JPS62202073A - Sliding member - Google Patents

Sliding member

Info

Publication number
JPS62202073A
JPS62202073A JP4151486A JP4151486A JPS62202073A JP S62202073 A JPS62202073 A JP S62202073A JP 4151486 A JP4151486 A JP 4151486A JP 4151486 A JP4151486 A JP 4151486A JP S62202073 A JPS62202073 A JP S62202073A
Authority
JP
Japan
Prior art keywords
sliding member
sliding
carbon film
electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4151486A
Other languages
Japanese (ja)
Inventor
Yoshinori Kuwae
桑江 良昇
Hideki Murabayashi
村林 頴樹
Minoru Obata
稔 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4151486A priority Critical patent/JPS62202073A/en
Publication of JPS62202073A publication Critical patent/JPS62202073A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electronic Switches (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the wear resistance and surface lubricity of a sliding member by forming an i-carbon film on the sliding surface of the sliding member so as to provide surface lubricity. CONSTITUTION:A hard i-carbon film is formed on at least the sliding surface of the body of a sliding member by a process including a stage for producing ions contg. carbon, e.g., ionization and vapor deposition using hydrocarbon as starting material. The resulting sliding member is used as a heat sensitive head or the like and has improved wear resistance and surface lubricity.

Description

【発明の詳細な説明】 C発明の目的] (産業上の利用分野) 本発明は摺動部材に関し、特に耐摩耗性及び表面潤滑性
を向上させるものである。
[Detailed Description of the Invention] CObject of the Invention] (Industrial Application Field) The present invention relates to a sliding member, and particularly to improving wear resistance and surface lubricity.

(従来の技術) 従来、摺動部材の耐摩耗性を向上させるために、摺動部
材本体の摺動面に窒化チタンや酸化アルミニウム等の硬
質材料をスパッタ法、化学気相成長法、イオンブレーテ
ィング法等の方法で被覆することが行われている。しか
し、これらの硬質材料は表面潤滑性が乏しいため、使用
中に凝着したり、剥離が起る等の欠点があった。
(Prior art) Conventionally, in order to improve the wear resistance of sliding members, hard materials such as titanium nitride or aluminum oxide have been applied to the sliding surface of the sliding member body by sputtering, chemical vapor deposition, or ion beam deposition. Coating is performed using a method such as a rating method. However, since these hard materials have poor surface lubricity, they have drawbacks such as adhesion and peeling during use.

一方、摺動部材に表面潤滑性を付与するために、摺動部
材本体の摺動面に硫化モリブデンや硫化タングステン等
の固体潤滑性膜を上記と同様な方法で被覆することも行
われている。しかし、これらの固体潤滑性膜は耐摩耗性
が小さいため、使用中に摩耗して精度低下や寿命劣化が
問題となっていた。
On the other hand, in order to impart surface lubricity to sliding members, the sliding surface of the sliding member body is coated with a solid lubricating film such as molybdenum sulfide or tungsten sulfide using a method similar to the above. . However, since these solid lubricating films have low wear resistance, they wear out during use, causing problems such as decreased accuracy and decreased lifespan.

