、耐疲労
性、##摩耗性と強靭性という相矛盾する材料の性質を
部品に具備させることが可能となる。浸炭焼入れ処理法
は、歯車、軸等の動力伝達部品に対して広く用いられて
おり、特に。
Carburizing is performed only on the surface portion of the part that requires fatigue resistance and wear resistance to increase the carbon content, and then the entire part is quenched. This makes it possible to provide parts with contradictory material properties such as fatigue resistance, wear resistance, and toughness. The carburizing and quenching treatment method is widely used for power transmission parts such as gears and shafts, especially.

この方法によって得られる疲労強度特性の向上は。The improvement in fatigue strength properties obtained by this method.

種々の処理法の中でも最も優れている。このような高い
疲労強度特性が得られるのは、浸炭焼入れ層の硬さが高
いことと、該層に圧縮の残留応力が発生することの両者
が有効に作用するためと言わ理法としては、ガスを使っ
たもの、いわゆるガス浸炭法でるる。ガス浸炭法は、c
o、an、等を主成分とするガス中の炭素を鋼部品の表
面に浸入させて、該部品の表面に高炭素成分の層を形成
させるものである。しかし、使用するガス中には、山0
゜co、 、 co等の酸素を有する成分も含まれてお
シ。
It is the most superior among various processing methods. The reason why such high fatigue strength characteristics are obtained is that both the high hardness of the carburized and quenched layer and the generation of compressive residual stress in this layer work together effectively, and the theory is that gas The so-called gas carburizing method is used. The gas carburizing method is c
Carbon in a gas whose main components are o, an, etc. is infiltrated into the surface of a steel part to form a layer of high carbon content on the surface of the part. However, in the gas used, there are
It also contains oxygen-containing components such as ゜co, , and co.

浸炭と同時に酸素も部品の表面に浸入する。こうなると
、後の焼入れ時の焼入れ性等を向上させるために、予め
鋼に添加されているOr、Mn、8i等。
At the same time as carburizing, oxygen also enters the surface of the part. In this case, Or, Mn, 8i, etc. are added to the steel in advance in order to improve the hardenability during subsequent hardening.

Fe  よりも高温において酸化されやすい元素と上記
酸素が結合し、鋼の結晶粒界に酸化物として析出する。
The above oxygen combines with an element that is more easily oxidized than Fe at high temperatures, and precipitates as an oxide at the grain boundaries of the steel.

その結果1部品表面付近では* Cr 、Mn 。As a result, *Cr, Mn near the surface of one part.

Si 等の合金形成元素の量が局所的に少なくなること
になシ、浸炭処理後の焼入れ処理時には、焼入れ性が低
下して、パーライト、ベイナイト等の不完全焼入れ層が
形成される。この組織成分および粒界酸化物を有する層
が浸炭異常層と呼ばれるもので、その深さく厚さ)は0
通常10〜207血である。この浸炭異常層がガス浸炭
、焼入れした部品の疲労強度に悪影響を及ぼしているも
のと思わnる。
Since the amount of alloying elements such as Si 2 is locally reduced, during the quenching treatment after the carburizing treatment, the hardenability decreases and an incompletely quenched layer of pearlite, bainite, etc. is formed. This layer with structural components and grain boundary oxides is called the abnormal carburization layer, and its depth and thickness are 0.
Usually 10-207 blood. It is thought that this abnormal carburized layer has an adverse effect on the fatigue strength of the gas carburized and quenched parts.

そこで、浸炭焼入れ部品の疲労強度を改善する万策とし
て、真空浸炭、イオン浸炭処理法等の浸炭異常層を生成
するOとのない方法、形成された浸炭異常層にシーツト
ビ一二ングを施す方法。
Therefore, as a precautionary measure to improve the fatigue strength of carburized and quenched parts, there are methods such as vacuum carburizing and ion carburizing that do not generate an abnormal carburized layer, and methods that apply sheet bevelling to the formed abnormal carburized layer.

あるいは、該層を機械的研摩又は電解研摩によシ除去す
る方法が考えられている◎ なるほど、真空浸炭やイオン浸炭処理法は、酸素分圧が
0.001%以下の雰囲気内で行われ、添加元素の内部
酸化がほとんど起らないので、浸炭異常層は生成しない
。しかし、これらの処理法に使用する設備は真空装置が
必要であったり、装置上。
Alternatively, a method of removing this layer by mechanical polishing or electrolytic polishing has been considered.I see, vacuum carburizing and ion carburizing treatment methods are performed in an atmosphere with an oxygen partial pressure of 0.001% or less, Since almost no internal oxidation of the added elements occurs, no abnormal carburized layer is formed. However, the equipment used for these processing methods requires vacuum equipment or on-board equipment.

