JPS62202036A - Refining method for lanthanide-containing alloy - Google Patents

Refining method for lanthanide-containing alloy

Info

Publication number
JPS62202036A
JPS62202036A JP13099686A JP13099686A JPS62202036A JP S62202036 A JPS62202036 A JP S62202036A JP 13099686 A JP13099686 A JP 13099686A JP 13099686 A JP13099686 A JP 13099686A JP S62202036 A JPS62202036 A JP S62202036A
Authority
JP
Japan
Prior art keywords
lanthanide
alloy
melting
weight
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13099686A
Other languages
Japanese (ja)
Other versions
JPH0366375B2 (en
Inventor
Toru Degawa
出川 通
Susumu Matsui
進 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to US06/927,790 priority Critical patent/US4695427A/en
Priority to GB8627119A priority patent/GB2183252B/en
Priority to DE19863639332 priority patent/DE3639332A1/en
Priority to NL8602943A priority patent/NL8602943A/en
Publication of JPS62202036A publication Critical patent/JPS62202036A/en
Publication of JPH0366375B2 publication Critical patent/JPH0366375B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a homogeneous lanthanide-containing alloy having high cleanliness, by specifying a refractory constituting the internal surface of a refractory vessel used for refining and by holding a melt of lanthanide-containing alloy in a nonoxidizing atmosphere. CONSTITUTION:The lanthanide-containing molten alloy is held in a nonoxidizing atmosphere in a vessel whose internal surface is constituted of a calcium oxide refractory of >=90wt% CaO content to undergo refining. According to this method, CaO has extremely high stability to a molten alloy containing high- activity metals and is also stable to a lanthanide-containing molten alloy as well and, unlike Al2O3, it scarcely forms lanthanide oxides by the reaction with lanthanide. As a result, contamination of molten metal by refractories does not occur, so that high-cleanliness lanthanide-containing alloy reduced in oxygen and sulfur content can be refined.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はランタノイド含有合金の溶製方法に係り、特に
光磁気ディスク用ターゲット合金として有用な高清浄の
ランタノイド含有合金を溶製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a lanthanide-containing alloy, and particularly to a method for producing a highly clean lanthanide-containing alloy useful as a target alloy for magneto-optical disks.

[従来の技術] 原子番号57のランタンから71のルテチウムに至る1
5個の希土類元素La、Ce、Pr。
[Prior art] From lanthanum with atomic number 57 to lutetium with atomic number 711
5 rare earth elements La, Ce, Pr.

Nd、Pm、Sm、EuXGd、Tb、Dy。Nd, Pm, Sm, EuXGd, Tb, Dy.

Ho、Er、7m%Yb% Lu、即ち、ランタノイド
については、近年になって、各元素の特異な性質を利用
した合金系への添加について、幅広い分野で検討がなさ
ね、各種産業分野で応用されている。
Regarding Ho, Er, 7m% Yb% Lu, that is, lanthanoids, in recent years, there has been no study in a wide range of fields about adding them to alloy systems that take advantage of the unique properties of each element, and there is no application in various industrial fields. has been done.

例えば、LaNi5、SmCoa、その他ミツシュメタ
ル(Mm)−N i系合金、例えば、MmNiasAf
losy MmNiajMnoss MmNia、qA
 fL o22 r 0.1等は、大量の水素を容易に
吸蔵し得ることから水素吸蔵合金として利用されている
For example, LaNi5, SmCoa, other Mitsushi metal (Mm)-Ni based alloys, such as MmNiasAf
losy MmNiajMnoss MmNia,qA
fL o22 r 0.1 and the like are used as hydrogen storage alloys because they can easily store large amounts of hydrogen.

また、SmCo5  (Sm36%) % S m 2
CO17、Ce−Co (Ce20%)、(Srrz−
x−Prx)CO5、Nd−Fe (Nd20〜25%
) 、S m 2  (F e Cu Z r Co 
) 17  (S m25%、Co50%) % N 
da−311B2〜n残部Fe(例えばNd+sB+5
Fe7t)は、ランタノイドの磁気特性により、極めて
強い磁性を示すため、永久磁石として小型モータ等に広
く利用されている。磁石としては、(F ecs2Ba
、+s) o、iTbαos L a (1115アモ
ルファス磁石も開発されている。
Also, SmCo5 (Sm36%) % S m 2
CO17, Ce-Co (Ce20%), (Srrz-
x-Prx) CO5, Nd-Fe (Nd20~25%
), S m 2 (F e Cu Z r Co
) 17 (S m25%, Co50%) % N
da-311B2~n remaining Fe (e.g. Nd+sB+5
Fe7t) exhibits extremely strong magnetism due to the magnetic properties of lanthanides, and is therefore widely used as a permanent magnet in small motors and the like. As a magnet, (Fecs2Ba
, +s) o, iTbαos L a (1115 amorphous magnets have also been developed.

