JPS62202836A - Heating furnace for optical fiber drawing - Google Patents

Heating furnace for optical fiber drawing

Info

Publication number
JPS62202836A
JPS62202836A JP4421486A JP4421486A JPS62202836A JP S62202836 A JPS62202836 A JP S62202836A JP 4421486 A JP4421486 A JP 4421486A JP 4421486 A JP4421486 A JP 4421486A JP S62202836 A JPS62202836 A JP S62202836A
Authority
JP
Japan
Prior art keywords
optical fiber
furnace
core tube
heating furnace
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4421486A
Other languages
Japanese (ja)
Inventor
Hiroo Matsuda
松田 裕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4421486A priority Critical patent/JPS62202836A/en
Publication of JPS62202836A publication Critical patent/JPS62202836A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:The core tube in the heating furnace is coated with a layer of high melting point and high resistance to resistance to keep the atmosphere clean in the furnace whereby the quality of the optical fiber is improved and the durability of the furnace itself is increased. CONSTITUTION:The core tube 7 which runs through the drawing furnace 3 and is made of carbon or the like is coated with a layer 8 overall the inner and outer surfaces. The coating layer 8 has a melting point over 2,000 deg.C at which the tube is used and resistance to oxidation and is, e.g., TiC. The difference in heat expansion coefficient between the coating layer 8 and the core tube 7 is preferably set to 3X10<-6>deg or less. In the heating furnace, no oxidation occurs or no dust generates in the core tube 7 even at high temperature of fiber drawing and the atmosphere is kept clean in the core tube 7. Thus, optical fibers of high quality are produced stably for a long period of time.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は特に石英系光ファイバを線引きする光ファイバ
線引装置に関わる。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention particularly relates to an optical fiber drawing apparatus for drawing a silica-based optical fiber.

〈従来の技術〉 石英系光ファイバは、一般に棒状の石英系ガラス母材を
加熱して熔融させたのち、線引きすることにより製造さ
れる。ががる石英系光ファイバの製造に際しては、棒状
の石英系ガラス母材を清浄な雰囲気中で約1900’C
以上に加熱しなければならない。このための加熱炉とし
ては、通常、カーボン炉が主に用いられている。又、カ
ーボン炉外のものとしてジルコニア炉も知られているが
、ジルコニア(ZrO□)は急激な温度変化に弱く、昇
温操作や降温操作を極めて緩慢に設定する必要があり、
生産性が悪い。また、ジルコニアセラミックス中の焼結
助剤や安定化剤等の添加物が炉内雰囲気を汚染し、線引
きされる光ファイバに悪影響を与える問題があり、加熱
炉の主流は、カーボン炉となっている。
<Prior Art> A quartz-based optical fiber is generally manufactured by heating and melting a rod-shaped quartz-based glass base material, and then drawing it. When manufacturing a quartz-based optical fiber, a rod-shaped quartz-based glass base material is heated to approximately 1900'C in a clean atmosphere.
It has to be heated more than that. As a heating furnace for this purpose, a carbon furnace is usually mainly used. Additionally, zirconia furnaces are also known as an alternative to carbon furnaces, but zirconia (ZrO□) is sensitive to sudden temperature changes and requires very slow temperature raising and lowering operations.
Poor productivity. Additionally, there is the problem that additives such as sintering aids and stabilizers in zirconia ceramics contaminate the atmosphere inside the furnace and have a negative effect on the optical fiber being drawn, so the mainstream heating furnace is now a carbon furnace. There is.

このような加熱炉によって線引きする際、特に注意しな
ければならない点は炉内雰囲気の清浄化、即ち溶融した
石英ガラス母材及び線引きされた光ファイバ表面の汚染
防止である。これは、炉内にカーボンの微粒子や石英ガ
ラスを結晶化させたり、石英ガラスと反応で、通常のカ
ーボン炉の場合には高純度で緻密なカーボン炉心管を用
い、その内部に清浄な窒素やアルゴン等の不活性ガスを
流し、その中で石英系ガラス母材を加熱線引きする方法
が採られている。
When drawing in such a heating furnace, particular care must be taken to clean the atmosphere within the furnace, that is, to prevent contamination of the molten quartz glass base material and the surface of the drawn optical fiber. This is done by crystallizing carbon particles and quartz glass in the furnace, or by reacting with quartz glass.In the case of a normal carbon furnace, a high-purity, dense carbon core tube is used, and clean nitrogen and A method is used in which a quartz-based glass base material is heated and wire-drawn in an inert gas such as argon.