操作上で技術的に複雑なものとなシ、それだけ高価でも
ある。また、焼入れ後、シ需ットヒーニングを行う方法
は、浸炭異常層の悪影響を取シ除く方法としてはある程
度有効であるが1部品の疲労強度を大きく向上させる結
果は、まだ得られていない。シmy)ピーニングした部
品の表面付近を顕微鏡観察すると、浸炭異常層は塑性変
形を受けているものの、はとんどシーットピーニング前
と同じように残っており、これが疲労強度向上にろまり
つながらない原因であると思わnる。
It is technically complex to operate, and it is also expensive. Furthermore, the method of subjecting the steel to heat after quenching is effective to some extent as a method of removing the adverse effects of the abnormal carburized layer, but results that significantly improve the fatigue strength of a single part have not yet been obtained. When observing the vicinity of the surface of a peened part under a microscope, it is found that although the abnormal carburized layer has undergone plastic deformation, it remains almost the same as before sheet peening, and this does not lead to improvement in fatigue strength. I think this is the cause.

また1機械的研摩による浸炭異常層の除去は。1. Removal of abnormal carburized layer by mechanical polishing.

浸炭焼入れ部品の硬さが高い為に加工能率が悪く加工費
も高くつくという問題がるる。特に歯車のような形状の
複雑な部品の場合、疲労強度上問題となる歯元付近を研
摩することは非常に困難である。また一部では、丸棒試
験片に対して電解研摩により浸炭異常層を除去した後、
シ■ットビーニングを施すという方法が試みられている
。しかし実際の機械部品にこの方法を適用しようとする
と。
Due to the high hardness of carburized and quenched parts, there are problems in that machining efficiency is poor and machining costs are high. Particularly in the case of parts with complex shapes such as gears, it is extremely difficult to polish the vicinity of the root of the tooth, which poses a problem in terms of fatigue strength. In some cases, after removing the carburized abnormal layer by electrolytic polishing on round bar test pieces,
A method of applying sit-beening has been attempted. However, when we try to apply this method to actual mechanical parts.

研摩のための電場が部品の形状の影響を強く受け。The electric field for polishing is strongly influenced by the shape of the part.

研摩量が部位によって大きく変化する。特に、歯車の歯
元、歯底では歯先付近に比べて電場の強さが低く9作用
応力の高い歯元、歯底が研摩されK・。
The amount of polishing varies greatly depending on the location. In particular, the electric field strength is lower at the root and the tooth bottom of a gear compared to the vicinity of the tooth tip, and the root and tooth bottom, where the applied stress is higher, are ground.

くいという問題がある。There is a problem of stiffness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、ガス浸次、焼入れ処理によって形成された浸
炭異常層が容易に除去されないので。
In the present invention, the abnormal carburized layer formed by gas immersion and quenching treatment is not easily removed.

部品の疲労強度向上の程度が低いという問題点。The problem is that the degree of improvement in fatigue strength of parts is low.

さらには、歯車の歯元、歯底等のような凹部を有する部
品では、特に浸炭異常層の除去が不完全となり、疲労強
度向上が望めないという問題点を解決するために為され
たものである。
Furthermore, this was done to solve the problem that in parts with concave parts such as the roots and bottoms of gears, the removal of abnormal carburized layers is incomplete, making it impossible to improve fatigue strength. be.

〔問題点を解決するための手段および作用〕本発明は、
ガス浸炭、焼入れした鋼部材の表面層を化学的溶解処理
により、浸炭異常層を除去する工程と、該浸炭異常層を
除去した表面をシ。
[Means and effects for solving the problems] The present invention has the following features:
A process of removing an abnormal carburized layer by chemically dissolving the surface layer of a steel member that has been gas carburized and quenched, and removing the abnormal carburized layer from the surface.

!トビー二ングする工程とからなることを特徴とする浸
炭焼入れ層表面の処理方法である。
! This is a method for treating the surface of a carburized and quenched layer, the method comprising a step of beaning.