更に、磁気記録材料としては、GdCo、GdFe、 
 DyFe、GdTeFe、TbFeCo、TbDyF
e、GdTbFe又はGdTeCo等のGd、Tb、D
yを含有するFe基、Co基、Ni基アモルファス合金
膜が、角型性の良い磁性膜となり、磁化性や消去性に優
れ、高密度記録が可能で、経時変化が小さいことから、
その研究開発に大きな期待が寄せられている。
Furthermore, as magnetic recording materials, GdCo, GdFe,
DyFe, GdTeFe, TbFeCo, TbDyF
e, Gd, Tb, D such as GdTbFe or GdTeCo
Fe-based, Co-based, and Ni-based amorphous alloy films containing y are magnetic films with good squareness, have excellent magnetization and erasability, are capable of high-density recording, and have little change over time.
There are great expectations for this research and development.

その他、Y b −A Il %Y b −Z r −
A 、i2 %M m−Zr−Aflは耐熱性の改善さ
れた大容量用A℃電線として、TiGd(Gd5%)は
強力軽合金として、MgNdは耐クリープMg合金とし
て、NiCrLa及びFeCrLaは耐高温酸化性の耐
熱合金として応用されている。
Others, Y b -A Il %Y b -Z r -
A, i2%M m-Zr-Afl is used as a high-capacity A℃ electric wire with improved heat resistance, TiGd (Gd5%) is used as a strong light alloy, MgNd is used as a creep-resistant Mg alloy, and NiCrLa and FeCrLa are used as high-temperature resistant It is applied as an oxidizable heat-resistant alloy.

しかして、ランタノイド含有合金の最も重要な用途とし
て、近年、光磁気ディスクへの応用が研究開発され、そ
の実用化が試みられている。
As the most important use of lanthanide-containing alloys, research and development has recently been carried out on their application to magneto-optical disks, and attempts have been made to put them into practical use.

現在、光磁気ディスクメモリ媒体としては、以下に示す
ようなGd、Tb、Dyなどの希土類金fi(RE)と
、Fe、Co、Niの遷移金属(TM)を組み合せたア
モルファス磁性膜が開発されている。
Currently, amorphous magnetic films that combine rare earth metals (RE) such as Gd, Tb, and Dy with transition metals (TM) such as Fe, Co, and Ni have been developed as magneto-optical disk memory media. ing.

Gd−Tb−Fe、Gd−Tb−Co。Gd-Tb-Fe, Gd-Tb-Co.

Tb−Fe−Co、Tb−Dy−Fe。Tb-Fe-Co, Tb-Dy-Fe.

Gd−Tb−Fe−Ge。Gd-Tb-Fe-Ge.

Gd−Co、Tb−Fe、Gd−Fe。Gd-Co, Tb-Fe, Gd-Fe.

Fe−Co−Tb−Gd。Fe-Co-Tb-Gd.

Tb−Dy−Fe−Co、  Dy−Fe。Tb-Dy-Fe-Co, Dy-Fe.

Gd−Fe−B1 これらのうち、光磁気ディスク材としては、当初Co−
Gd、Gd−Fe、Tb−Fe系が注目され、その後、
その組成敏感性、記録密度等からTb−Fe−Co、G
d−Tb1−Co系等へ変遷している。
Gd-Fe-B1 Among these, Co-
Gd, Gd-Fe, and Tb-Fe systems attracted attention, and subsequently,
Due to its compositional sensitivity, recording density, etc., Tb-Fe-Co, G
There has been a transition to d-Tb1-Co series, etc.

こられのRE−TMIiii性膜は、光磁気メモリ媒体
として次の特徴を有し、その実用化が有望視されている
These RE-TMIiii films have the following characteristics as magneto-optical memory media, and are expected to be put to practical use.

■ キュリ一点が比較的低く補償点記録もできるので、
記録・消去の感度が高い。半導体レーザ(LD)による
記録・消去が可能である。
■ Since the cost of one point is relatively low and it is possible to record compensation points,
High sensitivity for recording and erasing. Recording and erasing can be performed using a semiconductor laser (LD).

■ アモルファスであるため媒体ノイズが少ない。Ke
rr回転角も0.2〜0.35°であり比較的大きい。
■ Since it is amorphous, there is little media noise. Ke
The rr rotation angle is also relatively large, ranging from 0.2 to 0.35°.

従って、再生信号のSN比が大きい。Therefore, the SN ratio of the reproduced signal is large.

■ 垂直磁化膜であるので高密度記録ができ、かつ磁気
光学効果の大きな極Kerr効果やFaraday効果
を使うことができる。
(2) Since it is a perpendicularly magnetized film, high-density recording is possible, and the polar Kerr effect and Faraday effect, which have large magneto-optical effects, can be used.

■ 各種基板の上に大面積の膜を作ることができる。■ Large-area films can be created on various substrates.

■ 組成比を連続的にとることができ、種々の元素を比
較的自由に混ぜることができる。
■ The composition ratio can be adjusted continuously, and various elements can be mixed relatively freely.

従来、これらのランタノイド含有合金は、アルミナ質等
の坩堝を用いて溶解、鋳造することにより製造されてい
る。
Conventionally, these lanthanide-containing alloys have been manufactured by melting and casting using a crucible made of alumina or the like.

