JPS62202570A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62202570A
JPS62202570A JP61044784A JP4478486A JPS62202570A JP S62202570 A JPS62202570 A JP S62202570A JP 61044784 A JP61044784 A JP 61044784A JP 4478486 A JP4478486 A JP 4478486A JP S62202570 A JPS62202570 A JP S62202570A
Authority
JP
Japan
Prior art keywords
signal line
guard means
guard
signal
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61044784A
Other languages
Japanese (ja)
Inventor
Kazuhiko Muto
和彦 武藤
Yoshihiro Shirai
誉浩 白井
Tsunenori Yoshinari
吉成 恒典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61044784A priority Critical patent/JPS62202570A/en
Priority to DE19873706251 priority patent/DE3706251A1/en
Publication of JPS62202570A publication Critical patent/JPS62202570A/en
Priority to US07/587,616 priority patent/US5150189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To avoid invasion of a leakage current and an external current and so forth and improve capability of signal transmission and signal processing by a method wherein guard means are provided above or/and below a signal line on a substrate and the potential of the guard means is set at the value close to the potential of the signal line. CONSTITUTION:The cathode 2 and anode 3 of a photodiode 1 are connected to the non-inversion terminal and inversion terminal of an operational amplifier 4 respectively. Guard means 6 and 7 are provided on both sides of a signal line 5 and a reference voltage Vc is applied to the respective guard means. In the constitution like this, when a light enters the photodiode 1, a photocurrent is applied to a logarithmic diode 8 through the signal line 5 and a voltage obtained by logarithmic conversion of the photocurrent appears at the output terminal of the operational amplifier 4. At that time, even if the photocurrent is very small, the invasion of a leakage current and an external current can be avoided. Therefore, the output voltage which corresponds to the incident luminous power accurately appears at the output terminal of the operational amplifier 4 so that accuracy of signal processing can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は信号を伝達する信号ラインを少なくともノS板
上に有する半導体装置に係り、特に信号が微小領域にあ
る場合にも正確な信号伝達又は信号処理を行うことを企
図した半導体装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor device having a signal line for transmitting a signal on at least an S board, and particularly for accurate signal transmission even when the signal is in a minute area. Or it relates to a semiconductor device intended to perform signal processing.

本発明による半導体装置は、微小信号の伝達や信号処理
を行う装置一般に適用され、たとえば光起電力素子の出
力である微小な電流を処理する装置等に適用される。
INDUSTRIAL APPLICABILITY The semiconductor device according to the present invention is generally applied to devices that transmit minute signals and process signals, such as devices that process minute currents that are output from photovoltaic elements.

[従来技術およびその問題点] 一般に、微小な領域における信号をラインを通して伝達
し処理する場合、ラインからのリーク電流又は外部から
ラインに流入する電流によって、正確な信号の伝達およ
び処理は困難であり、あるいは不可能である。そのため
に、従来では補正回路を付加して信号の調整を行ってい
た。
[Prior art and its problems] Generally, when transmitting and processing signals in a minute area through a line, accurate signal transmission and processing is difficult due to leakage current from the line or current flowing into the line from the outside. , or impossible. To this end, in the past, a correction circuit was added to adjust the signal.

しかしながら、補正回路を付加することは、特に多数の
微小信号を入力する構成の装置では回路の複雑化を招来
し、それに伴なって製造工程が複雑化し、製造コストが
L昇するという問題点を有していた。
However, adding a correction circuit complicates the circuit, especially in a device configured to input a large number of minute signals, which in turn complicates the manufacturing process and increases the manufacturing cost. had.

[問題点を解決するための手段] 本発明による半導体装置は、基板上に設けられた信号ラ
インの上方および/又は下方にガード1段を併設し、該
ガード手段の電位を前記信号ラインと同電位又はこれに
近い電位1こ設定したことを特徴とする。
[Means for Solving the Problems] A semiconductor device according to the present invention includes one stage of guards above and/or below a signal line provided on a substrate, and the potential of the guard means is set to be the same as that of the signal line. It is characterized by setting one electric potential or one electric potential close to this electric potential.

[作用] このようなガード1段を設けるだけで、リーク電流およ
び電流の流入等を防止することができ。
[Function] By simply providing one stage of such a guard, leakage current and current inflow can be prevented.

微小信号レベルでの信号伝達および信号処理能力を向上
させることができる。したがって、従来必要であった補
正回路を省略することができ、構成の簡略化および製造
工程の簡略化も達成することがでさる。
Signal transmission and signal processing ability at a minute signal level can be improved. Therefore, the correction circuit that was conventionally necessary can be omitted, and the structure and manufacturing process can also be simplified.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、本発明による半導体装置の一実施例である光
センサ装置の等価回路図である。
FIG. 1 is an equivalent circuit diagram of a photosensor device which is an embodiment of a semiconductor device according to the present invention.