浸炭焼入れ法は、鋼製部品が全体としては。The carburizing and quenching method is used for steel parts as a whole.

強靭な性質を有し、しかも、必要とする部分には耐疲労
性、耐摩耗性を保有させたい場合に用いられる処理方法
である。浸炭用の鋼としては、一般に炭素含有量が0.
25%程度以下であり、焼入れ性等の観点からMn、O
r、等の元素が0.4〜2%程度添加されている。前述
したが、ガス浸炭では。
This is a treatment method used when it is desired to have strong properties and also maintain fatigue resistance and wear resistance in the necessary parts. Steel for carburizing generally has a carbon content of 0.
It is about 25% or less, and from the viewpoint of hardenability etc., Mn, O
About 0.4 to 2% of elements such as r, etc. are added. As mentioned above, in gas carburizing.

雰囲気ガスの中に、 HI3 、 COr 、 Co等
の酸素を含むガスが存在し、この酸素が鋼の表面近傍で
鋼中の添加元素と酸化物を形成するとともに、焼入れが
不完全となるので、焼入れ層表面罠厚さが10〜201
1m程度の浸炭異常層が形成される。
Gases containing oxygen such as HI3, COr, and Co are present in the atmospheric gas, and this oxygen forms oxides with added elements in the steel near the surface of the steel, resulting in incomplete quenching. Hardened layer surface trap thickness is 10~201
An abnormal carburized layer of about 1 m is formed.

第1図および第2図には、 co 、 OHa 、 H
z 、 N2を主成分とするガスにより浸炭焼入fLし
た鋼(SCr420)製部品について測定した表面付近
の硬さ分布および残留応力分布を例示する。浸炭異常層
に相当する深さ10〜20μmまでの範囲では。
In Figures 1 and 2, co, OHa, H
z, hardness distribution and residual stress distribution near the surface measured for a steel (SCr420) part that has been carburized and quenched fL with a gas containing N2 as a main component. In the depth range of 10 to 20 μm, which corresponds to the carburized abnormal layer.

硬さ、圧縮残留応力ともに、より内部の値と比較して著
しく低下しており、残留応力は最表面で引張となってい
る。浸炭異常層が疲労強度に悪影響を及ぼす主な原因と
しては、硬さおよび圧縮残留応力値の低下にあると考え
られる。また、浸炭焼入れ部品にシ、、トピーニングを
施しても1表面近傍には依然として浸炭異常層が存在し
ており。
Both hardness and compressive residual stress are significantly lower than the inner values, and the residual stress is tensile at the outermost surface. The main cause of the negative effect of the abnormal carburized layer on fatigue strength is thought to be a decrease in hardness and compressive residual stress values. Furthermore, even if topeening is applied to carburized and quenched parts, an abnormal carburized layer still exists near one surface.

そのため、高い疲労強度向上率を得ることができないも
のと思われる。
Therefore, it seems that a high fatigue strength improvement rate cannot be obtained.

本発明では、#=p−浸炭、焼入れしたのち、上述のよ
うな浸炭異常層を化学的に溶解除去する。
In the present invention, #=p- After carburizing and quenching, the abnormal carburized layer as described above is chemically dissolved and removed.

化学的溶解処理は9部品を処理液廻浸漬するか。For chemical dissolution treatment, will the 9 parts be immersed in a treatment solution?

あるいは、塗布又は吹きつけることにより行うことがで
きる。その結果部品の表面全体をほぼ均一な厚さだけ除
去することができる。なお、溶解を防ぎ次い部位に、予
め高分子による被膜等で防護処理しておくのがよい。「
ヒ学的溶解処理に使用する処理液としては、塩酸、硝酸
等の強酸の水溶液で、その濃度は塩酸の場合、溶解能率
から考えて動態被膜形成によって溶解能率が悪くなる恐
れがある。また、化学的エツチングに用いるFeC/I
s 。
Alternatively, it can be applied by coating or spraying. As a result, the entire surface of the part can be removed to a substantially uniform thickness. In addition, to prevent dissolution, it is preferable to apply a protective treatment to the site in advance with a polymer coating or the like. "
The treatment liquid used in the chemical dissolution treatment is an aqueous solution of a strong acid such as hydrochloric acid or nitric acid.If the concentration is hydrochloric acid, there is a risk that the dissolution efficiency will deteriorate due to the formation of a dynamic film, considering the dissolution efficiency. Also, FeC/I used for chemical etching
s.