[発明が解決しようとする問題点] しかるにランタノイドは極めて反応活性が高く、酸素(
0)、硫黄(S)、窒素(N)と非常に良く反応するた
め、従来においては、通常の坩堝溶解においては特に溶
湯中への酸素、硫黄の混入を防止することができなかっ
た。またランタノイドの高活性のために、溶湯と接する
耐火炉材による合金汚染やランタノイド系酸化物の生成
、ランタノイド含有量の減少、更に著しい場合には耐火
炉材の破損等の問題が生起する。
[Problems to be solved by the invention] However, lanthanoids have extremely high reaction activity and do not react well with oxygen (
0), sulfur (S), and nitrogen (N), so in the past, it has not been possible to prevent oxygen and sulfur from entering the molten metal during melting in a normal crucible. Furthermore, due to the high activity of lanthanoids, problems such as alloy contamination by refractory furnace materials that come into contact with the molten metal, formation of lanthanide-based oxides, decrease in lanthanide content, and, in severe cases, damage to the refractory furnace materials occur.

例えば、アルミナ質の耐火材料により、溶湯は下記反応
により汚染される。なおLnはランタノイド元素を示す
For example, the molten metal is contaminated by the alumina refractory material due to the following reaction. Note that Ln represents a lanthanide element.

A、C203+2Ln−=2Aj2+Ln2O3又は Aj2203 +3 Ln−=2Afl+3 LnOこ
のようにランタノイド含有合金は、通常の耐火物容器を
用いた溶解では良好な清浄度の合金は得られないのであ
る。
A, C203+2Ln-=2Aj2+Ln2O3 or Aj2203+3 Ln-=2Afl+3 LnO Thus, lanthanide-containing alloys cannot be melted in a normal refractory container to obtain alloys with good cleanliness.

一方、水冷銅坩堝を用いる高熱源を使用したアーク溶解
、プラズマ溶解、電子ビーム溶解などの方法では均質な
合金を得ることが極めて難しい現状である。
On the other hand, it is currently extremely difficult to obtain a homogeneous alloy using methods such as arc melting, plasma melting, and electron beam melting that use a high heat source using a water-cooled copper crucible.

一般に、光磁気ディスクには、記録、再生、消去の感度
、記録密度、垂直磁気異方性、Kerr回転角、寿命等
の点で高特性が要求されているが、これらの特性は、光
磁気ディスク用ターゲット合金の純度や均質性に大きく
影響を受ける。
In general, magneto-optical disks are required to have high characteristics in terms of recording, reproducing and erasing sensitivity, recording density, perpendicular magnetic anisotropy, Kerr rotation angle, lifespan, etc. It is greatly affected by the purity and homogeneity of the disk target alloy.

しかしながら、前述の如く、従来の方法ではランタノイ
ド含有合金を高清浄度かつ均質に製造することはできず
、特に光磁気ディスク用ターゲット合金として用いられ
るTb、Gd、 Dy等のRE酸成分10〜50重量%
程度含有するものは、酸素の混入による溶湯汚染が起こ
り易く、しかも非常に割れ易いことなどから、その製造
にあたって、改良すべき問題点が多い。
However, as mentioned above, it is not possible to produce lanthanide-containing alloys with high purity and homogeneity using conventional methods, and in particular RE acid components such as Tb, Gd, Dy, etc. weight%
There are many problems that need to be improved in the production of such materials, as they are susceptible to contamination of the molten metal due to oxygen contamination and are also extremely susceptible to cracking.

[問題点を解決するための手段] 本発明は上記従来の実情に鑑み、ランタノイド含有合金
の工業的に極めて有利な溶製方法を提供するものであっ
て、 ランタノイドを含有する合金を溶製するに際し、内面が
CaO含有率90重量%以上のカルシア買耐火物で構成
された容器を用いて、非酸化性雰囲気にてランタノイド
含有合金の溶湯を保持することを特徴とするランタノイ
ド含有合金の溶製方法、 を要旨とするものである。
[Means for Solving the Problems] In view of the above-mentioned conventional circumstances, the present invention provides an industrially extremely advantageous method for melting a lanthanide-containing alloy. Melting of a lanthanide-containing alloy, characterized in that the molten metal of the lanthanide-containing alloy is held in a non-oxidizing atmosphere using a container whose inner surface is made of calcia refractory having a CaO content of 90% by weight or more. The method is summarized as follows.

以下に本発明につき詳細に説明する。The present invention will be explained in detail below.

なお、本明細書において「%」は「重量%」を表す。In addition, in this specification, "%" represents "weight %".

本発明において、ランタノイド含有合金とは、La、C
e、Pr、Nd、Pm、Sm、Eu。
In the present invention, lanthanide-containing alloys include La, C
e, Pr, Nd, Pm, Sm, Eu.

Gd、Td、Dy、Ho、Er%Tm、Yb及びLuの
ランタノイド元素を1 f!!又は2f!1以上含有す
る合金であって、特にこれらのランタノイド元素3〜8
0%、とりわけ10%以上、例えば10〜50%とAu
、Cr% Fe、Mn、Ni。
Gd, Td, Dy, Ho, Er%Tm, Yb and Lu lanthanide elements at 1 f! ! Or 2f! An alloy containing one or more of these lanthanide elements, especially 3 to 8 of these lanthanide elements.
0%, especially 10% or more, for example 10-50% of Au
, Cr% Fe, Mn, Ni.

