JPS62201380A - Azimuth measuring instrument - Google Patents
Azimuth measuring instrumentInfo
- Publication number
- JPS62201380A JPS62201380A JP4451886A JP4451886A JPS62201380A JP S62201380 A JPS62201380 A JP S62201380A JP 4451886 A JP4451886 A JP 4451886A JP 4451886 A JP4451886 A JP 4451886A JP S62201380 A JPS62201380 A JP S62201380A
- Authority
- JP
- Japan
- Prior art keywords
- antennas
- received
- antenna
- difference
- sum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 claims abstract description 24
- 238000012935 Averaging Methods 0.000 claims description 4
- 230000010287 polarization Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、レーダー等における受信電波の到来方位の測
定装置に関し、特に空中線の回転数以上の回数でその到
来方位のデータを取得する方位測定装置に関する〇
(従来の技術)
従来、この種の方位測定装置は第3図にブロック図で示
す構成であった。また、第4図(a)〜(c)は第3図
の装置の各部(信号の波形を示し、第4図(d)は第3
図装置における電波到来方位の測定方位を示す図である
。この装置においては、空中線21はオロビーム22と
差ビーム23の2鷹のビームを有し、水平面内で回・駄
する。オロビーム22及び差ビーム23で受信した(1
号26.27は受信機24へ送られる。受信機24は、
振幅がオロビームと差ビームによる受信信号の比、すな
わちオロビームと差ビームの利得比に対応し、極性が差
ビーム位相の位相反転に対応するビデオ信号28を生成
する。このビデオ信号は処理回路25へ送られここで、
ビデオ振幅から空中線指向中心方位と受信電波到来方位
との偏角の絶対値が求められ、さらにビデオ(信性から
左右いずれかの方向判別がなされ4角29が求められる
。次にこの偏角と空中線回転角からパルス毎の到来方位
30が求められ、一連のパルス列について平均を行うこ
とで目標電波の到来方向が求められる。どg4図(a)
〜(d)において、縦軸は信号の振幅を示し、横軸は空
中線回転角度を示せ。本図(a)〜(c)における縦方
向の実線は、受信パルスタイミングごとの各信号の振幅
及び極性を表わしている。同図(d)の縦方向の破線は
、同図(a)〜(c)と同じ受信パルスタイミングにお
けるビデオ信号28を示す。そし℃、第4図(d)では
横方向の矢印により各受信パルスfσの偏角29が表わ
しである。受信電波の到来方位が61であれば、空中線
回転角が01に接近している間はビデオ信号28は負で
あり、空中線回転角がθ、かも遠ざるときにはビデオ信
号28は正である。処理回路25は、各受信パルス毎に
偏角29を求め、その時の空中線回転角に偏角29を加
え(ビデオ信号28が負の期間)、又は差し引き(ビデ
オ信号28が正の期間)して、各受信パルス毎の電波到
来方位30を求め、これら受信パルス毎の受信戒波到来
方[30を平均して最も確からしい受信電波到来方位θ
1を求める。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a device for measuring the direction of arrival of received radio waves in radar, etc., and in particular to direction measurement that acquires data on the direction of arrival at a frequency greater than the number of rotations of an antenna. 〇 Regarding Apparatus (Prior Art) Conventionally, this type of direction measuring apparatus has a configuration shown in the block diagram in FIG. 3. 4(a) to 4(c) show each part (signal waveform) of the device in FIG. 3, and FIG. 4(d) shows the waveform of the
It is a figure which shows the measurement direction of the radio wave arrival direction in a figure device. In this device, the antenna 21 has two beams, an oro beam 22 and a differential beam 23, which rotate in a horizontal plane. Received on oro beam 22 and difference beam 23 (1
Nos. 26 and 27 are sent to the receiver 24. The receiver 24 is
A video signal 28 is generated whose amplitude corresponds to the ratio of the received signals by the Oro beam and the difference beam, ie, the gain ratio of the Oro beam and the difference beam, and whose polarity corresponds to the phase inversion of the difference beam phase. This video signal is sent to a processing circuit 25 where it is
The absolute value of the declination between the antenna pointing center azimuth and the received radio wave arrival direction is determined from the video amplitude, and the direction of the left or right is determined from the video (reliability) to determine the 4 angle 29.Next, this declination and The direction of arrival 30 for each pulse is determined from the antenna rotation angle, and the direction of arrival of the target radio wave is determined by averaging the series of pulse trains.Figure 4 (a)
