JPS62201355A - Three-dimensional magnetic anisotropy measuring instrument for sample - Google Patents

Three-dimensional magnetic anisotropy measuring instrument for sample

Info

Publication number
JPS62201355A
JPS62201355A JP4435786A JP4435786A JPS62201355A JP S62201355 A JPS62201355 A JP S62201355A JP 4435786 A JP4435786 A JP 4435786A JP 4435786 A JP4435786 A JP 4435786A JP S62201355 A JPS62201355 A JP S62201355A
Authority
JP
Japan
Prior art keywords
sample
resonator
cavity resonator
cavity
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4435786A
Other languages
Japanese (ja)
Other versions
JPH0781988B2 (en
Inventor
Shigeyoshi Osaki
大崎 茂芳
Shinichi Nagata
紳一 永田
Yoshihiko Fujii
藤井 良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Paper Manufacturing Co Ltd
Original Assignee
Kanzaki Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Paper Manufacturing Co Ltd filed Critical Kanzaki Paper Manufacturing Co Ltd
Priority to JP61044357A priority Critical patent/JPH0781988B2/en
Publication of JPS62201355A publication Critical patent/JPS62201355A/en
Publication of JPH0781988B2 publication Critical patent/JPH0781988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To easily and speedily measure three-dimensional magnetic anisotropy by inserting a sample into a cavity resonator and rotating both relatively, and measuring variation in resonance frequency or in Q value. CONSTITUTION:Coaxial waveguides 2 and 3 are connected to both ends of the cavity resonator 1. A partition wall which has a small hole in the center is provided between the resonator 1 and a converter 3 to serve as the end wall of the resonator 1, and a disk 8 is inserted rotatably into the slit between the resonator 1 and converter 2 as the partition wall between the resonator 1 and converter 2. A small hole is bored in the center of the disk 8 and electric vibrations in the converter 2 leak into the resonator from the small hole to excite the resonator 1. Further, a cut is made in the disk 8 from the peripheral side and the sample is inserted through the cut. A shift in the resonance frequency of the resonator 1 between when the sample is placed and when not and variation in the Q of the resonator 1 are measured while the directions of the sample are changed to measure three-dimensional magnetic anisotropy.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は磁気テープ、磁気ディスク等の磁性体製品にお
ける3次元方向の磁性的異方性を測定する装置に関する
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an apparatus for measuring three-dimensional magnetic anisotropy in magnetic products such as magnetic tapes and magnetic disks.

口、従来の技術 磁気テープとか磁気ディスクはフェライトの微粉末をバ
インダーに混ぜてプラスチックシートに塗布して製する
が、フェライト微粉末は針状結晶であって、塗布の際バ
インダーの粘性によって結晶の方向が幾分か揃う(配向
〉傾向がある。
Conventional technologyMagnetic tapes and magnetic disks are made by mixing fine ferrite powder with a binder and applying it to a plastic sheet.The fine ferrite powder is acicular crystals, and when applied, the viscosity of the binder causes the crystals to form. There is a tendency for the directions to be somewhat aligned (orientation).

このフェライト微粒子の配向は磁気テープ等の性能に影
響がある筈であるが、従来、この配向度を測定する現場
的な測定方法がなかったので、フェライト微粒子の配向
について積極的な研究ら管理も行われていなかった。ま
た最近磁気テープへの高密度記録方法として、テープ面
に垂直の方向に磁化する方式が採用されるようになって
来た。この場合には針状結晶のフェライト微粒子がテー
プ面に垂直に配向することが望ましい。このような配向
はフェライト塗膜が乾燥固化する前にシート面に垂直方
向に磁界をかけることで実現できるが、この場合でら実
現された配向度を簡便且つ迅速にヂエックする方法がな
かった。
The orientation of this ferrite fine particle should have an impact on the performance of magnetic tapes, etc., but since there has been no on-site measurement method to measure the degree of orientation, active research and management of the orientation of ferrite fine particles is also required. It had not been done. Recently, as a high-density recording method on magnetic tape, a method of magnetizing in a direction perpendicular to the tape surface has been adopted. In this case, it is desirable that the needle-shaped ferrite fine particles be oriented perpendicularly to the tape surface. Such orientation can be achieved by applying a magnetic field perpendicular to the sheet surface before the ferrite coating dries and solidifies, but in this case there has been no way to easily and quickly check the degree of orientation achieved.