また、一般的な摺動部材に限らず、例えば感熱ヘッドで
も上記と同様な問題があつた。現在使用されている感熱
ヘッドは厚膜型と薄膜型とに大別されるが、構造的には
同一と考えてよいので、以下厚膜型を例にとって説明す
る。従来の厚膜型感熱ヘッドは、第4図に示すように、
例えば酸化アルミニウムからなるペン状の絶縁性基材1
1の周面に例えばP d−A g、金等からなる電極1
2を、先端部に例えば酸化ルテニウムからなる厚膜抵抗
体13をそれぞれスクリーン印刷により形成し、前記電
極12及び厚膜抵抗体】3の外周を例えば高融点結晶化
ガラス14で被覆した構造を有している。なお、高融点
結晶化ガラス14の電極12外周に設けられている部分
は電極の絶縁及び保護を目的とした電極保護層であり、
厚膜抵抗体13外周に設けられている部分は耐摩耗性を
付与することを目的とした耐摩耗層である。このように
電極保護層と耐摩耗層とは通常同じ材料で形成され、両
者の間に境界はない。
Further, the same problem as above has occurred not only in general sliding members but also in thermal heads, for example. Thermal heads currently in use are broadly classified into thick-film types and thin-film types, but since they can be considered structurally the same, the thick-film type will be explained below as an example. The conventional thick film type thermal head, as shown in Fig. 4,
For example, a pen-shaped insulating base material 1 made of aluminum oxide
An electrode 1 made of, for example, Pd-Ag, gold, etc.
2 has a structure in which a thick film resistor 13 made of, for example, ruthenium oxide is formed at the tip part by screen printing, and the outer periphery of the electrode 12 and the thick film resistor 3 is covered with, for example, high melting point crystallized glass 14. are doing. Note that the portion of the high melting point crystallized glass 14 provided on the outer periphery of the electrode 12 is an electrode protective layer for the purpose of insulating and protecting the electrode.
A portion provided on the outer periphery of the thick film resistor 13 is a wear-resistant layer intended to provide wear resistance. In this way, the electrode protective layer and the wear-resistant layer are usually formed of the same material, and there is no boundary between them.

上記の厚膜型感熱ヘッド先端部の耐摩耗層に要求される
主な特性は、■電気絶縁性があること、■耐摩耗性が高
いこと、■厚膜抵抗体13への密着性が高いこと、■表
面潤滑性が高いこと、である。これらの特性が要求され
る理由を以下に詳細に説明する。
The main characteristics required of the wear-resistant layer at the tip of the thick-film thermal head described above are: ■ electrical insulation, ■ high wear resistance, and ■ high adhesion to the thick-film resistor 13. ■It has high surface lubricity. The reason why these characteristics are required will be explained in detail below.

■の電気絶縁性は、安全上の観点、すなわち厚膜抵抗体
13に通電して加熱する際の感電事故を防止するために
要求される特性である。■の耐摩耗性は、感熱記録紙と
の長時間の摺動接触によってもできるだけ摩耗しないこ
とが記録鮮明度の点で望ましいため、特に要求される特
性である。また、耐摩耗層が摩耗して厚膜抵抗体13が
露出すると、一般に厚膜抵抗体13は耐摩耗性が小さい
ことから迅速に摩耗してしまい、電気抵抗値及び形状が
変化して感熱ヘッドとしての正常な機能を果たさなくな
る。■の厚膜抵抗体13への密着性は、使用中に耐摩耗
層が厚膜抵抗体13から剥離すると、上記のようなトラ
ブルの原因となるので要求される特性である。■の潤滑
性は、記録紙のスムーズな送りのために要求される特性
である。
The electrical insulation property (2) is a property required from a safety standpoint, that is, to prevent an electric shock accident when the thick film resistor 13 is heated by electricity. The abrasion resistance (2) is a particularly required property, since it is desirable from the viewpoint of recording clarity that there should be as little abrasion as possible even during long-term sliding contact with heat-sensitive recording paper. Furthermore, when the wear-resistant layer is worn away and the thick-film resistor 13 is exposed, the thick-film resistor 13 generally has low wear resistance, so it wears out quickly, and the electrical resistance value and shape change, causing the thermal head It will no longer be able to perform its normal functions. The adhesion to the thick film resistor 13 described in (2) is a required characteristic because if the wear-resistant layer peels off from the thick film resistor 13 during use, it will cause the above-mentioned trouble. The lubricity described in (2) is a property required for smooth feeding of recording paper.

しかし、従来耐摩耗層の材料として使用されている高融
点結晶化ガラス14は、電気絶縁性は良好であるが、耐
摩耗性及び表面潤滑性が十分でないため、長時間使用及
び高速使用の際には、正常な記録が行なわれなくなるお
それがあった。
However, although high melting point crystallized glass 14, which has been conventionally used as a material for the wear-resistant layer, has good electrical insulation properties, it does not have sufficient wear resistance and surface lubricity, so it cannot be used for long periods of time or at high speeds. There was a risk that normal recording would not be possible.