0uCe、等の水溶液、H2F!−HNOs系−Ht 
Ox −HF系、 H,zOz −Hs C20−系等
の水溶液等が使用できる。
Aqueous solution of 0uCe, etc., H2F! -HNOs system-Ht
Aqueous solutions such as Ox -HF system, H,zOz -Hs C20- system, etc. can be used.

化学的溶解が上記のような処理溶液中で進行するのは、
W4表表面体の中に内包されている局部的な成分変化を
有する構造が処理液と共に局部電池を形成するためと思
われる。浸炭異常層が除去されたかどうかは、マイクロ
メーター等の測定器を用いて除去量を算出したシ、処理
表面の硬さを測定して内部の浸炭硬化層の硬さと同程度
になっているかどうかで1判断することができる◎浸炭
異常層が除去できたところで0次に、シ層、)ピーニン
グを施す。V11ットビーニングは。
Chemical dissolution takes place in processing solutions such as those mentioned above.
This seems to be because the structure with local component changes contained in the W4 surface body forms a local battery together with the processing liquid. Whether or not the abnormal carburized layer has been removed can be determined by calculating the amount removed using a measuring device such as a micrometer, and by measuring the hardness of the treated surface to see if it is comparable to the hardness of the internal carburized layer. ◎When the abnormal carburized layer has been removed, peening is performed next. V11 Beening.

圧縮空気等で加速したシ・ットを上記浸炭異常層を除去
し次面に打ちあて、載面に機械的な衝撃を与えるもので
ある。
A sheet accelerated with compressed air or the like is applied to the surface after removing the above-mentioned abnormal carburized layer, thereby applying a mechanical impact to the surface.

シ1ットの材質としては、大きなピーニング効果を得る
ためには、鋼のような比較的大きな密度を有するものが
望ましい。また、その硬さも高い方がピーニング効果は
大きくなるので望ましいが。
In order to obtain a large peening effect, it is desirable that the material of the sheet has a relatively high density, such as steel. Also, it is desirable that the hardness is higher because the peening effect will be greater.

おまシ硬さが高いとシ・y)が破砕されやすく。If the hardness is high, the cy and y) will be easily crushed.

その寿命が短かくなる。それ故、これらの点を考慮シテ
、シーットを選択するのが望ましい。シーy)の材質が
鋼の場合には1通常ロックウール硬さCスケールで45
〜55程度のものでもよいが。
Its lifespan will be shortened. Therefore, it is desirable to select a sheet with these points in mind. If the material of sea y) is steel, 1 is usually 45 on the rock wool hardness C scale.
~55 or so may be sufficient.

55〜65程度のものの方が疲労強度向上という処理面
の平滑度を良好にするためには0球状のものが望ましい
。シmy)の粒径については0粒径の大きいもの程、ピ
ーニング効果の浸透深さに深<すli、反面、打げき数
が少ないのでピーニング完了までに長時間を要する。し
たがって9粒径としては、0.3〜2.51程度が望ま
しい。また。
In order to improve the smoothness of the treated surface such that fatigue strength is improved by having a diameter of about 55 to 65, it is desirable that the diameter is 0 spherical. Regarding the particle size of the 0 particle size, the penetration depth of the peening effect is deeper, but on the other hand, the number of strikes is smaller, so it takes a longer time to complete the peening. Therefore, the particle size is preferably about 0.3 to 2.51. Also.

歯車の歯元、歯底等のように、フィレット部を有する形
状の部品に対しては9粒径が最小フィレット半径の1/
2以下でないと、該フィレット部が充分ピーニングされ
ないので、なるべく、その範囲内で可能な限シ大きなシ
ーツトラ使用するのがよい。
For parts with fillet parts, such as gear teeth and tooth bottoms, the 9 grain size is 1/1/1 of the minimum fillet radius.
If it is less than 2, the fillet portion will not be sufficiently peened, so it is better to use the largest possible sheet trough within that range.

シーットピーニングを施すときの強さを、アークハイト
で表わすと、0.1〜0.6 mAとするのがよい。こ
の範囲以上では被処理表面に損傷を与えやすくなる。一
方、この範囲以下ではピーニング効果を得ることが困難
となる。また、ガパレージにシw2ト投射面全体にピー
ニング効果を付与できるように、100%以上とするの
が望ましい。
The strength when performing sheet peening, expressed in arc height, is preferably 0.1 to 0.6 mA. Above this range, the surface to be treated is likely to be damaged. On the other hand, below this range, it becomes difficult to obtain a peening effect. Further, it is desirable to set the gapperage to 100% or more so that a peening effect can be applied to the entire sheet projection surface.