In ~(d), the vertical axis indicates the signal amplitude, and the horizontal axis indicates the antenna rotation angle. The solid lines in the vertical direction in the figures (a) to (c) represent the amplitude and polarity of each signal at each reception pulse timing. The vertical broken line in FIG. 10(d) indicates the video signal 28 at the same reception pulse timing as in FIG. 2(a) to (c). In FIG. 4(d), the deflection angle 29 of each received pulse fσ is represented by a horizontal arrow. If the arrival direction of the received radio wave is 61, the video signal 28 is negative while the antenna rotation angle approaches 01, and the video signal 28 is positive when the antenna rotation angle is less than θ. The processing circuit 25 determines the declination angle 29 for each received pulse, and adds the declination angle 29 to the antenna rotation angle at that time (during a period in which the video signal 28 is negative) or subtracting it (during a period in which the video signal 28 is positive). , find the radio wave arrival direction 30 for each received pulse, and calculate the most likely received radio wave arrival direction θ by averaging the received command wave arrival direction 30 for each received pulse.
Find 1.
(発明が解決しようとする問題点)
上述した従来の方位測定装置では、受信電波の到来方位
の測定は空中線1回転当り1回だけ行われるから、この
測定周期を短くするためには空中線回転数を高くする方
法が一般に考えられる。しかし、回転数には空中線強度
等による制限があるから、測定周期の短縮には限界があ
る。(Problems to be Solved by the Invention) In the conventional direction measuring device described above, the direction of arrival of the received radio waves is measured only once per one rotation of the antenna. A common method is to increase the However, since the number of revolutions is limited by the strength of the antenna, etc., there is a limit to the shortening of the measurement cycle.
(間m点を4P、するための手段)
前述の問題点を解決するために本発明が提供する方位測
定装置dは、指向特性のパターンの軸が単一である第1
1ビームと、指向特性のパターンの軸が前記朽ビームを
中心として方位角方向にほぼ対称な方向の第1及び第2
のビームからなる差ビームとの2橿のビームをそれぞれ
もつ第1及び第2の空中線と、前記第1及び第2の空中
線の前記第及び差ビームによる受信信号を受け、振幅が
前記オロビームと前記差ビームの前記受信信号の振幅比
に対応し、極性が前記差ビームの位相を表すビデオ信号
を前記第1及び第2の空中線の前記受信信号につき互い
に独立に生成して第1及び第2のビデオ信号として出力
する受信機と、前記第1及び第2のビデオ信号をそれぞ
れ受ける第1及び第2の処理回路とを備え、前記第1及
び第2の空中線における前記差ビームの指定特性の位相
はともに前記第1及び第2のビームで互いに約180度
異なり、前記第1の空中線における前記差ビームの第1
ビーム及び第2ビームの位相は前記第2の空中線におけ
る油記差ビームの第2ビーム及び第1ビームとほぼ同じ
であり、前記第1及び第2の空中線は共通の架台に取り
付けられており、前記第1及び第2の空中線の前記オロ
ビームは互いに異なる方向にあり、前記第1及び第2の
空中線の前記差ビームは互いに異なる方向にあり、前記
第1及び第2の処理回路は前記第1及び第2のビデオ信
号から[)1記第1及び第2の空中線の前記7トロビー
ムの軸と、受(ざ電波の到来方位との偏向をそれぞれ求
め、そのビデオ信号の生成時点における前記第1及び第
2の空中線の回転角とこれら空中線の前記偏向とから受
信パルス毎に前記受信電波到来の方位を求め、さらに一
連のその受信パルスについて前記方位を平均して得た平
均方位情報を出力することを特徴とする。(Means for making m points between points 4P) In order to solve the above-mentioned problems, the direction measuring device d provided by the present invention is a first
1 beam, and first and second beams whose axes of the directional characteristic pattern are approximately symmetrical in the azimuth direction with the beam as the center.