Cu、V、Li、Co、Ti、Ta、W、Sn。Cu, V, Li, Co, Ti, Ta, W, Sn.

Zr、MO,ME、Ga%Nb%St及びBf等の1種
又は2 fffi以上との合金が挙げられる。
Examples include alloys with one or more of Zr, MO, ME, Ga%Nb%St, Bf, etc., or with 2 fffi or more.

ランタノイド含有合金としては次に例示するようなもの
が知られている。
The following examples are known as lanthanide-containing alloys.

5%Gd−Ti、Nd−Mg。5% Gd-Ti, Nd-Mg.

20〜25%Nd−Fe、Nda 〜3O−B2〜2m
−Fe、SmCo5゜ 5rn2   C017,Sm  2  (F  e 
CuZrCo)+7 。
20~25%Nd-Fe, Nda~3O-B2~2m
-Fe, SmCo5゜5rn2 C017, Sm 2 (Fe
CuZrCo)+7.

(Srrz−x−Prx)Cots、LaNi5゜Mm
Ni  5 、  Gd−Fe、  Gd−Te−Fe
  、Gd−Te−Co、  Gd−Co。
(Srrz-x-Prx)Cots, LaNi5゜Mm
Ni5, Gd-Fe, Gd-Te-Fe
, Gd-Te-Co, Gd-Co.

20%Ce−Co、  Dy−Fe。20% Ce-Co, Dy-Fe.

Y−Zn−An、  Mm−Zr−A fL 。Y-Zn-An, Mm-Zr-A fL.

Y−Aj2.  La−Ni−Cr、  La−Fe 
 −Cr。
Y-Aj2. La-Ni-Cr, La-Fe
-Cr.

(F ennBo、xi)  ojT busL a、
aos*Tb−Fe−Co、  Tb−Dy−Fe。
(F ennBo, xi) ojT busL a,
aos*Tb-Fe-Co, Tb-Dy-Fe.

Sc−Mg−A、Q、  5c−Li−All。Sc-Mg-A, Q, 5c-Li-All.

SC5Ga 3 、 20〜30 %Mm−M g。SC5Ga 3, 20-30% Mm-Mg.

Mm−Co、  MmN  i  ajAl  as。Mm-Co, MmN i ajAl as.

MmN  i  a、sMmo、s、  MmN  i
  a、sA Il o、gZ  r  o、+特に、
本発明の方法はランタノイド元素を10%以上、例えば
10〜50%含有する光磁気ディスク用ターゲット合金
の製造に有効であるが、これらの合金としては、次のよ
うなものが挙げられる。
MmN i a,sMmo,s, MmN i
a, sA Il o, gZ r o, + especially,
The method of the present invention is effective for producing target alloys for magneto-optical disks containing 10% or more, for example 10 to 50%, of lanthanide elements, and examples of these alloys include the following.

GdCo、GdFe、TbFe。GdCo, GdFe, TbFe.

G d 13T b 13F e 74. T b D
 y F e 。
G d 13T b 13F e 74. T b D
y F e .

GdTbDyFe、Gd26(Fe8.Co、、)、4
[(GdTb)z7Fe7z]  96ae4T b 
2+  (F e asCo 15)  79゜(G 
 d  T  b  )  23COyア。
GdTbDyFe, Gd26(Fe8.Co, ), 4
[(GdTb)z7Fe7z] 96ae4T b
2+ (F e asCo 15) 79° (G
d T b ) 23COya.

(G d soT b 50)1−a(F e a5c
 o l5)a(Gd2oCOao)so(Tb21T
eアq  S。
(G d soT b 50) 1-a (F e a5c
o l5)a(Gd2oCOao)so(Tb21T
eAqS.

(Gd  33Tbe〕)  37(F  es3cO
4γ 6.、−Sm(Gd  2aFe  〕4)  
9eBi  γ 。
(Gd 33Tbe]) 37(F es3cO
4γ 6. , -Sm(Gd2aFe]4)
9eBi γ.

(G d 26CO74)  93B  i 4(G 
 d  26  (F  e  70CO30)74)
91B  i  e本発明においては、このようなラン
タノイド含有合金を、内面がCaO含有率90%以上の
カルシア質耐火物で構成された容器を用い、非酸化性雰
囲気下で、常法例えば高周波あるいは低周波誘導加熱法
等で加熱して溶解させて溶製する。
(G d 26CO74) 93B i 4 (G
d 26 (F e 70CO30) 74)
91B ie In the present invention, such a lanthanide-containing alloy is heated in a conventional manner, such as by high frequency or low It is heated and melted using a frequency induction heating method or the like.