本実施例は、フォトダイオードがログアンプに接続され
た構成を有している。すなわち、第1図において、フォ
トタイオードlのカソード電極2および7ノード電極3
はオペアンプ4の非反転端子および反転端子に各々接続
さ゛れている。また、カソード電極2には基準゛電圧V
cが印加され、アノード電極3は信号ライン5に接続さ
れている。
This embodiment has a configuration in which a photodiode is connected to a log amplifier. That is, in FIG. 1, the cathode electrode 2 and the 7-node electrode 3 of the photodiode l
are connected to the non-inverting terminal and the inverting terminal of the operational amplifier 4, respectively. Further, the cathode electrode 2 has a reference voltage V
c is applied, and the anode electrode 3 is connected to the signal line 5.

信号ライン5の両側にはガード手段6および/又は7が
併設され、各ガード手段には基準電圧VCが印加されて
いる。
Guard means 6 and/or 7 are provided on both sides of the signal line 5, and a reference voltage VC is applied to each guard means.

信号ライン5はログダイオード8を介してオペアンプ4
の出力端子に接続され、ログアンプを構成している。な
お、ここではログダイオード8としてバイポーラトラン
ジスタのベースおよびコレクタが接続されたものが用い
られている。
The signal line 5 is connected to the operational amplifier 4 via the log diode 8.
is connected to the output terminal of the log amplifier. Note that here, as the log diode 8, a bipolar transistor whose base and collector are connected is used.

このような構成において、光がフォトダイオードlに入
射すると、光起電流が信号ライン5を通してログダイオ
ード8へ流れ、オペアンプ4の出力端子に対数変換され
た出力電圧が現われる。この時、光起電流が微小であっ
ても、信号ライン5の」二方および/又は下方には同電
位のガード手段6および/又は7が併設されているため
に、リーク電流および外部からの電流の流入が防止され
る。したがって、オペアンプ4の出力端子には入射光量
に正確に対応した出力電圧が現われ、信号処理の精度が
向上する。
In such a configuration, when light is incident on the photodiode l, a photovoltaic current flows through the signal line 5 to the log diode 8, and a logarithmically transformed output voltage appears at the output terminal of the operational amplifier 4. At this time, even if the photovoltaic current is minute, leakage current and external sources are prevented because guard means 6 and/or 7 of the same potential are provided on both sides and/or below the signal line 5. Current inflow is prevented. Therefore, an output voltage that accurately corresponds to the amount of incident light appears at the output terminal of the operational amplifier 4, improving the accuracy of signal processing.

第2図〜第6図は、それぞれ本実施例におけるガード手
段の実施態様を示す模式的断面図である。
FIGS. 2 to 6 are schematic sectional views showing embodiments of the guard means in this embodiment, respectively.

第2図において、p型の半導体基板lOにn型半導体の
ガード用拡散層tiがガード−L段として形成されてい
る。その玉に絶縁層′12を介してAl′8の金属の信
号ライン5が形成され、PSG等ノピノパッシベーショ
ン膜13aわれている。
In FIG. 2, a guard diffusion layer ti of an n-type semiconductor is formed as a guard-L stage in a p-type semiconductor substrate lO. A metal signal line 5 of Al'8 is formed on the ball via an insulating layer '12, and a nopino passivation film 13a such as PSG is formed thereon.

ガード用拡散層llには基準電圧Vcが印加されており
、これによって信号ライン5と基板10間の漏れ’+I
!、流が防+hされる。勿論、基板lOがn型半導体で
あれば、ガード用拡散層11はp型゛h導体で形成され
る。ただし、この場合はフォトダイオードlもn型基板
lOLに形成されるために、基準電圧Vcの極性も逆転
する。
A reference voltage Vc is applied to the guard diffusion layer ll, which reduces leakage between the signal line 5 and the substrate 10'+I.
! , the flow is prevented +h. Of course, if the substrate IO is an n-type semiconductor, the guard diffusion layer 11 is formed of a p-type conductor. However, in this case, since the photodiode l is also formed on the n-type substrate lOL, the polarity of the reference voltage Vc is also reversed.