first and second antennas each having two beams with a difference beam consisting of a beam of generating video signals for the received signals of the first and second antennas independently of each other corresponding to the amplitude ratio of the received signals of the difference beams and whose polarity represents the phase of the difference beams; a receiver that outputs a video signal; and first and second processing circuits that receive the first and second video signals, respectively, the phase of the specified characteristic of the difference beam in the first and second antennas; are both about 180 degrees different from each other in the first and second beams;
The phases of the beam and the second beam are substantially the same as the second beam and the first beam of the optical difference beam in the second antenna, and the first and second antennas are attached to a common mount, the orobeams of the first and second antennas are in different directions, the difference beams of the first and second antennas are in different directions, and the first and second processing circuits and the second video signal [1] Determine the deflections of the axes of the 7-channel beams of the first and second antennas and the direction of arrival of the receiving radio waves, and determine the deflection of the first and second antennas at the time of generation of the video signal. The direction of arrival of the received radio waves is determined for each received pulse from the rotation angle of the second antenna and the deflection of these antennas, and the average direction information obtained by averaging the directions for a series of the received pulses is output. It is characterized by
(実施例) 次に本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.
第1図は本発明の一実施しリを示すブロック図であり、
第2図(a)〜(C)は第1図実施例の各部の1M号の
波形を示す図、本図(d)及び(e)はこの実施例にお
ける処理回路10a及びLQbによる′、匡波到来方位
の測定方法を説明する図である。この実施列で第1の空
中線1及び第2の空中線2は、それぞれオロビーム3,
5及び差ビーム4゜6をもち、同一架台に取付けられ一
緒に水平面内で回転する。第1の空中線1と第2の空中
線2のそれぞれのオロビーム出力は合成語7で合成され
受信機9へ送られる。合成237が出力する信号の波形
を第2図(a)に示す。本図において、11が第1の空
中線、12が第2の空中線による受信信号である。一方
第1及び第2の空中線1及び2それぞれの差ビーム出力
は合成べ冷8で合成されやはり受信(幾9へ送られる。FIG. 1 is a block diagram showing one implementation of the present invention,
2(a) to 2(C) are diagrams showing the 1M waveforms of each part of the embodiment in FIG. It is a figure explaining the measuring method of a wave arrival direction. In this implementation row, the first antenna 1 and the second antenna 2 are Orobeam 3,
5 and a differential beam 4°6, which are mounted on the same frame and rotate together in a horizontal plane. The respective Orobeam outputs of the first antenna 1 and the second antenna 2 are combined by a combination word 7 and sent to a receiver 9. The waveform of the signal output by the synthesizer 237 is shown in FIG. 2(a). In this figure, 11 is a received signal by the first antenna, and 12 is a received signal by the second antenna. On the other hand, the difference beam outputs of the first and second antennas 1 and 2 are combined by a combining cooler 8 and also sent to a receiver (receiving unit 9).
この信号の波形を第2図(b)に示す。本図において、
13が第1の空中線、14が第2の空中線によるもので
雨空中線の麿ビームの左右の位相が互いに反対となって
いる。The waveform of this signal is shown in FIG. 2(b). In this figure,
13 is a first antenna, 14 is a second antenna, and the right and left phases of the beams of the rain antenna are opposite to each other.