〈発明が解決しようとする問題点〉 従来の光ファイバ線引用加熱炉は、その内部を密閉構造
とすることができないため、不活性ガス中に1fThf
fiの空気中の酸素が混入することは避けられず、カー
ボン炉心管内面の特に高温部において酸化消耗が激しく
、カーボンの微粒子が発生して炉内雰囲気を汚染し、し
かもカーボン炉全体の寿命を非常に短いものとしていた
<Problems to be Solved by the Invention> Conventional optical fiber line heating furnaces cannot have an airtight structure inside, so 1fThf in inert gas is
It is unavoidable that oxygen in the air of the fi is mixed in, and the oxidation consumption is severe especially in the high temperature part of the inner surface of the carbon furnace tube, and fine carbon particles are generated, polluting the atmosphere inside the furnace, and shortening the life of the entire carbon furnace. It was kept very short.

本発明は従来技術のかかる問題点に鑑みてなされたもの
で、線引用の加熱炉内の雰囲気を清浄に保つことによっ
て光ファイバの品質を向上させ、同時に加熱炉自体の耐
久性をも向上させ得る光ファイバ線引用加熱炉を提供す
ることを目的とする。
The present invention was made in view of the problems of the prior art, and improves the quality of optical fiber by keeping the atmosphere inside the heating furnace clean, and at the same time improves the durability of the heating furnace itself. The purpose of the present invention is to provide an optical fiber line heating furnace.

く問題点を解決するための手段〉 本発明による光ファイバ線引用加熱炉は、光ファイバ母
材を線引きする際に用いられる加熱炉であって、前記光
ファイバ母材を囲むカーボン製の炉心管の少なくとも内
面の高温部を2200℃以上の融点を持ち且つ耐酸性を
有する被覆層で被覆したことを特徴とするものである。
Means for Solving Problems> The optical fiber drawing heating furnace according to the present invention is a heating furnace used when drawing an optical fiber preform, and includes a carbon furnace core tube surrounding the optical fiber preform. It is characterized in that at least the inner high-temperature part of the wafer is coated with a coating layer having a melting point of 2200° C. or higher and acid resistance.

く作   用〉 光ファイバ母材を高温で線引きする際、加熱炉のカーボ
ン製の炉心管が被覆層によって保護されており、カーボ
ンが酸化して消耗したりカーボン粉末が生成して光ファ
イバを汚染するようなことはない。
Function: When drawing optical fiber base material at high temperatures, the carbon core tube of the heating furnace is protected by a coating layer, which prevents the carbon from oxidizing and being consumed, and causing carbon powder to form and contaminate the optical fiber. There's nothing to do.

く実 施 例〉 本発明による光ファイバ線引用加熱炉の一実施例の概略
構造を表す第1図に示すように、加熱炉3の内部には環
状の発熱体6が設けられ、この発熱体6によって取り囲
まれた炉心管7が加熱炉3を貫通して設けられている。
Embodiment As shown in FIG. 1, which schematically shows the structure of an embodiment of an optical fiber-coupled heating furnace according to the present invention, an annular heating element 6 is provided inside the heating furnace 3. A furnace core tube 7 surrounded by 6 is provided passing through the heating furnace 3.

炉心管7の上端から光ファイバ母材lが炉心管7に沿っ
て下向きに供給され、加熱炉3の発熱体6で加熱された
炉心管7の高温度領域にて溶融し、図示しない線引き手
段により光ファイバ2として形成される。
The optical fiber preform 1 is supplied downward along the furnace tube 7 from the upper end of the furnace tube 7, and is melted in the high temperature region of the furnace tube 7 heated by the heating element 6 of the heating furnace 3, and is drawn by drawing means (not shown). The optical fiber 2 is formed by the following steps.