第3図において、基板lO上に絶縁層12を介して信号
ライン5が形成され、更に層間絶縁層13を介してガー
ド用金属層14がガード手段として形成され、パッシベ
ーション層15で覆われている。ガード用金1一層14
に基準電圧Vcを印加することで、パッシベーション層
15eMして流入する外部からの漏れ電流を防止するこ
とができる。
In FIG. 3, a signal line 5 is formed on a substrate IO via an insulating layer 12, and a guard metal layer 14 is further formed as a guard means via an interlayer insulating layer 13, and is covered with a passivation layer 15. . Guard gold 1 layer 14
By applying the reference voltage Vc to the passivation layer 15eM, leakage current from the outside flowing into the passivation layer 15eM can be prevented.

第4図に示す実施態様では、ガード用拡散層11および
ガード用金属層14が信号ライン5の上方および下方に
併設され、両者に基準電圧Vcが印加されることで、漏
れ電流の防止効果が更に向」ニする。
In the embodiment shown in FIG. 4, the guard diffusion layer 11 and the guard metal layer 14 are provided above and below the signal line 5, and the reference voltage Vc is applied to both, thereby achieving the leakage current prevention effect. Go further.

第5図に示す実施態様では、絶縁層12および層間絶縁
層13にコンタクト部を形成し、そのコンタクト部を通
してガード手段である拡散層11と金属層14とを接続
して信号ライン5を取囲んでいる。これによりノ、(準
電圧Vcを印加することで、漏れ電流のほぼ完全な防止
を達成できる。
In the embodiment shown in FIG. 5, a contact portion is formed in the insulating layer 12 and the interlayer insulating layer 13, and the diffusion layer 11 serving as a guard means and the metal layer 14 are connected through the contact portion to surround the signal line 5. I'm here. As a result, leakage current can be almost completely prevented by applying the quasi-voltage Vc.

第6図に示す実施態様では、基板to、i:に絶縁層1
2、ポリシリコンや金属等で形成されたガード用導電層
16が形成され、ガード用導電層16上には層間絶縁層
17、信号ライン5、層間絶縁層13が形成されている
。更に、層間絶縁層13上にはガード用金属層14が形
成され、層間絶縁層13および17に形成されたコンタ
クト部を通して下層のガード用導電層16に接続されて
いる。このようにして信号ライン5を取囲み、基準電圧
Vcを印加することで、漏れ電流の防止を行ってもよい
In the embodiment shown in FIG.
2. A guard conductive layer 16 made of polysilicon, metal, etc. is formed, and an interlayer insulating layer 17, a signal line 5, and an interlayer insulating layer 13 are formed on the guard conductive layer 16. Further, a guard metal layer 14 is formed on the interlayer insulating layer 13 and is connected to the lower guard conductive layer 16 through contact portions formed in the interlayer insulating layers 13 and 17. By surrounding the signal line 5 in this manner and applying the reference voltage Vc, leakage current may be prevented.

第7図は、本実施例および従来例における光起電流に対
する出力電圧特性を概略的に示すグラフである0本実施
例のようにガード手段を信号ラインに併設することによ
って、フォトダイオードlの起電流が微小な場合であっ
ても、正確な出力電圧を得ることができ(図中の破線で
示す部分)、微小信号レベルでの信号処理能力の向上を
示している。
FIG. 7 is a graph schematically showing the output voltage characteristics with respect to the photovoltaic current in this embodiment and the conventional example. Even when the current is small, an accurate output voltage can be obtained (the part indicated by the broken line in the figure), indicating improved signal processing ability at a small signal level.

なお、本発明は、本実施例に限定されるものではなく、
微小信号を正確に伝達および処理しようとする゛h導体
装置に適用可能である。
Note that the present invention is not limited to this example,
It is applicable to conductor devices that attempt to accurately transmit and process minute signals.