ハ2発明が解決しようとする問題点 本発明は磁気テープ、磁気ディスク等の磁性体製品の3
次元方向の磁気的な異方性を簡便且つ迅速に測定できる
装置を提供するしのである。
C2 Problems to be Solved by the Invention The present invention solves three problems for magnetic products such as magnetic tapes and magnetic disks.
The object of the present invention is to provide an apparatus that can easily and quickly measure dimensional magnetic anisotropy.

二1問題点解決のための手段 空胴共振器内の電磁気的振動において磁界の腹に相当す
る部分に空胴共振器を横断するスリットを設け、このス
リットに試料を置(ようにし、試料を置く前と置いたと
きの空胴共振器の共振周波数のずれ、空胴共振器のQの
変化等を試料の方向を変えて測定することにより試料の
3次元方向の磁気的異方性を測定するものである。
21 Means for solving the problem A slit is provided across the cavity at a portion corresponding to the antinode of the magnetic field in the electromagnetic vibration within the cavity, and a sample is placed in this slit. Measures the three-dimensional magnetic anisotropy of the sample by changing the direction of the sample and measuring the shift in the resonant frequency of the cavity resonator before and after placing it, the change in the Q of the cavity resonator, etc. It is something to do.

ホ3作用 従来、導波管とか空胴共振器の性質及び特性は、真空中
におけるものとして記述されてきた。
3. Effect Conventionally, the properties and characteristics of waveguides and cavity resonators have been described as being in a vacuum.

導波管とか空胴共振器の作用とか特性は基本的には電磁
波の速度によって規定されているのであり、電磁波の速
度は1/Fア で与えられるのであるから、空胴共振器
内に磁性体が存在ずれば空胴共振器内の電磁的振動の様
子は磁性体がないときより変化する。本発明はこの点に
着眼したものである。
The actions and characteristics of waveguides and cavity resonators are basically determined by the speed of electromagnetic waves, and since the speed of electromagnetic waves is given by 1/F, there is no magnetic field inside the cavity resonator. If the body exists, the state of electromagnetic vibration within the cavity resonator will change compared to when there is no magnetic body. The present invention focuses on this point.

試料の磁性的特性をヒステリシスも含めて表すため透磁
率μを複素透磁率μ −iμ″で表す。
In order to express the magnetic properties of the sample including hysteresis, the magnetic permeability μ is expressed as the complex magnetic permeability μ −iμ″.