そこで、摺動部材のコーティング層や感熱ヘッドの耐摩
耗層の材料としてダイヤモンドやルビー等の耐摩耗性セ
ラミックス等の小塊を接着することが行われているが、
これらは密着性が十分でなく、しかも表面潤滑性が劣っ
ていることが多い。
Therefore, small lumps of wear-resistant ceramics such as diamonds and rubies are bonded as materials for the coating layer of sliding members and the wear-resistant layer of thermal heads.
These do not have sufficient adhesion and often have poor surface lubricity.

また、例えば特開昭59−143656には耐摩耗層と
してダイヤモンド薄膜を形成した感熱ヘッドが開示され
ているが、ダイヤモンド薄膜は耐摩耗性に優れているも
のの、表面潤滑性が十分でない。
Further, for example, Japanese Patent Application Laid-Open No. 59-143656 discloses a thermal head in which a diamond thin film is formed as a wear-resistant layer, but although the diamond thin film has excellent wear resistance, it does not have sufficient surface lubricity.

更に、例えば特開昭60−71597には、摺動面にダ
イヤモンドとグラファイトとの混晶からなる硬質カーボ
ン膜を形成した摺動部材が開示されているが、この硬質
カーボン膜もやはり耐摩耗性に優れているものの、表面
潤滑性が十分でない。
Furthermore, for example, JP-A-60-71597 discloses a sliding member in which a hard carbon film made of a mixed crystal of diamond and graphite is formed on the sliding surface, but this hard carbon film also has wear resistance. Although it has excellent surface lubricity, it does not have sufficient surface lubricity.

また、電気絶縁性が十分でないため、例えば感熱ヘッド
の耐摩耗層として用いることはできない。
Furthermore, since the electrical insulation property is not sufficient, it cannot be used as a wear-resistant layer of a thermal head, for example.

(発明が解決しようとする問題点) 本発明は上記問題点を解消するためになされたものであ
り、特に耐摩耗性及び表面潤滑性がともに優れた摺動部
材を提供することを目的とするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and particularly aims to provide a sliding member that is excellent in both wear resistance and surface lubricity. It is something.

[発明の構成] (問題点を解決するための手段と作用)本発明の摺動部
材は、摺動部材本体の少なくとも摺動面にi−カーボン
膜を形成したことを特徴とするものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) The sliding member of the present invention is characterized in that an i-carbon film is formed on at least the sliding surface of the sliding member main body. .

本発明において、i−カーボンとは、炭素を含むイオン
が生成する過程を含む方法により得られる硬質カーボン
である。具体的には、(a)グラファイトを原料とする
イオンビーム蒸着、(b)炭化水素を原料とするイオン
化蒸着、(c)グラファイトを原料とするイオンブレー
ティング法、等により得られる。このi−カーボンはビ
ッカース硬度が3000〜[)OOOHVであり、非晶
質構造又は若干結晶質の混在した非晶質構造を有してい
る。また、その炭素−炭素間の結合様式は、s p 3
結合が主であるが、若干のs p 2結合及びs p 
1結合を含んでいてもよい。更に、不純物として水素を
ある程度含んでいてもよい。このようなi−カーボンは
通常透明で、電気絶縁性も優れている。
In the present invention, i-carbon is hard carbon obtained by a method including a process of generating carbon-containing ions. Specifically, it can be obtained by (a) ion beam evaporation using graphite as a raw material, (b) ionization vapor deposition using hydrocarbon as a raw material, (c) ion blating method using graphite as a raw material, and the like. This i-carbon has a Vickers hardness of 3000 to [)OOOHV, and has an amorphous structure or an amorphous structure with a slightly mixed crystalline structure. Moreover, the bonding mode between carbon and carbon is s p 3
Mainly bonds, but some sp 2 bonds and sp
It may contain one bond. Furthermore, it may contain a certain amount of hydrogen as an impurity. Such i-carbon is usually transparent and has excellent electrical insulation properties.