なお、浸炭異常層除去後の表面粗さは、化学的溶解を用
いた場合9.数10 pmkmxとなりやすく、疲労強
度上好ましくないが、シ・・トピーニングによって表面
粗さは数μmRrmx以下に改善される。即ち0本発明
では化学的に異常層を溶解。
Note that the surface roughness after removing the carburized abnormal layer is 9.0 when chemical dissolution is used. The surface roughness tends to be several tens of pmkmx, which is not preferable in terms of fatigue strength, but by sheet peening, the surface roughness can be improved to several μmRrmx or less. That is, in the present invention, the abnormal layer is chemically dissolved.

除去したのちシ1ットピ一二ングを施すという2段階の
処理を行う為、第1工程の浸炭異常層除去後1表面粗さ
が大きくても第2工程のシ・y)ピーニングで改善され
る。
Since it is a two-step process of removing and then applying sheet peening, even if the first surface roughness is large after removing the carburized abnormal layer in the first step, it will be improved in the second step of sheet peening. .

以上のようにしてショットピーニング工程を二 施す舌とにより、処理面の表面付近における圧縮残留応
力値は、浸炭異常層が除去されて、硬さが高くなってい
るので、処理前に比べて大きくなシ。
By performing the shot peening process twice as described above, the compressive residual stress value near the surface of the treated surface is increased compared to before treatment because the carburized abnormal layer is removed and the hardness is increased. Nasi.

いわゆるピーニング効果が発生する。A so-called peening effect occurs.

〔効果〕〔effect〕

ガス浸炭、焼入れした鋼製部品の表面を、化学的溶解処
理し、浸炭異常層を除去したのち、シ・ットビーニング
を施す。表面の硬さは浸炭異常層を除去せずにシmy)
ピーニングした場合よシ約50〜80%高くなp、 1
ookq/a’以上の大きな圧縮残留応力を発生させる
ことができる。
The surface of steel parts that have been gas carburized and quenched is subjected to chemical dissolution treatment to remove the abnormal carburized layer, and then subjected to sit beaning. Surface hardness can be reduced without removing the abnormal carburized layer)
When peened, the cost is about 50-80% higher, 1
A large compressive residual stress of ookq/a' or more can be generated.

その結果、同じ条件でシ・ットピーニングを施しても、
浸炭異常層を除去せずに施した場合に比べて、疲労強度
を向上させることができる。
As a result, even if you perform sit peening under the same conditions,
The fatigue strength can be improved compared to the case where the carburized abnormal layer is not removed.

〔実施例〕〔Example〕

8Cr A 20鋼製歯車(モジ、−#:2.75. 
ピッチ円半径:85m、歯数=28)を第1表に示す条
件により浸炭焼入れした。
8Cr A 20 steel gear (Moji, -#: 2.75.
Pitch circle radius: 85 m, number of teeth = 28) was carburized and quenched under the conditions shown in Table 1.

第  1  表 次に、上記の焼入れ歯車を第2表に示す条件によシ化学
的溶解処理(浸漬)シ、該歯車の浸炭異常mを除去した
Table 1 Next, the above-mentioned hardened gears were subjected to chemical dissolution treatment (immersion) under the conditions shown in Table 2 to remove carburization abnormalities m from the gears.

第2表 その後、第3表に示す条件により該歯車の歯部をン1ッ
トビーニングした。
Table 2 Thereafter, the teeth of the gear were beaned under the conditions shown in Table 3.

第  3  表 一方、比較例として、上記浸炭焼入れ巻4のままのもの
、浸炭異常mを除去せずに第3表に示す条件によりシー
ットビ一二ソグしたもの、およびリン酸クロム酸溶液を
用い、歯車を囲む円筒状電極を使って電解研摩した後、
第3表の条件でシーットヒーニングしたものを用意した
Table 3 On the other hand, as comparative examples, the carburized and quenched roll 4 was used as it was, the one that was subjected to sheet bisodging under the conditions shown in Table 3 without removing the carburizing abnormality m, and the phosphoric chromic acid solution. After electropolishing using a cylindrical electrode surrounding the gear,
A sheet heated under the conditions shown in Table 3 was prepared.