本発明において、ランタノイド含有合金の溶製に用いる
容器の内面を構成するCaO質耐火材としては、カルシ
ア(Cab)、CaOを富化したドロマイトや、共存酸
化物としてZrO2、Y2O3等が挙げられる。又、ラ
ンタノイド系の酸化物でも良い。等が挙げられる。Ca
Oとしては、電融カルシアが、緻密であることから、極
めて好適である。また、生石灰、石灰石、或いは消石灰
などを焼成したカルシア(CaO)も好適である。
In the present invention, examples of the CaO refractory material constituting the inner surface of the container used for melting the lanthanide-containing alloy include calcia (Cab), CaO-enriched dolomite, and coexisting oxides such as ZrO2 and Y2O3. Alternatively, lanthanide-based oxides may be used. etc. Ca
As O, fused calcia is extremely suitable because it is dense. Also suitable is calcia (CaO) obtained by burning quicklime, limestone, or slaked lime.

このようなCaO買耐火月中のCaO含有率が高い程、
不純物生成が少なく、溶湯の汚染はより確実に防止され
る。本発明においては、CaO含有率が90%以上、特
に95%以上とりわけ98%以上のCaO質耐火月で構
成された容器を用いるのが好ましい。
The higher the CaO content during such CaO purchase fire resistance month,
There is less impurity generation, and contamination of the molten metal is more reliably prevented. In the present invention, it is preferable to use a container made of CaO refractory material having a CaO content of 90% or more, particularly 95% or more, especially 98% or more.

またCaO質耐火材中、CaF2.CaC,O2等の含
有量はできるだけ少ないことが好ましく、CaF21%
以下、Ca(1:f120.5%以下であることが好ま
しい。
In addition, among CaO-based refractory materials, CaF2. The content of CaC, O2, etc. is preferably as low as possible, and CaF21%
Hereinafter, Ca(1:f12) is preferably 0.5% or less.

このようなCaO]:耐火材で構成された容器にてラン
タノイド合金を溶製する際、溶製:囲気は特にアルゴン
、ヘリウム等の不活性ガス雰囲気が好ましく、その圧力
は10torr以上であることが望ましい。
[Such CaO]: When melting a lanthanide alloy in a container made of a refractory material, the surrounding atmosphere is preferably an inert gas atmosphere such as argon or helium, and the pressure is preferably 10 torr or more. desirable.

また溶製温度は、溶製する合金の融点より5゜〜200
℃高い温度とするのが好ましく、保持時間は過度に長い
と溶湯汚染の恐れがあることから、5〜10分程度とす
るのが好ましい。
The melting temperature is 5° to 200° higher than the melting point of the alloy to be melted.
It is preferable to set the temperature to a high degree. If the holding time is too long, there is a risk of molten metal contamination, so it is preferable to set the holding time to about 5 to 10 minutes.

本発明の方法により溶製を行って得られたランタノイド
含有合金の溶渇け、次いで所望の形状の鋳型に注入して
鋳塊とするが、この際、その凝固冷却においては、予熱
鋳型を用いて1℃/分以下で徐冷することが好ましい。
The lanthanide-containing alloy obtained by the method of the present invention is melted and then poured into a mold of a desired shape to form an ingot. At this time, a preheated mold is used for solidification and cooling. It is preferable to cool slowly at a rate of 1° C./min or less.

このような本発明の方法によれば、特に酸素混入量が著
しく低減された溶湯が得られ、また溶製条件を適宜制御
、調整することにより、再溶解も可能となる。
According to the method of the present invention, it is possible to obtain a molten metal in which the amount of oxygen mixed in is significantly reduced, and remelting is also possible by appropriately controlling and adjusting the melting conditions.

[作用] CaOは高活性金属を含む合金溶湯に対する安定性が極
めて高く、ランタノイド含有合金溶湯に対しても安定し
ている。そして、AJ2203の如く、ランタノイドと
反応してランタノイド酸化物を生成することが少ない。
[Function] CaO has extremely high stability against molten alloys containing highly active metals, and is also stable against molten alloys containing lanthanides. And unlike AJ2203, it is less likely to react with lanthanoids to produce lanthanide oxides.

このためランタノイド含有合金溶湯のランタノイドを減
少させたり、溶湯を不純物により汚染することがない。
Therefore, the lanthanoid content in the lanthanide-containing alloy melt is not reduced, and the melt is not contaminated with impurities.

また、特に本発明の方法によれば、ランタノイド含有合
金中の酸素量が著しく低減され、例えば2000〜30
00ppm程度の酸素を含有するGd又はTb系合金で
あっても、本発明の溶製法による合金化又は再溶解によ
り、その酸素含有量を150〜500ppm程度に低減
することができる。
Moreover, in particular, according to the method of the present invention, the amount of oxygen in the lanthanide-containing alloy is significantly reduced, e.g.
Even if the Gd or Tb alloy contains about 1,000 ppm of oxygen, the oxygen content can be reduced to about 150 to 500 ppm by alloying or remelting by the melting method of the present invention.

これは、CaOを90%以上含有する耐火物は溶湯中の
酸化物といわゆる炉壁反応し易く、GdO2、TbO2
等の溶湯中のランタノイド酸化物が nRxoy ; mca。
This is because refractories containing 90% or more of CaO tend to react with oxides in the molten metal, so-called furnace walls, and GdO2, TbO2
Lanthanide oxides in the molten metal such as nRxoy; mca.

=n IRxOy−mca。=n IRxOy-mca.