このように摺動部材本体の摺動面にi−カーボン膜を形
成した摺動部材は、優れた耐摩耗性と表面潤滑性とを有
する。また、密着性及び電気絶縁性も優れており、例え
ば感熱ヘッドの耐摩耗層として好適である。
The sliding member in which the i-carbon film is formed on the sliding surface of the sliding member main body in this manner has excellent wear resistance and surface lubricity. It also has excellent adhesion and electrical insulation properties, and is suitable, for example, as an abrasion-resistant layer of a thermal head.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

実施例1 本発明を一般の摺動部材に適用した実施例を説明する。Example 1 An example in which the present invention is applied to a general sliding member will be described.

第1図に示す如く、SUS 304ステンレス鋼からな
る摺動部材本体1の摺動面にグラファイトを原料とする
イオンビーム蒸着法により膜厚5pのi−カーボン膜2
を形成した。
As shown in FIG. 1, an i-carbon film 2 with a thickness of 5p is deposited on the sliding surface of a sliding member body 1 made of SUS 304 stainless steel by ion beam evaporation using graphite as a raw material.
was formed.

上記の摺動部材(実施例1)、コーティング層を全く設
けていないステンレス鋼のみからなる摺動部材(参照例
)、i−カーボン膜2の代わりに膜厚5pの酸化アルミ
ニウム膜を形成した摺動部材(比較例1)、i−カーボ
ン膜2の代わりに膜厚5pの硫化モリブデン膜を形成し
た摺動部材(比較例2)及びi−カーボン膜2の代わり
にダイヤモンドとグラファイトとの混晶からなる膜厚5
pの硬質カーボン膜を形成した摺動部材(比較例3)を
用いて摺動試験を行ない、耐摩耗性(摺動面の減肉で評
価)及び表面潤滑性(摩擦係数で評価)を調べた。なお
、摺動試験は、大気中で摺動面に圧子を所定の圧力で押
しつけたまま、摺動面を往復運動させて行なった。その
結果を第1表に示す。
The above sliding member (Example 1), the sliding member made only of stainless steel without any coating layer (reference example), and the sliding member in which an aluminum oxide film with a thickness of 5p was formed instead of the i-carbon film 2. A sliding member (Comparative Example 1), a sliding member in which a molybdenum sulfide film with a thickness of 5p was formed in place of the i-carbon film 2 (Comparative Example 2), and a mixed crystal of diamond and graphite in place of the i-carbon film 2 Film thickness 5 consisting of
A sliding test was conducted using a sliding member (comparative example 3) on which a hard carbon film of P was formed, and wear resistance (evaluated by thinning of the sliding surface) and surface lubricity (evaluated by coefficient of friction) were investigated. Ta. The sliding test was conducted in the atmosphere by reciprocating the sliding surface while pressing the indenter against the sliding surface at a predetermined pressure. The results are shown in Table 1.

第1表から明らかなように、実施例1の摺動部材は耐摩
耗性に優れ、しかも摩擦係数が小さく表面潤滑性にも優
れていることがわかる。
As is clear from Table 1, the sliding member of Example 1 has excellent wear resistance, a small coefficient of friction, and excellent surface lubricity.

実施例2 本発明を感熱ヘッドに適用した実施例を説明する。第2
図に示すように、酸化アルミニウムからなるペン状の絶
縁性基材11を用意し、スクリーン印刷により、その周
面にPd−Agからなる電極12を、先端部に酸化ルテ
ニウムからなる厚膜抵抗体13をそれぞれ形成し、更に
前記電極12の外周に高融点結晶化ガラス14を形成し
た。
Example 2 An example in which the present invention is applied to a thermal head will be described. Second
As shown in the figure, a pen-shaped insulating base material 11 made of aluminum oxide is prepared, and an electrode 12 made of Pd-Ag is formed on the circumferential surface of the insulating base material 11 by screen printing, and a thick film resistor made of ruthenium oxide is attached to the tip of the pen-shaped insulating base material 11 made of aluminum oxide. 13 were respectively formed, and high melting point crystallized glass 14 was further formed around the outer periphery of the electrode 12.