上 以1の実施例として、比較例としての歯車の各歯の歯先
に繰返し荷重を加えて、歯の曲げ疲労試験ヲ実施し、歯
元応力と破断繰返し数との関係を求めた。第3図にその
結果を示す。図の縦軸には、浸炭焼入れしたままのもの
の疲労強度′jt100%として求めた荷重振幅の比率
を示した。横軸にな、破断までの荷重繰返し数を示した
。図中の曲線番号1,2.5および4は、それぞれ1本
実施例、を解研摩後シ、ットビーニング、シーットピー
ニングおよび浸炭焼入れのままの歯車から得られた結果
金示す。
As Example 1 above, a tooth bending fatigue test was conducted by repeatedly applying a load to the tip of each tooth of a gear as a comparative example, and the relationship between tooth root stress and number of rupture cycles was determined. Figure 3 shows the results. The vertical axis of the figure shows the ratio of the load amplitude determined as the fatigue strength 'jt100% of the as-carburized and quenched specimen. The horizontal axis shows the number of load cycles until failure. Curve numbers 1, 2.5 and 4 in the figure respectively represent the results obtained from the as-respected gears after de-grinding, sheet beaning, sheet peening and carburizing and quenching.

この図かられかるように、それぞれの疲労強度を浸炭焼
入れのままの場合と比較すると、浸炭異常層を除去せず
にシ■ットビーニングしたものでに。
As can be seen from this figure, when the fatigue strength of each specimen is compared with that of the carburized and quenched specimen, it is found that the fatigue strength of the specimen that was subjected to sit beaning without removing the abnormal carburized layer.

15%、電解研摩によシ浸炭異常層を除去し、シ麿ット
ビー二ングしたものでは、22%9本実施例のものでは
、40%の疲労強度向上率が得られている。
The fatigue strength improvement rate was 15%, and 22% in the case where the carburized abnormal layer was removed by electrolytic polishing and spot beading.9 In the case of this example, a fatigue strength improvement rate of 40% was obtained.

第4表には各処理を施した歯車の歯底の表面近傍で測定
した残留応力、硬さを示す。
Table 4 shows the residual stress and hardness measured near the surface of the tooth bottom of the gears subjected to each treatment.

第  4  表 第4表かられかるように、浸炭異常層全除去せずにシー
、l−ピーニングしたものでは、@留応力が圧縮側に移
行するだけで硬さは変fヒしていない。
Table 4 As can be seen from Table 4, in those that were sea-peened and l-peened without completely removing the abnormal carburized layer, the residual stress only shifted to the compression side and the hardness did not change.

また、′l!解研摩後シ■ットビーニングしたものでは
、シmy)ピーニングのみを施したものに比べ圧縮残留
応力、硬さ共に高くなっているが1本実施例のものと比
べるとかなシ低い。これは電解研摩の場合、研摩量が部
品形状の影響を強く受け。
Also, 'l! The specimens that were subjected to shot beaning after de-polishing had higher compressive residual stress and hardness than those that had only been subjected to peening, but were considerably lower than those of this example. This is because in the case of electrolytic polishing, the amount of polishing is strongly influenced by the shape of the part.

歯先付近で30μm研摩されていても疲労強度上問題と
なる歯底フィレット部近傍では5 pm程度しか研摩さ
れておらず、浸炭異常層が残った状態となっている為と
思われる。これに対し本発明の方法では、化学的溶解を
用いる為歯先、歯底共均−に除去でき、化学的溶解処理
後、シーットピーニングしたので圧縮残留心力、硬さは
著しく増大している。これが第3図にみられる高い疲労
強度向上の主因と考えられる。
This is thought to be due to the fact that even though the tooth tip has been polished by 30 μm, the area near the bottom fillet, which poses a problem in terms of fatigue strength, has only been polished by about 5 pm, leaving an abnormal carburized layer. On the other hand, the method of the present invention uses chemical dissolution, so both the tooth tip and tooth bottom can be removed uniformly, and since sheet peening is performed after the chemical dissolution treatment, the compressive residual core force and hardness are significantly increased. . This is considered to be the main reason for the high fatigue strength improvement seen in Figure 3.