また第2図(c)は受信機9の出力を示すもので、第1
の空中線1による受信出力ビデ第15と第2の空中線2
による受信出力ビデオ16とは空中線回転角の進みに従
うビデオ振幅の増減が逆転する。Moreover, FIG. 2(c) shows the output of the receiver 9, and the first
Reception output by antenna 1 of 15 and second antenna 2
In the received output video 16, the increase/decrease in video amplitude as the antenna rotation angle advances is reversed.
このビデオ出力は第りの処理回路LOa及び第2処理回
路tabへ送られる。This video output is sent to a first processing circuit LOa and a second processing circuit tab.
第2図(d)は第1の処理回路の動作説明を行うもので
、第1の処理回路10aは第1の空中線1の差ビーム位
相−係に合わせて処理することから17に示すように各
パルス毎に偏角と空中線回転角から求めた電波の到来方
位は概に一致し、これらは平均処理を行なわれ電波の到
来方位として出力される。一方第【の処理回路10aに
入力された第2の空中+W2による受信信号は18に示
すように開角の補正方向が左右逆となり各パルス毎に求
めた電波到来方位は一致せず、相関をとり得ないことか
ら目(票として検出されない。同様に第2の処理回路t
abでは第2図(8)に示すように第2の空中線2によ
る受信信号20のみが処理出力される一方で、第1の空
中線1による受信信号19は出力されない。すなわち=
g tの空中5j11による測角結果がgtの処理回路
LOaから、また第2の空中線2による測角結果が第2
処理回路tabからそれぞれ出力される。FIG. 2(d) explains the operation of the first processing circuit. Since the first processing circuit 10a performs processing in accordance with the differential beam phase of the first antenna 1, as shown in FIG. The direction of arrival of the radio wave determined from the declination angle and the angle of rotation of the antenna for each pulse approximately coincides with each other, and these are averaged and output as the direction of arrival of the radio wave. On the other hand, as shown in 18, for the received signal from the second aerial +W2 input to the second processing circuit 10a, the correction direction of the opening angle is reversed left and right, and the radio wave arrival directions determined for each pulse do not match, and the correlation is Since this is impossible, it is not detected as a vote.Similarly, the second processing circuit t
In ab, as shown in FIG. 2 (8), only the received signal 20 from the second antenna 2 is processed and output, while the received signal 19 from the first antenna 1 is not output. That is =
The angle measurement result from the aerial 5j11 of gt is sent from the processing circuit LOa of gt, and the angle measurement result from the second antenna 2 is sent to the second
Each is output from the processing circuit tab.
矢に、イ1図実施例を適用したレーダの例を第5図にブ
ロックで示す。このレーダでは、まず送信機31で発生
した送信信号はサーキュレータ30へ送られ、これを経
由して、合成器7へ送られる。An example of a radar to which the embodiment shown in FIG. 1 is applied is shown in block form in FIG. In this radar, first, a transmission signal generated by a transmitter 31 is sent to a circulator 30, and then sent to a combiner 7 via this.
合成2診7で送信信号は2分割され第1の空中線1及び
第2の空中線2のそれぞれのtoビーム端子へ供給され
それぞれのオロビーム3,5で空間へ放射される。一方
目標からの反射信号はそれぞれの空中線が目標方向を指
向時にそれぞれの和及び産ビームで受信され合成器7.
8及びサーキュレータ30を経由し受信機9へ送られる
。In the synthesis 2-diagnosis 7, the transmitted signal is divided into two parts, supplied to the to-beam terminals of the first antenna 1 and the second antenna 2, and radiated into space by the respective oro-beams 3 and 5. On the other hand, the reflected signals from the target are received by the combiner 7 and the output beam when each antenna is directed toward the target.
8 and the circulator 30 to the receiver 9.