次に、厚膜抵抗体13の外周をイオンブレーティング法
により約5pの厚さのi−カーボン膜15で被覆した。
Next, the outer periphery of the thick film resistor 13 was coated with an i-carbon film 15 having a thickness of about 5p by an ion blating method.

すなわち、グラファイトに電子ビームを照射して加熱・
蒸発させて炭素粒子とした後、イオン化・電圧加速して
厚膜抵抗体13にぶつけて1−カーボン膜15を形成し
た。
In other words, graphite is heated and heated by irradiating it with an electron beam.
After being evaporated to form carbon particles, the carbon particles were ionized and accelerated by voltage and bombarded against a thick film resistor 13 to form a 1-carbon film 15.

上記の感熱ヘッド(実施例2)、i−カーボン膜15の
代わりにガラスが形成されている第4図図示の感熱ヘッ
ド(比較例4)及びi−カーボン膜15の代わりにダイ
ヤモンド薄膜を形成した感熱ヘッド(比較例5)につい
て、感熱記録紙に対する表面潤滑性(摩擦係数で評価)
、押し込み法(Thin 5olid  FilIIl
s、 Vol、 79 (1981)、p、91)によ
る密着力、耐摩耗性(摺動面の減肉で評価)を調べた。
The above thermal head (Example 2), the thermal head shown in FIG. 4 in which glass was formed in place of the i-carbon film 15 (comparative example 4), and a diamond thin film was formed in place of the i-carbon film 15. Regarding the thermal head (Comparative Example 5), surface lubricity to thermal recording paper (evaluated by coefficient of friction)
, indentation method (Thin 5 solid FilIIl
The adhesion and abrasion resistance (evaluated by thinning of the sliding surface) were investigated according to S, Vol. 79 (1981), p. 91).

その結果を第2表に示す。The results are shown in Table 2.

第2表から明らかなように、実施例2の感熱ヘッドは表
面潤滑性(感熱記録紙に対する摩擦係数)、密着性、耐
摩耗性のいずれの特性も良好であることがわかる。また
、実施例2の感熱ヘッドは実装試験でも優れた性能を示
した。
As is clear from Table 2, the thermal head of Example 2 has good properties in terms of surface lubricity (coefficient of friction against thermal recording paper), adhesion, and abrasion resistance. Furthermore, the thermal head of Example 2 showed excellent performance in the mounting test.

なお、第2図図示の感熱ヘッドでは、電極12の外周に
高融点結晶化ガラス14を形成し、厚膜抵抗体13の外
周にのみi−カーボン膜15を形成したが、第3図に示
すように従来の感熱ヘッドと同様に電極12及び厚膜抵
抗体13の外周に高融点結晶化ガラス14を形成し、高
融点結晶化ガラス14の耐摩耗層の部分及び電極保護層
の一部(又は全部)の外周にi−カーボン膜15を形成
するようにしてもよい。
In the thermal head shown in FIG. 2, the high melting point crystallized glass 14 was formed around the outer periphery of the electrode 12, and the i-carbon film 15 was formed only around the outer periphery of the thick film resistor 13. As in the conventional thermal head, a high melting point crystallized glass 14 is formed around the electrode 12 and the thick film resistor 13, and a wear-resistant layer part of the high melting point crystallized glass 14 and a part of the electrode protective layer ( Alternatively, the i-carbon film 15 may be formed on the outer periphery of the entire structure.

第1表 第2表 [発明の効果コ 以上詳述した如く本発明によれば、特に耐摩耗性及び表
面潤滑性に優れた摺動部材を提供できるものである。
Table 1 Table 2 [Effects of the Invention] As detailed above, according to the present invention, a sliding member particularly excellent in wear resistance and surface lubricity can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における摺動部材の斜視図、
第2図は本発明の実施例2における感熱ヘッドの断面図
、第3図は本発明の他の実施例における感熱ヘッドの断
面図、第4図は従来の感熱ヘッドの断面図である。 1・・・摺動部材本体、2・・・i−カーボン膜、11
・・・絶縁性基材、12・・・電極、13・・・厚膜抵
抗体、14・・・高融点結晶化ガラス、15.16・、
。 i−カーボン膜。
FIG. 1 is a perspective view of a sliding member in Embodiment 1 of the present invention;
2 is a cross-sectional view of a thermal head according to a second embodiment of the present invention, FIG. 3 is a cross-sectional view of a thermal head according to another embodiment of the present invention, and FIG. 4 is a cross-sectional view of a conventional thermal head. DESCRIPTION OF SYMBOLS 1...Sliding member main body, 2...i-carbon film, 11
... Insulating base material, 12 ... Electrode, 13 ... Thick film resistor, 14 ... High melting point crystallized glass, 15.16.
. i-carbon film.