(式中、Rはランタノイド元素を示す。)のように炉壁
と反応して吸収されるためと考えられる。同様に、ラン
タノイド含有合金溶湯中の硫化物も炉壁に吸収され、酸
化物、硫化物介在量を大幅に減少させることができるの
で、純度の高いランタノイド含有合金を得ることが可能
どなる。
(In the formula, R represents a lanthanoid element.) This is thought to be due to the reaction with the furnace wall and absorption. Similarly, sulfides in the molten lanthanide-containing alloy are also absorbed by the furnace wall, and the amount of oxides and sulfides present can be significantly reduced, making it possible to obtain a highly pure lanthanide-containing alloy.

このため、内面がこのようなCaO貿炉材で構成された
容器を用いることにより、耐火材にょる溶湯の汚染がな
く、酸素、硫黄含有率の低い高清浄ランタノイド含有合
金の溶製が可能となる。
Therefore, by using a container whose inner surface is made of such a CaO alloy, there is no contamination of the molten metal by the refractory material, and it is possible to melt a highly clean lanthanide-containing alloy with low oxygen and sulfur contents. Become.

[実施例] 以下に本発明を実施例により更に具体的に説明するが、
本発明はその要旨を越えない限り以下の実施例に限定さ
れるものではない。
[Examples] The present invention will be explained in more detail by examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 第1表に示すランタノイドを後掲の第2表に示す組成の
CaO質坩堝、AJZs+ 03質坩堝にそれぞれ入れ
、これを出力10kw、周波数50kHzの内熱式誘導
炉に入れ、アルゴン雰囲気下で溶解後、10分間保持し
、得られた合金の0、S含有量を化学分析及び蛍光X線
により解析した結果を第1表に示す。
Example 1 The lanthanoids shown in Table 1 were placed in a CaO crucible and an AJZs+ 03 crucible having the compositions shown in Table 2 below, and placed in an internal heating induction furnace with an output of 10 kW and a frequency of 50 kHz, and placed in an argon atmosphere. Table 1 shows the results of chemical analysis and fluorescent X-ray analysis of the O and S content of the obtained alloy.

第1表より、CaO坩堝によれば、o、Sが少なく、純
度の高いランタノイド含有合金が得られることが明らか
である。
From Table 1, it is clear that using a CaO crucible, a lanthanide-containing alloy with low o and sulfur content and high purity can be obtained.

なお、比較例として行なフたAλ203坩堝中における
溶解実験では、A1のコンタミが認められ、それぞれ0
.1〜0.05%の残留が認められた。
In addition, in a dissolution experiment conducted in a lid Aλ203 crucible as a comparative example, contamination of A1 was observed, and each
.. A residual amount of 1 to 0.05% was observed.

第1表 第  2  表 実施例2 第4表に示す組成の坩堝を用い、アルゴン25torr
にて、実施例1と同様にして溶製を行い、30%Fe−
30%Co−20%Gd−20%Tb合金の合金化を行
フた。
Table 1 Table 2 Example 2 Using a crucible with the composition shown in Table 4, argon was heated at 25 torr.
Melting was carried out in the same manner as in Example 1, and 30% Fe-
Alloying of 30%Co-20%Gd-20%Tb alloy was carried out.

得られた合金の0、S含有量を化学分析及び蛍光X線に
より解析した結果を第3表に示す。
Table 3 shows the results of chemical analysis and fluorescent X-ray analysis of the 0 and S contents of the obtained alloys.

第3表より、特にCaO含有率が高く、CaF2、Ca
Cf12の少ないCaO坩堝によれば、0、Sが少なく
、純度の高いランタノイド含有合金が得られることが明
らかである。
From Table 3, the CaO content is particularly high, CaF2, Ca
It is clear that a CaO crucible containing less Cf12 can yield a lanthanide-containing alloy with less O, S and high purity.

第  3  表 第  4  表 実施例3 第2表に示す組成のCaO貿坩堝を用い、これを出力1
0kw、周波数50kHzの内熱式誘導炉に入れ、アル
ゴン250torr雰囲気下、第5表に示す温度で溶解
し、第5表に示す時間保持して、40%Gd−60%F
e合金(融点1220℃)の再溶解を行った。
Table 3 Table 4 Example 3 Using a CaO crucible with the composition shown in Table 2, it was
The mixture was placed in an internal heating induction furnace with a frequency of 0 kW and 50 kHz, and melted at the temperature shown in Table 5 in an argon atmosphere of 250 torr, and held for the time shown in Table 5 to produce 40%Gd-60%F.
The e-alloy (melting point: 1220°C) was remelted.

得られた合金の0、S含有量を化学分析及び蛍光X線に
より解析した結果を第5表に示す。
Table 5 shows the results of chemical analysis and fluorescent X-ray analysis of the 0 and S contents of the obtained alloys.

第5表より、合金の融点より50〜200℃高い温度で
5〜10分間保持した場合には、0、Sが極めて少なく
、純度の高いランタノイド含有合金が得られることが明
らかである。
From Table 5, it is clear that when the temperature is maintained at a temperature 50 to 200° C. higher than the melting point of the alloy for 5 to 10 minutes, a highly pure lanthanide-containing alloy with extremely low 0 and S content can be obtained.