前記炉心管7はカーボンによって形成され、その内面並
びに外面全域には炭化チタン(Tic)の被覆N8が設
けられている。かかる被覆層8は、上記炭化チタン以外
にも炉心管7の耐用温度である2200℃以上の融点を
持ち、しかも耐酸性を有する被覆材料であれば何でもよ
い、かかる被覆材料として使用可能な材料の化学式を第
1表に示す。
The furnace core tube 7 is made of carbon, and a coating N8 of titanium carbide (Tic) is provided all over its inner and outer surfaces. The coating layer 8 may be made of any coating material other than the above-mentioned titanium carbide, as long as it has a melting point of 2200° C. or higher, which is the serviceable temperature of the reactor core tube 7, and is acid-resistant. The chemical formula is shown in Table 1.

第  1  表 尚、炉心管7の基材であるカーボンと被覆N8の熱膨張
係数差が大きいと、温度の昇降過程でこれらの界面に歪
が発生し、被覆層8にひび割れや剥離が生じゃすくなる
。このため、炉心管7を構成するカーボンとこれを被覆
する被覆層8の材料との熱膨張係数差が問題となるが、
その目安は熱膨張係数差にして3 X I O−”m富
/ deg以下であることが実験的に確認された。この
差は被覆層8の寿命の点から可能な限り小さいことが望
ましい、この熱膨張係数差の影響を避ける手段としては
、一層以上の段階的熱膨張係数差を持つ被覆層を設ける
ことによって解決できる。この場合も隣接する複数の被
覆層間の熱膨張係数差は3 X 10−”w /deg
以下であることが望ましい。この場合、中間の被覆層の
材質の耐酸性は劣るものでも使用可能である。又、炉心
管7のカーボンは用いるコークス等の原料の種類や加工
条件により熱膨張係数を約3X10−’寵/deg 〜
9 X 10−”t* /degの間で調整することが
できるので、被覆N8の熱膨張係数に対応させて調整す
ることが望ましい。
Table 1 Note that if the difference in thermal expansion coefficient between carbon, which is the base material of the core tube 7, and the coating N8 is large, strain will occur at the interface between them during the temperature rise and fall process, and cracks and peeling will occur in the coating layer 8. It gets cheaper. For this reason, the difference in thermal expansion coefficient between the carbon forming the furnace core tube 7 and the material of the coating layer 8 covering it becomes a problem.
It has been experimentally confirmed that the guideline is a difference in thermal expansion coefficient of 3 X IO-"m wealth/deg or less. It is desirable that this difference is as small as possible from the viewpoint of the lifespan of the coating layer 8. As a means to avoid the influence of this difference in thermal expansion coefficients, it can be solved by providing one or more coating layers with stepwise differences in thermal expansion coefficients.In this case, the difference in thermal expansion coefficients between a plurality of adjacent coating layers is 3 10-”w/deg
The following is desirable. In this case, it is possible to use a material for the intermediate coating layer even if it has poor acid resistance. In addition, the carbon of the furnace core tube 7 has a thermal expansion coefficient of approximately 3X10-'g/deg depending on the type of raw material such as coke used and processing conditions.
Since it can be adjusted between 9 x 10-''t*/deg, it is desirable to adjust it in accordance with the thermal expansion coefficient of coating N8.

被覆11J8を炉心管7の表面に形成する方法としては
、CVD法やプラズマCVD法又はスパッタリング法等
によって緻密に形成することができる。又、被覆層8の
厚さは5マイクロメートルから1ミリメートル程度が好
ましい。これは、1ミリメートル以上の厚さにすると剥
離し易く、5マイクロメートル以下では本発明の効果が
充分得られないからである。
The coating 11J8 can be formed densely on the surface of the furnace tube 7 by a CVD method, a plasma CVD method, a sputtering method, or the like. Further, the thickness of the coating layer 8 is preferably about 5 micrometers to 1 millimeter. This is because if the thickness is 1 mm or more, it will easily peel off, and if the thickness is 5 micrometers or less, the effect of the present invention will not be sufficiently obtained.

本実施例では、被覆N8を炉心管7の内外面全体に形成
したが、内面だけや或いは第2図に示す本発明の他の一
実施例の構造を表す第2図に示すように、被覆層8を炉
心管7の内周面の特に高温部分だけに形成しても効果が
ある。尚、第2図中の符号で第1図と同一の符号は、こ
の第1図のものと同一部分を示す。
In this embodiment, the coating N8 was formed on the entire inner and outer surfaces of the furnace tube 7, but the coating N8 was formed only on the inner surface or as shown in FIG. 2, which shows the structure of another embodiment of the present invention shown in FIG. It is also effective to form the layer 8 only on the particularly high-temperature portion of the inner peripheral surface of the furnace tube 7. Note that the same reference numerals in FIG. 2 as in FIG. 1 indicate the same parts as in FIG.