Claims (2)

【特許請求の範囲】[Claims] (1)摺動部材本体の少なくとも摺動面にi−カーボン
膜を形成したことを特徴とする摺動部材。
(1) A sliding member characterized in that an i-carbon film is formed on at least the sliding surface of the sliding member main body.
(2)棒状の絶縁基材と、該基材の周面に形成された電
極と、前記基材の先端部に形成され前記電極と接続され
た抵抗体と、少なくとも前記電極の外周に被覆された絶
縁性の電極保護体とを有し、少なくとも感熱記録紙との
接触部にi−カーボン膜を形成して感熱ヘッドとして用
いることを特徴とする特許請求の範囲第1項記載の摺動
部材。
(2) a rod-shaped insulating base material, an electrode formed on the circumferential surface of the base material, a resistor formed at the tip of the base material and connected to the electrode, and at least the outer periphery of the electrode covered The sliding member according to claim 1, characterized in that the sliding member has an insulating electrode protector and is used as a thermal head by forming an i-carbon film on at least the contact portion with thermal recording paper. .
JP4151486A 1986-02-28 1986-02-28 Sliding member Pending JPS62202073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151486A JPS62202073A (en) 1986-02-28 1986-02-28 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151486A JPS62202073A (en) 1986-02-28 1986-02-28 Sliding member

Publications (1)

Publication Number Publication Date
JPS62202073A true JPS62202073A (en) 1987-09-05

Family

ID=12610483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151486A Pending JPS62202073A (en) 1986-02-28 1986-02-28 Sliding member

Country Status (1)

Country Link
JP (1) JPS62202073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6516743B2 (en) * 1998-07-29 2003-02-11 Sumitomo Electric Industries, Ltd. Method and apparatus diffusing zinc into groups III-V compound semiconductor crystals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6516743B2 (en) * 1998-07-29 2003-02-11 Sumitomo Electric Industries, Ltd. Method and apparatus diffusing zinc into groups III-V compound semiconductor crystals

Similar Documents

Publication Publication Date Title
US4525417A (en) Carbon-containing sliding layer
JP3336682B2 (en) Hard carbon film
US5705272A (en) Heating member and heat fixing apparatus using the same
EP0119459A1 (en) Part comprising a substrate provided with a hard and corrosion-resistant coating
JP7440508B2 (en) Heat resistant carbon coating
USRE34035E (en) Carbon containing layer
JPH07132628A (en) Thermal head and production thereof
EP0859355B1 (en) Thin film magnetic head
JPS62202073A (en) Sliding member
FR2485238A1 (en) MAGNETIC HEAD AND METHOD FOR MANUFACTURING THE SAME
US4038517A (en) Environmentally and wear protected glass substrate thin film thermal printheads
JPH10226874A (en) Hard carbon coating and coating member and coated member therewith
JP3860348B2 (en) Thermal print head and manufacturing method thereof
US4129765A (en) Electrical switching contact
JPH03115868A (en) Potentiometer
JP4822833B2 (en) Optical glass element mold
JPH0884899A (en) Electronic iron
JPH06227015A (en) Wear-resistant protective film for thermal head and preparation thereof
JPH0778871B2 (en) Magnetic disk
JPS60212847A (en) Diamond parts
JPS60239253A (en) Printer wire for dot printer having wear resistant film and manufacture thereof
JPS63150926A (en) Film formation of diamond-shaped carbon film
JPS63303766A (en) Thermal head
JP2003073808A (en) Surface treated film
JPS62202753A (en) Thin film type thermal head