第  5  表 実施例4 第2表に示す組成のCaO買坩堝を用い、これを出力1
0kw、周波数50kHzの内熱式誘導炉に入れ、アル
ゴン25torr雰囲気下合金の融点よりも50〜20
0℃高い温度で溶解後、5〜10分間保持して、4o%
Tb30%Fe−30%CO合金の溶製を行った。
Table 5 Example 4 Using a CaO purchasing crucible with the composition shown in Table 2, it was
The melting point of the alloy was 50 to 20% lower than the melting point of the alloy in an 0kW, 50kHz internal heating induction furnace in an argon atmosphere of 25torr.
After melting at a temperature higher than 0°C, hold for 5 to 10 minutes to achieve a concentration of 4o%.
A Tb30%Fe-30%CO alloy was melted.

得られた溶湯を予熱鋳型に入れて第6表に示す冷却速度
で徐冷して鋳塊を得た。
The obtained molten metal was placed in a preheated mold and slowly cooled at the cooling rate shown in Table 6 to obtain an ingot.

得られた合金のO,S含有量を化学分析及び蛍光X線に
より解析した結果を第6表に示す。
Table 6 shows the results of chemical analysis and fluorescent X-ray analysis of the O and S contents of the obtained alloy.

第6表より、1℃/分以下で徐冷することにより、0、
Sが極めて少なく、純度の高いランタノイド含有合金が
得られることが明らかである。
From Table 6, by slow cooling at a rate of 1°C/min or less, 0,
It is clear that a lanthanide-containing alloy with extremely low S content and high purity can be obtained.

第  6  表 [発明の効果] 以上詳述した通り、本発明のランタノイド含有合金の溶
製方法は、ランタノイド含有合金溶湯を、内面がCaO
含有率90%以上のカルシア質耐火材で構成された容器
中で、非酸化性雰囲気にて保持するものであり、清浄度
の高いランタノイド含有合金を得ることが可能である。
Table 6 [Effects of the Invention] As detailed above, the method for producing a lanthanide-containing alloy according to the present invention is to melt a lanthanide-containing alloy molten metal with an inner surface of CaO.
It is kept in a non-oxidizing atmosphere in a container made of calcia refractory material with a content of 90% or more, and it is possible to obtain a highly clean lanthanide-containing alloy.

このような本発明方法によれば、 ■ 低酸素、低硫黄で、耐火材からのコンタミのないラ
ンタノイド含有合金を容易に得ることができる。特に、
酸素量は著しく低減される。
According to the method of the present invention, (1) it is possible to easily obtain a lanthanide-containing alloy that is low in oxygen, low in sulfur, and free from contamination from refractory materials; especially,
The amount of oxygen is significantly reduced.

■ 従って、得られる合金は、磁気特性、耐食性、耐熱
性等に優れ、極めて高特性なものとなる。また、合金の
機械的強度も向上する。
(2) Therefore, the obtained alloy has excellent magnetic properties, corrosion resistance, heat resistance, etc., and has extremely high properties. The mechanical strength of the alloy is also improved.

■ 耐火材がランタノイドによって侵食され、破損する
ことがなく、溶製を長期にわたって継続的に行うことが
可能である。
■ The refractory material will not be eroded and damaged by lanthanoids, and melting can be carried out continuously over a long period of time.

■ 極めて均質な組成の合金が得られる。■ An alloy with extremely homogeneous composition can be obtained.

■ ランタノイド含有合金の再溶解、鋳造を容易に行え
る。このためスクラップの有効利用が可能となる7 等の様々な効果が奏され、工業的に極めて有利である。
■ Easily remelts and casts lanthanide-containing alloys. For this reason, various effects such as 7 enabling effective use of scrap are achieved, which is extremely advantageous industrially.

特に、本発明の方法は、Gd、Tb、Dy等を10%以
上含有する光磁気ディスク用ターゲット合金の製造に有
効であり、本発明により得られる合金によれば、割れの
問題も解消され、高特性光磁気ディスクを提供すること
が可能とされる。
In particular, the method of the present invention is effective for producing target alloys for magneto-optical disks containing 10% or more of Gd, Tb, Dy, etc. According to the alloy obtained by the present invention, the problem of cracking is also solved. It is possible to provide a magneto-optical disk with high characteristics.

また、本発明はランタノイドを含有する戻り材の溶解に
も良好に採用することができる。
Furthermore, the present invention can be successfully applied to melting return material containing lanthanoids.