同一目標に対する受1d信号は空中線が1回転する毎に
、第1及び第2の空中線でそれぞれ1回受1′dされ、
これらの受信信号についてはそれぞれ態別に処理回路L
Oa及び処理回路tabで方位が測定され、出力される
。すなわち空中線1(ロ)転あたり、同−0俤に対する
測定が2回行なわれることになる。The received 1d signal for the same target is received 1'd once each by the first and second antennas each time the antenna rotates once,
These received signals are processed by the processing circuit L for each type.
The orientation is measured by Oa and the processing circuit tab and output. That is, for each rotation of the antenna, the measurement for the same -0 yen is carried out twice.
(発明の効果)
以上説明したように本発明は、2つの空中線上一緒に回
転させ、得られた受信信号を一担合成しこれを単一の受
信機へ送り、受信機出力を2つの処理回路で処理するこ
とにより、それぞれ2つの空中線ごとに再び分離して方
位測定を行うことで、空中線1回転ごとに受信電波の到
来方位が2回測定できる。(Effects of the Invention) As explained above, the present invention rotates two antennas together, combines the received signals obtained, sends this to a single receiver, and processes the output of the receiver in two ways. By processing in a circuit, the direction is measured by separating each two antennas again, so that the direction of arrival of the received radio waves can be measured twice for each rotation of the antenna.
第1図は本発明の一実施例を示すブロック図、第2図(
a)〜(c)は第1図実施例の各部信号の波形図、第2
図(d)及び(、)はその実施例における処理回路10
a及びtabによる電波到来方位測定方法を説明する図
、第3図は従来の方位測定装置aを示すブロック図、第
4図(a)〜(c)は第3図装jfの各部信号の波形を
示す図、第4図(d)は第3図装置における処理回路2
5による電波到来方位測定方法を説明する図、第5図は
第1図実施例を4用したレーダを示すブロック図である
。
代理人 弁理士 本 庄 伸 介
第1図
第2図
第3図
第4図FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 (
a) to (c) are waveform diagrams of various signals in the embodiment shown in FIG.
Figures (d) and (,) show the processing circuit 10 in this embodiment.
Fig. 3 is a block diagram showing a conventional azimuth measuring device a, and Fig. 4 (a) to (c) are waveforms of signals of various parts of the device jf in Fig. 3. FIG. 4(d) is a diagram showing the processing circuit 2 in the device shown in FIG.
FIG. 5 is a block diagram showing a radar using the fourth embodiment of FIG. 1. Agent Patent Attorney Shinsuke Honjo Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
向特性のパターンの軸が前記和ビームを中心として方位
角方向にほぼ対称な方向の第1及び第2のビームからな
る差ビームとの2種のビームをそれぞれもつ第1及び第
2の空中線と、前記第1及び第2の空中線の前記和及び
差ビームによる受信信号を受け、振幅が前記和ビームと
前記差ビームの前記受信信号の振幅比に対応し、極性が
前記差ビームの位相を表すビデオ信号を前記第1及び第
2の空中線の前記受信信号につき互いに独立に生成して
第1及び第2のビデオ信号として出力する受信機と、前
記第1及び第2のビデオ信号をそれぞれ受ける第1及び
第2の処理回路とを備え、前記第1及び第2の空中線に
おける前記差ビームの指向特性の位相はともに前記第1
及び第2のビームで互いに約180度異なり、前記第1
の空中線における前記差ビームの第1ビーム及び第2ビ
ームの位相は前記第2の空中線における前記差ビームの
第2ビーム及び第1ビームとほぼ同じであり、前記第1
及び第2の空中線は共通の架台に取り付けられており、
前記第1及び第2の空中線の前記和ビームは互いに異な
る方向にあり、前記第1及び第2の空中線の前記差ビー
ムは互いにAなる方向にあり、前記第1及び第2の処理
回路は前記第1及び第2のビデオ信号から前記第1及び
第2の空中線の前記オロビームの軸と受信電波の到来方
位との偏向をそれぞれ求め、そのビデオ信号の生成時点
における前記第1及び第2の空中線の回転角とこれら空
中線の前記偏光とから受信パルス毎に前記受信電波到来
の方位を求め、さらに一連のその受信パルスについて前
記方位を平均して得た平均方位情報を出力することを特
徴とする方立測定装置。A sum beam whose directional characteristic pattern has a single axis; and a difference beam consisting of a first beam and a second beam whose directional characteristic pattern axis is substantially symmetrical in the azimuth direction about the sum beam. first and second antennas each having two types of beams, and a received signal from the sum and difference beams of the first and second antennas, and the received signal has an amplitude of the sum beam and the difference beam. and a polarity of which corresponds to an amplitude ratio of and whose polarity represents the phase of the difference beam is generated independently from each other for the received signals of the first and second antennas, and outputs the video signals as first and second video signals. and first and second processing circuits receiving the first and second video signals, respectively, wherein the phases of the directional characteristics of the difference beams in the first and second antennas are both equal to the first and second processing circuits.