第1図及び第2図に示すこれらの実施例では、加熱炉3
の中の発熱体6を保護するために不活性ガスを供給口4
から炉内及び炉心管7内へ供給し、炉内へ供給された不
活性ガスは排出口5から排気される。一方、炉心管7内
へ供給された不活性ガスはこの炉心管7の中へ空気が混
入するのを防止している。
In these embodiments shown in FIGS. 1 and 2, the heating furnace 3
Inert gas is supplied to the inlet 4 to protect the heating element 6 inside.
The inert gas is supplied into the furnace and into the furnace core tube 7 from the inside of the furnace, and the inert gas supplied into the furnace is exhausted from the exhaust port 5. On the other hand, the inert gas supplied into the furnace core tube 7 prevents air from entering the furnace core tube 7.

次に、第1図に示すような加熱炉を用いて行った本発明
の実験例と比較例とを以下に示す。
Next, an experimental example of the present invention and a comparative example conducted using a heating furnace as shown in FIG. 1 will be shown below.

実験例1 20マイクロメートル厚の炭化チタンを全面に被覆した
内径30ミリメートルのカーボン製炉心管を用い、内部
に窒素ガスを供給しながら2100℃に加熱できる加熱
炉により外径20ミリメートルの石英系光ファイバ母材
から外径125マイクロメートルの光ファイバを10キ
ロメートル線引きした。その結果得られた光ファイバは
全長に亙って最低引張強度が3.5キログラムと非常に
強いものが得られた。この炉心管は、連続10日間の使
用後においても発塵が全く認められず、清浄な雰囲気を
保つことができた。
Experimental Example 1 A quartz-based light beam with an outer diameter of 20 mm was heated using a heating furnace capable of heating to 2100°C while supplying nitrogen gas to the inside using a carbon core tube with an inner diameter of 30 mm and whose entire surface was coated with titanium carbide 20 micrometers thick. An optical fiber having an outer diameter of 125 micrometers was drawn for 10 kilometers from the fiber base material. The resulting optical fiber was extremely strong with a minimum tensile strength of 3.5 kg over its entire length. Even after continuous use for 10 days, no dust was observed in this furnace core tube, and a clean atmosphere could be maintained.

実験例2 熱膨張係数が3.2 X 10−’w / degのカ
ーボン製炉心管の内面に厚さ50マイクロメートルの炭
化タンタルを被覆した炉心管を室温から2000℃への
昇温操作を三回行ったところ、炉心管と被覆層との境界
に剥離を生じた。そこで、カーボンと炭化タンタルとの
中間の熱膨張係数を持つ厚さ20マイクロメートルの炭
化タングステンの中間層を設けたところ、剥離は全く発
生しなかった。この炉心管を用いて実験例1と同一の条
件で線引きを行い、得られた外径125マイクロメート
ルのシングルモード光ファイバに対し全線に亙って強度
試験を行ったところ、最低引張強度は5.2 kgと非
常に高い値を得た。
Experimental Example 2 A carbon core tube with a thermal expansion coefficient of 3.2 x 10-'w/deg, whose inner surface was coated with tantalum carbide with a thickness of 50 micrometers, was heated from room temperature to 2000°C for three times. When the test was repeated, peeling occurred at the boundary between the core tube and the coating layer. Therefore, when an intermediate layer of tungsten carbide with a thickness of 20 micrometers having a coefficient of thermal expansion between that of carbon and tantalum carbide was provided, no peeling occurred at all. Using this furnace core tube, wire was drawn under the same conditions as in Experimental Example 1, and a strength test was conducted over the entire length of the obtained single mode optical fiber with an outer diameter of 125 micrometers, and the minimum tensile strength was 5. A very high value of .2 kg was obtained.