Claims (3)

【特許請求の範囲】[Claims] (1)ランタノイドを含有する合金を溶製するに際し、
内面がCaO含有率90重量%以上のカルシア質耐火物
で構成された容器を用いて、非酸化性雰囲気にてランタ
ノイド含有合金の溶湯を保持することを特徴とするラン
タノイド含有合金の溶製方法。
(1) When melting an alloy containing lanthanoids,
A method for melting a lanthanide-containing alloy, which comprises holding a molten metal of a lanthanide-containing alloy in a non-oxidizing atmosphere using a container whose inner surface is made of a calcia refractory having a CaO content of 90% by weight or more.
(2)ランタノイドを10重量%以上含有する合金を溶
製するに際し、内面がCaO含有率95重量%以上、C
aF_21重量%以下、CaCl_20.5重量%以下
のカルシア質耐火材で構成された容器を用いて、不活性
ガス雰囲気にてランタノイド含有合金の溶湯を該合金の
融点より50〜200℃高い温度で保持することを特徴
とする特許請求の範囲第1項に記載の溶製方法。
(2) When melting an alloy containing 10% by weight or more of lanthanoids, the inner surface has a CaO content of 95% by weight or more, C
Using a container made of calcia refractory material containing aF_21% by weight or less and CaCl_20.5% by weight or less, the molten metal of the lanthanide-containing alloy is maintained at a temperature 50 to 200°C higher than the melting point of the alloy in an inert gas atmosphere. The melting method according to claim 1, characterized in that:
(3)ランタノイドを10重量%以上含有する光磁気デ
ィスク用ターゲット合金を溶製するに際し、内面がCa
O含有率90重量%以上、CaF_21重量%以下、C
aCl_20.5重量%以下のカルシア質耐火物で構成
された容器を用いて、アルゴンガス雰囲気10torr
以上にて、該合金の溶湯を該合金の融点より50〜20
0℃高い温度で3〜10分保持することを特徴とする特
許請求の範囲第1項又は第2項に記載の溶製方法。
(3) When melting a magneto-optical disk target alloy containing 10% by weight or more of lanthanoids, the inner surface is made of Ca.
O content: 90% by weight or more, CaF_21% by weight or less, C
Argon gas atmosphere at 10 torr using a container made of calcia refractory with aCl_20.5% by weight or less
In the above, the molten metal of the alloy is 50 to 20% lower than the melting point of the alloy.
The melting method according to claim 1 or 2, wherein the melting method is held at a temperature 0° C. higher for 3 to 10 minutes.
JP13099686A 1985-11-19 1986-06-05 Refining method for lanthanide-containing alloy Granted JPS62202036A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US06/927,790 US4695427A (en) 1985-11-19 1986-11-05 Method for production of lanthanide-containing alloy
GB8627119A GB2183252B (en) 1985-11-19 1986-11-13 Method for production of lanthanide-containing alloy
DE19863639332 DE3639332A1 (en) 1985-11-19 1986-11-18 METHOD FOR PRODUCING A LANTHANIDE CONTAINING ALLOY
NL8602943A NL8602943A (en) 1985-11-19 1986-11-19 METHOD FOR PREPARING A LANTHANIDE-CONTAINING ALLOY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25938585 1985-11-19
JP60-259385 1985-11-19

Publications (2)

Publication Number Publication Date
JPS62202036A true JPS62202036A (en) 1987-09-05
JPH0366375B2 JPH0366375B2 (en) 1991-10-17

Family

ID=17333403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13099686A Granted JPS62202036A (en) 1985-11-19 1986-06-05 Refining method for lanthanide-containing alloy

Country Status (1)

Country Link
JP (1) JPS62202036A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205432A (en) * 1983-05-06 1984-11-21 Tohoku Metal Ind Ltd Method for dissolving alloy containing active metal or noble metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205432A (en) * 1983-05-06 1984-11-21 Tohoku Metal Ind Ltd Method for dissolving alloy containing active metal or noble metal

Also Published As

Publication number Publication date
JPH0366375B2 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
US4851058A (en) High energy product rare earth-iron magnet alloys
EP0108474A2 (en) RE-TM-B alloys, method for their production and permanent magnets containing such alloys
JPS609852A (en) High energy stored rare earth-iron magnetic alloy
Schneider et al. The binary system iron-neodymium
JPH0663056B2 (en) Non-sintered permanent magnet alloy and manufacturing method thereof
JPS6350434A (en) Production of rare earth metal and rare earth metal-containing alloy
US4695427A (en) Method for production of lanthanide-containing alloy
US5174362A (en) High-energy product rare earth-iron magnet alloys
JPS62202036A (en) Refining method for lanthanide-containing alloy
US3326637A (en) Ferromagnetic intermetallic compounds and method of preparation
Reinsch et al. Phase relations in the system Sm-Fe-Ti and the consequences for the production of permanent magnets
US3508914A (en) Methods of forming and purifying nickel-titanium containing alloys
JPH0430451B2 (en)
US4375371A (en) Method for induction melting
US3679394A (en) Method for casting high ti content alloys
JPH10261514A (en) Magnetic material
EP4213166B1 (en) Supersaturated solid solution soft magnetic material and preparation method thereof
JP3836266B2 (en) Method for producing rare earth transition metal alloy powder for magneto-optics
JPH0684627A (en) R-b-fe based cast magnet
CA1243491A (en) Method of manufacturing a hydrogen-storing alloy
JPS6396259A (en) Co-cr alloy for vapor deposition
JPS63206466A (en) Fe-si-base alloy for vapor deposition
Ray et al. The preparation of RCo 5 permanent magnet alloys
JPS62116734A (en) Refining method for high-mn alloy
JPH0356299B2 (en)