[発明の効果] 以上詳細に説明したように1本発明による半導体装置は
、信t3ラインとほぼ同電位のガード手段を信号ライン
のし方および/又は下方に併設するという18i巾な構
成で、リーク電流および外乱の彩1!等を防止すること
ができ、微小信号レベルであっても精度の良い信号伝達
および信号処理を行うことができる。したがって、従来
必要であった補正回路を省略することができ、構成の簡
略化および製造工程の簡略化も達成できる。
[Effects of the Invention] As described above in detail, the semiconductor device according to the present invention has a 18i width configuration in which a guard means having approximately the same potential as the signal line is provided along and/or below the signal line. Leak current and disturbance color 1! etc., and it is possible to perform highly accurate signal transmission and signal processing even at a minute signal level. Therefore, the correction circuit that was conventionally necessary can be omitted, and the configuration and manufacturing process can also be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による半導体装置の一実施例である光
センサ装置の概略的笠価回路図、第2図〜第6図は1本
実施例におけるガイド−1段の実施7g様を各々示す模
式的断面図。 第7図は、本実施例および従来例における光起電流に対
する出力電圧特性を概略的に示すグラフである。 lφ・・フォトダイオード 5・・・信号ライン 6.7.11.14.16−・・ガード手段代理人  
弁理上 山 下 積 子 弟1図 第2図 第4図 1A 第5図 ′$6図 0      イPt流
FIG. 1 is a schematic circuit diagram of an optical sensor device which is an embodiment of a semiconductor device according to the present invention, and FIGS. A schematic cross-sectional view shown. FIG. 7 is a graph schematically showing output voltage characteristics with respect to photovoltaic current in this example and the conventional example. lφ...Photodiode 5...Signal line 6.7.11.14.16-...Guard means agent
Patent Attorney Seki Yamashita Child 1 Figure 2 Figure 4 Figure 1A Figure 5'$6 Figure 0 I Pt style

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上に設けられた信号ラインの上方およ
び/又は下方にガード手段を併設し、該ガード手段の電
位を前記信号ラインと同電位又はこれに近い電位に設定
したことを特徴とする半導体装置。
(1) A guard means is provided above and/or below the signal line provided on the semiconductor substrate, and the potential of the guard means is set to the same potential as the signal line or a potential close to this. Semiconductor equipment.
(2)上記信号ラインの上方に併設されたガード手段は
、導電性金属層であることを特徴とする特許請求の範囲
第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the guard means provided above the signal line is a conductive metal layer.
(3)上記信号ラインの下方に併設されたガード手段は
、上記基板の半導体とは反対の導電型を有する半導体層
又は導電性金属層であることを特徴とする特許請求の範
囲第1項記載の半導体装置。
(3) The guard means provided below the signal line is a semiconductor layer or a conductive metal layer having a conductivity type opposite to that of the semiconductor of the substrate. semiconductor devices.
JP61044784A 1986-02-28 1986-02-28 Semiconductor device Pending JPS62202570A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61044784A JPS62202570A (en) 1986-02-28 1986-02-28 Semiconductor device
DE19873706251 DE3706251A1 (en) 1986-02-28 1987-02-26 Semiconductor device
US07/587,616 US5150189A (en) 1986-02-28 1990-09-24 Semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044784A JPS62202570A (en) 1986-02-28 1986-02-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62202570A true JPS62202570A (en) 1987-09-07

Family

ID=12701032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044784A Pending JPS62202570A (en) 1986-02-28 1986-02-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62202570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233432U (en) * 1988-08-24 1990-03-02
US7416650B2 (en) 2002-12-26 2008-08-26 Denso Corporation Gas concentration measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233432U (en) * 1988-08-24 1990-03-02
US7416650B2 (en) 2002-12-26 2008-08-26 Denso Corporation Gas concentration measuring apparatus
DE10361033B4 (en) * 2002-12-26 2015-05-13 Denso Corporation Gas concentration meter

Similar Documents

Publication Publication Date Title
US5101253A (en) Photo sensor with monolithic differential amplifier
US5130775A (en) Amorphous photo-detecting element with spatial filter
US5268309A (en) Method for manufacturing a photosensor
CA2116793A1 (en) Pin-type light receiving device, manufacture of the pin-type light receiving device and optoelectronic integrated circuit
JPS62202570A (en) Semiconductor device
US5150189A (en) Semiconductor apparatus
US5811842A (en) Semiconductor photodetector including background light region
JPH0818091A (en) Semiconductor photoelectric transducer with plurality of photodiodes
KR940006291A (en) Light-receiving element and optoelectronic integrated circuit having same
JPS5952973B2 (en) Temperature compensation circuit for photodetection circuit using semiconductor
JPS62202569A (en) Semiconductor device
JP2773730B2 (en) Photoconductive infrared detector
JPS62202572A (en) Semiconductor device
JPH1050967A (en) Light receiving operation element
JPS63182874A (en) Semiconductor photodetector
CA1224524A (en) Chemically sensitive fet component
JP2004153190A (en) Manufacturing method of avalanche photodiode, avalanche photodiode, optical receiving module, and optical receiver
JPS63102380A (en) Photosensor
JPS6269693A (en) Semiconductor laser
JP3696094B2 (en) Light receiving module
JPS6222543B2 (en)
JP3350867B2 (en) Ion-sensitive field-effect transistor
JPS626170B2 (en)
JP3696177B2 (en) Light receiving module for optical remote control
JPH08130324A (en) High breakdown strength planar photodecector