実施例2゜ 第1表と同じ浸炭焼入れ処理を施した80r420歯車
(歯車諸元は実施例1で用いたものと同f)を用い、化
学的溶解処理により浸炭異常層を除去した後、シ、、ト
ピー二ングを施し、シ腸ットピーニング時間と疲労強度
の関係を第4図(縦軸、横軸は第3図と同じ)に示す。
Example 2 Using an 80r420 gear (the gear specifications are the same as those used in Example 1) that had been subjected to the same carburizing and quenching treatment as in Table 1, the carburized abnormal layer was removed by chemical dissolution treatment, and then the carburized abnormal layer was removed. The relationship between the topeening time and the fatigue strength is shown in FIG. 4 (vertical and horizontal axes are the same as in FIG. 3).

化学的溶解条件に第2表と同じであり、シ曽ットピーニ
ング条件は第3表と同じであυ投射時間のみを変化させ
た。比較例として第4図には、浸炭異常層を除去せずに
シ、ットビーニング加工した場合の結果についても併せ
て示した。曲線番号1は本実施例。
The chemical dissolution conditions were the same as in Table 2, the shot peening conditions were the same as in Table 3, and only the υ projection time was changed. As a comparative example, FIG. 4 also shows the results when cut beaning was performed without removing the abnormal carburized layer. Curve number 1 is this example.

曲線2は、比較例の結果を示す。Curve 2 shows the results of the comparative example.

第4図かられかるように、浸炭異常層を除去せずにシ・
ットピー二ングした場合は、50分という長時間のシ■
ットピーニングにより65%の疲労強度向上率が得られ
る。それに対し本発明のし 方法では、化学的溶解罠よシ浸炭異常層を除去した後、
2分という短時間■シ■ットビーニングを施すのみで4
0%の疲労強度向上率が得らnた。
As shown in Figure 4, the carburized abnormal layer was not removed.
If peeping is used, the session lasts for as long as 50 minutes.
A fatigue strength improvement rate of 65% can be obtained by hot peening. In contrast, in the method of the present invention, after removing the carburized abnormal layer by chemical dissolution trap,
4 Just by applying sit-beening in a short time of 2 minutes
A fatigue strength improvement rate of 0% was obtained.

実施例3゜ SC八へ420.5N(3][20歯車(歯車諸元は瑳 実施例1で用いたものと同f)について、第1表の条件
で浸炭焼入したままのもの、浸炭異常層を除去せずに第
5表の条件でシII?トピーニング加工したもの、及び
本発明の方法によシ第2表の条件で化学的溶解処理した
後、第3表の条件でシ層ツトビーニングしたものの疲労
強度を比較して第5図に示す。同図には実施例1に示し
た5Cr120浸炭焼入歯車の結果も併せて示しである
。いずれの材質の歯車においても、従来の方法で浸炭異
常層を除去せずにシーツトピーニング加工したものの疲
労強度向上率は11〜16%程度であるのに対し9本発
明の化学的溶解処理により浸炭異常層を除去した後、短
時間のシ、ットビーニングを施すと68〜46%の高い
疲労強度向上率が達成された。
Example 3 420.5N (3) [20 gears (gear specifications are the same as those used in Example 1) were carburized and quenched under the conditions in Table 1, and carburized Two types were processed by topeening under the conditions shown in Table 5 without removing the abnormal layer, and those subjected to chemical dissolution treatment according to the method of the present invention under the conditions shown in Table 2, and then processed under the conditions shown in Table 3. Fig. 5 shows a comparison of the fatigue strength of the gears subjected to layer beaning. The figure also shows the results of the 5Cr120 carburized and quenched gear shown in Example 1. The fatigue strength improvement rate of sheet peening without removing the carburized abnormal layer is about 11 to 16%. A high rate of improvement in fatigue strength of 68 to 46% was achieved by applying seat beaning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、ガス浸炭焼入れした鋼部材の表
面付近の硬さ分布および残留応力分布を例示する線図、
第3ないし5図は実施例を示す線図であり、第3図は、
iI3!返し応力比と破断繰返し数との関係を比較例と
比較して示した図、第4図は、疲労強度比とショットピ
ーニング時間との関係を、比較例のそnとともに示す図
1.第5図は。 各鋼種について、疲労強度を比較例のものと比較した図
である。 0   0.2   0.4  0.6第2図    
表面力・るの!巨¥if!(mm)石皮障斤まで“のP
hLL’& (回)す生国   シコ・峠ヒ0−;ング
8射旬 (会)SCr420  SCr420 5NC
M420系5図
FIG. 1 and FIG. 2 are diagrams illustrating the hardness distribution and residual stress distribution near the surface of a steel member subjected to gas carburizing and quenching;
3 to 5 are diagrams showing examples, and FIG.
iI3! FIG. 4 is a diagram showing the relationship between the return stress ratio and the number of rupture cycles in comparison with a comparative example, and FIG. Figure 5 is. FIG. 3 is a diagram comparing the fatigue strength of each steel type with that of a comparative example. 0 0.2 0.4 0.6 Figure 2
Surface power Runo! Huge if! (mm) “P” up to the stone skin barrier
hLL'& (times) country of birth Shiko・Togehi 0-;ng 8 shooting season (kai) SCr420 SCr420 5NC
M420 series 5 diagram