比較例 高純度で緻密なカーボンのみの炉心管を用い、それ以外
は全て実験例1と同じ条件の下に線引きを行い、外径1
25マイクロメートルで長さ10キロメートルの光ファ
イバを得た。全長に亙る強度試験の結果、最低引張強度
は0.6 kg シかなかった。又、この炉心管の内面
中央部は連続5日間の使用によって著しく消耗していた
。炉心管内部に窒素ガスを送給して空気の侵入を防止し
ているにもかかわらず若干の空気の混入があり、カーボ
ンが酸化していることも認められた。この比較実験によ
って、本発明による炉心管の被覆層の効果は極めて著し
いことがlii認された。
Comparative Example A core tube made only of high-purity, dense carbon was used, and wire was drawn under the same conditions as in Experimental Example 1, with an outer diameter of 1
A 25 micrometer optical fiber with a length of 10 kilometers was obtained. As a result of a strength test over the entire length, the minimum tensile strength was less than 0.6 kg. Moreover, the central part of the inner surface of this reactor core tube was significantly worn out after five consecutive days of use. Although nitrogen gas was fed into the core tube to prevent air from entering, some air was found to be mixed in, and it was also observed that the carbon was oxidized. Through this comparative experiment, it was confirmed that the effect of the coating layer of the core tube according to the present invention is extremely significant.

〈発明の効果〉 本発明の光ファイバ線引用加熱炉によれば、加熱炉の炉
心管に2200℃以上の融点を持ち且つ耐酸性を有する
被覆層を設けたことによって、高温度の線引温度におい
ても炉心管が酸化したり粉塵を発生したりすることがな
く、炉心管内の雰囲気を極めて清浄に保つことができる
。そして、汚染されない環境で光ファイバを線引きする
ことができるため、極めて引張強度の高い品質の優れた
光ファイバを製造することが可能となった。更に炉心管
内に混入する1ffi空気による酸化消耗もなく、長期
間安定して品質の優れた光ファイバを生産し得ると共に
加熱炉の耐久性が飛躍的に伸び、経済的にも優れた効果
がある。
<Effects of the Invention> According to the optical fiber drawing heating furnace of the present invention, a coating layer having a melting point of 2200°C or more and acid resistance is provided on the core tube of the heating furnace, so that high drawing temperatures can be achieved. Even in this case, the furnace core tube does not oxidize or generate dust, and the atmosphere inside the furnace core tube can be kept extremely clean. Since optical fibers can be drawn in a non-contaminated environment, it has become possible to manufacture optical fibers of excellent quality with extremely high tensile strength. Furthermore, there is no oxidation consumption due to 1ffi air mixed into the furnace core tube, and it is possible to produce optical fiber of excellent quality stably for a long period of time, and the durability of the heating furnace is dramatically increased, which is also economically effective. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の光ファイバ線引用加熱炉の
それぞれ一実施例の概略構造を表す断面図である。 図面中、1は光ファイバ母材、2は光ファイバ、3は加
熱炉、4は不活性ガスの供給口、5は不活性ガスの排出
口、6は加熱体、7は炉心管、8は被覆層である。
FIGS. 1 and 2 are cross-sectional views showing the schematic structure of one embodiment of the optical fiber line heating furnace of the present invention. In the drawings, 1 is an optical fiber base material, 2 is an optical fiber, 3 is a heating furnace, 4 is an inert gas supply port, 5 is an inert gas discharge port, 6 is a heating element, 7 is a furnace core tube, and 8 is a furnace tube. It is a covering layer.

Claims (1)