and a second beam differing from each other by about 180 degrees, the first beam
The phases of the first beam and the second beam of the difference beam in the antenna are substantially the same as the second beam and the first beam of the difference beam in the second antenna, and
and a second antenna are mounted on a common mount,
The sum beams of the first and second antennas are in different directions, the difference beams of the first and second antennas are in directions A, and the first and second processing circuits are Determine the deflections of the oro beam axes of the first and second antennas and the direction of arrival of the received radio waves from the first and second video signals, and determine the deflections of the first and second antennas at the time when the video signals are generated. The azimuth of arrival of the received radio waves is determined for each received pulse from the rotation angle of the antenna and the polarization of these antennas, and the average azimuth information obtained by averaging the azimuths for a series of the received pulses is output. mullion measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4451886A JPS62201380A (en) | 1986-02-28 | 1986-02-28 | Azimuth measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4451886A JPS62201380A (en) | 1986-02-28 | 1986-02-28 | Azimuth measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62201380A true JPS62201380A (en) | 1987-09-05 |
Family
ID=12693762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4451886A Pending JPS62201380A (en) | 1986-02-28 | 1986-02-28 | Azimuth measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62201380A (en) |
-
1986
- 1986-02-28 JP JP4451886A patent/JPS62201380A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080129423A1 (en) | 3-port orthogonal mode transducer and receiver and receiving method using the same | |
JPS6024472A (en) | Radar equipment | |
JPS62201380A (en) | Azimuth measuring instrument | |
US3246331A (en) | Direction finder antenna apparatus | |
US7218279B2 (en) | Method and apparatus for pointing the beam of a wind profiler | |
JP2751616B2 (en) | Radar signal processing method and apparatus | |
JP2790092B2 (en) | Radio wave detector | |
JP2550707B2 (en) | Phased array radar | |
CN114895255B (en) | Sum-difference ratio angle measurement method suitable for one-dimensional phased array radar | |
GB2232318A (en) | Reducing multipath error by frequency or phase modulation of source | |
JPH11248821A (en) | Phased array type ultrasonic sensor | |
JP2666581B2 (en) | Radar equipment | |
JPH11271435A (en) | Monopulse receiver | |
RU3175U1 (en) | ANTENNA DEVICE | |
JPH0436679A (en) | Azimuth angle measuring instrument by beam scanning | |
JPS62118280A (en) | Short distance high performance radar for marine vessel | |
JP3443701B2 (en) | Electronic scanning radar apparatus and angle measurement processing method | |
JP2969875B2 (en) | Direction measurement device | |
JPH04310887A (en) | Radar apparatus | |
JPS6288976A (en) | Dual antenna radar for ship | |
JPH04279887A (en) | Radar video display device | |
JPS6037906B2 (en) | 3D radar device | |
JPS6288980A (en) | Complex radar for chip | |
JPS62118279A (en) | Combined radar for marine vessel | |
GB2189665A (en) | Dual antenna electronic countermeasures against monopulse radar |