Claims (1)

【特許請求の範囲】[Claims] 浸炭、焼入れした鋼部材の表面層を化学的溶解処理によ
り浸炭異常層を除去する工程と、該浸炭異常層を除去し
た表面をショットピーニングする工程とからなることを
特徴とする浸炭焼入れ層表面の処理方法。
A process of removing an abnormal carburized layer from the surface layer of a carburized and hardened steel member by chemical dissolution treatment, and a process of shot peening the surface from which the abnormal carburized layer has been removed. Processing method.
JP4485786A 1986-02-28 1986-02-28 Method of treating surface of cemented and quenched layer Pending JPS62203766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4485786A JPS62203766A (en) 1986-02-28 1986-02-28 Method of treating surface of cemented and quenched layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4485786A JPS62203766A (en) 1986-02-28 1986-02-28 Method of treating surface of cemented and quenched layer

Publications (1)

Publication Number Publication Date
JPS62203766A true JPS62203766A (en) 1987-09-08

Family

ID=12703152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4485786A Pending JPS62203766A (en) 1986-02-28 1986-02-28 Method of treating surface of cemented and quenched layer

Country Status (1)

Country Link
JP (1) JPS62203766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256316A (en) * 1990-11-27 1993-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Brightening chemical polishing solution for hardened steel article
JPH08191908A (en) * 1995-01-17 1996-07-30 Endo Mfg Co Ltd Golf club head
US6655026B1 (en) 1999-01-28 2003-12-02 Honda Giken Kogyo Kabushiki Kaisha Production process for connecting rod for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256316A (en) * 1990-11-27 1993-10-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Brightening chemical polishing solution for hardened steel article
US5477976A (en) * 1990-11-27 1995-12-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Brightening chemical polishing solution for hardened steel article and method of chemically polishing said article in the solution
JPH08191908A (en) * 1995-01-17 1996-07-30 Endo Mfg Co Ltd Golf club head
US6655026B1 (en) 1999-01-28 2003-12-02 Honda Giken Kogyo Kabushiki Kaisha Production process for connecting rod for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5164539B2 (en) Shot peening method
JP4164995B2 (en) Surface modification method and surface modification material for alloy steel for machine structure
US2851387A (en) Method of depassifying high chromium steels prior to nitriding
JPH06145951A (en) Method for nitriding alustenitic stainless product
CN101139692A (en) Martensitic stainless steel cementation method and product thereof
JP2006200003A (en) Heat-treated article and heat treatment method
KR20180099877A (en) Steel parts, gear parts and manufacturing method of steel parts
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
JPH02138554A (en) Highly strenghtened gear
WO2007023936A1 (en) Method of shot peening
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
JPS62203766A (en) Method of treating surface of cemented and quenched layer
JP3064937B2 (en) Method for carburizing austenitic metal and austenitic metal product obtained by the method
JP3701036B2 (en) High strength gear
JP3005952B2 (en) Method for carburizing austenitic metal and austenitic metal product obtained by the method
JP3395252B2 (en) Manufacturing method of steel with excellent fatigue strength
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor
JPS62127459A (en) Carburizing treatment for steel
JP2596051B2 (en) Manufacturing method of carburized parts
JPS6123713A (en) Production of high-strength two phase stainless steel
JPS58185718A (en) Heat treatment of structural member
JPH02294462A (en) Carburizing quenching method for steel member
JPH032319A (en) Manufacture of high strength gear
KR100289286B1 (en) Stainless Nitride Products