【特許請求の範囲】 1、光ファイバ母材を線引きする際に用いられる加熱炉
であって、前記光ファイバ母材を囲むカーボン製の炉心
管の少なくとも内面の高温部を2200℃以上の融点を
持ち且つ耐酸性を有する被覆層で被覆したことを特徴と
する光ファイバ線引用加熱炉。 2、被覆層及び炉心管の熱膨張係数の差が3×10^−
^6mm/deg以下であることを特徴とする特許請求
の範囲第1項記載の光ファイバ線引用加熱炉。 3、被覆層が異なる材質の複数層からなることを特徴と
する特許請求の範囲第1項又は第2項記載の光ファイバ
線引用加熱炉。 4、相隣接する複数層の被覆層相互の熱膨張係数の差が
3×10^−^6mm/deg以下であることを特徴と
する特許請求の範囲第3項記載の光ファイバ線引用加熱
炉。
[Claims] 1. A heating furnace used for drawing an optical fiber preform, which heats at least the high-temperature inner surface of a carbon furnace core tube surrounding the optical fiber preform to a melting point of 2200°C or higher. An optical fiber heating furnace characterized by being coated with a durable and acid-resistant coating layer. 2. The difference in thermal expansion coefficient between the coating layer and the core tube is 3×10^-
The optical fiber wire drawing heating furnace according to claim 1, characterized in that the heating temperature is 6 mm/deg or less. 3. The optical fiber heating furnace according to claim 1 or 2, wherein the coating layer is made of a plurality of layers made of different materials. 4. The optical fiber line heating furnace according to claim 3, characterized in that the difference in coefficient of thermal expansion between the plurality of adjacent coating layers is 3 x 10^-^6 mm/deg or less. .
JP4421486A 1986-03-03 1986-03-03 Heating furnace for optical fiber drawing Pending JPS62202836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4421486A JPS62202836A (en) 1986-03-03 1986-03-03 Heating furnace for optical fiber drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4421486A JPS62202836A (en) 1986-03-03 1986-03-03 Heating furnace for optical fiber drawing

Publications (1)

Publication Number Publication Date
JPS62202836A true JPS62202836A (en) 1987-09-07

Family

ID=12685294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4421486A Pending JPS62202836A (en) 1986-03-03 1986-03-03 Heating furnace for optical fiber drawing

Country Status (1)

Country Link
JP (1) JPS62202836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030824A4 (en) * 1997-10-31 2000-12-20 Corning Inc Apparatus and method for drawing waveguide fibers
JP2003095688A (en) * 2001-09-17 2003-04-03 Ibiden Co Ltd Core vessel
WO2004113243A1 (en) * 2003-06-18 2004-12-29 Shin-Etsu Chemical Co., Ltd. Optical fiber drawing apparatus and gas seal mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161939A (en) * 1982-03-16 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Drawing furnace for optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161939A (en) * 1982-03-16 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Drawing furnace for optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030824A4 (en) * 1997-10-31 2000-12-20 Corning Inc Apparatus and method for drawing waveguide fibers
JP2003095688A (en) * 2001-09-17 2003-04-03 Ibiden Co Ltd Core vessel
WO2004113243A1 (en) * 2003-06-18 2004-12-29 Shin-Etsu Chemical Co., Ltd. Optical fiber drawing apparatus and gas seal mechanism

Similar Documents

Publication Publication Date Title
EP1001912B1 (en) Apparatus and method for overcladding optical fiber preform rod and optical fiber drawing method
US9284213B2 (en) Production of silica soot bodies
JPH02196045A (en) Heating furnace for producing base material of high-purity quartz
JP3657800B2 (en) Molybdenum disilicide-based composite ceramic heating element and manufacturing method thereof
JP5546642B2 (en) Method for producing quartz glass cylinder and carrier for carrying out the method
KR950006197B1 (en) Method for flame abrasion of glass preform
JPS62202836A (en) Heating furnace for optical fiber drawing
JPH02283015A (en) Quarts glass body for semiconductor manufacturing equipment or jig
JP2007070189A (en) Optical fiber drawing apparatus and method of sealing drawing furnace
KR100747351B1 (en) Heater having multi hot-zone, furnace for drawing down optical fiber preform into optical fiber and method for optical fiber drawing using the same
JPS58204832A (en) Drawing of optical fiber
JPS58161939A (en) Drawing furnace for optical fiber
AU734347B2 (en) Apparatus and method for drawing waveguide fibers
JPH04198036A (en) Heating furnace for wire drawing of optical fiber
JP3567636B2 (en) Base material for optical fiber and method of manufacturing the same
JPH10338538A (en) Heating furnace
JPH0536372B2 (en)
JPH0585761A (en) Porous glass base material
KR100245119B1 (en) High temperature heating element using s.i.c coating
JPS599492B2 (en) Method for spinning fiber for optical communication
JP2000154028A (en) Roll for production of float glass and production of float glass
JPS62162646A (en) Production of glass fine particle deposit
JPH05167103A (en) Thermocouple
JPH0477691B2 (en)
JP2006008450A (en) Optical fiber drawing apparatus