試料を空胴共振器内の磁界の腹の所に置くものとして、
試料を置く前の空胴共振器の共振周波数をfl、Q値を
Qlとし、試料を置いたときの共振周波数及びQ値をf
2.Q2とすると、Aを空胴共振器の形状寸法、振動モ
ード及び試料の形状寸法及び位置く磁界との方向関係)
によって決まる係数として、一般に、 の形に整理する。上記μ゛、μ゛は磁界の方向の値であ
るから試料を磁界に対して即ち空胴共振器に対して回す
ことにより、試料の色々な方向でのμ′及びμ“を知る
ことができる。試料が空胴共振器の断面全体をカバーす
る広がりを持つときは、への値は試料を回転させても変
らず、試料の厚さをt1空胴共振器を直方体でZ方向の
共振器系の長さc1振動モードをTElof!とすると
、で与えられる。上式でCは光速度、eは空胴共振器内
の波数で、e=2の状態で使うのが実際上使い易い。T
E7oQの振動モードは第4図のような形でe=2など
の偶数の場合、磁界の腹は空胴共振器の両端と中央に形
成されるので、試料は空胴共振器の中央部にスリットを
設けて、そこから挿入するようにすればよい。もちろん
e=1として試料を空胴共振器の端面にセットするよう
にしてもよい。空胴共振器の励振の方法及び試料の性質
によって都合のよい方を選べばよいのである。
Assuming that the sample is placed at the antinode of the magnetic field within the cavity resonator,
The resonant frequency of the cavity resonator before placing the sample is fl, the Q value is Ql, and the resonant frequency and Q value when placing the sample are f.
2. Assuming Q2, A is the shape and size of the cavity resonator, the vibration mode, the shape and size of the sample, and the directional relationship with the magnetic field located)
As a coefficient determined by, it is generally arranged in the form. Since the above μ゛ and μ゛ are values in the direction of the magnetic field, by rotating the sample against the magnetic field, that is, against the cavity resonator, μ′ and μ” in various directions of the sample can be determined. .When the sample has an expanse that covers the entire cross section of the cavity resonator, the value of does not change even when the sample is rotated, and the thickness of the sample is t1. Letting the length c1 vibration mode of the system be TELof!, it is given by: In the above equation, C is the speed of light, e is the wave number within the cavity resonator, and it is practically easy to use it when e=2. T
The vibration mode of E7oQ is as shown in Figure 4. When e = 2, etc., an even number, the antinodes of the magnetic field are formed at both ends and the center of the cavity, so the sample is placed at the center of the cavity. What is necessary is to provide a slit and insert it from there. Of course, e=1 and the sample may be set on the end face of the cavity resonator. The most convenient method can be selected depending on the method of excitation of the cavity resonator and the properties of the sample.

電率ε0.透磁率μ0とし、試料を空胴共振器内上式で
分母の積分は空胴共振器内全体についての体積積分、分
子は試料内についての体積積分で、E、)−1は試料が
ないときの電界及び磁界、E、H−1は試料があるとき
の電界、磁界である。また、εは複素誘電率で、げ  
とf子  はサンプルを挿入しないばあいと挿入した場
合の各々の複素周波数である。試料は磁界の腹にセット
されるが、TE10eモードでは、そこで電界はOであ
るから、上」1式で試料休債が空胴共振器の体積に比し
充分小さいときは、試料部分以外の空間ではE’=E、
旧′−1とみなせ、分母において試料部分の積分の空胴
共振器全体の積分に対する寄与は0とみなせるから、分
母は空胴共振器内の電磁的エネルギーで空胴共振器及び
振動モードが決まれば定数となる。従って(1)式の分
子の積分を試料の形状寸法及び向きに応じて実施し、μ
ゝについて解(ことで一般の場合のAを求めることがで
き、例えば試料が正方形、長方形成は円形などの種々の
断面形状の或は糸状などの長平方向だけがスリットから
外へはみ出るような細幅形状のもの、或は空胴共振器の
開口部よりも小さな形状のものの場合であっても本発明
が適用できるものである。
Electricity rate ε0. The magnetic permeability is μ0, and the sample is inside the cavity resonator.In the above equation, the denominator integral is the volume integral for the entire inside of the cavity resonator, and the numerator is the volume integral for the inside of the sample.E, )-1 is when there is no sample. The electric and magnetic fields, E and H-1 are the electric and magnetic fields when there is a sample. Also, ε is the complex permittivity,
and f are the respective complex frequencies when no samples are inserted and when samples are inserted. The sample is set at the antinode of the magnetic field, but in the TE10e mode, the electric field there is O, so if the sample is sufficiently small compared to the volume of the cavity resonator in equation 1 above, the sample is set at the antinode of the magnetic field. In space, E'=E,
Since the contribution of the integral of the sample part to the integral of the entire cavity resonator in the denominator can be regarded as 0, the denominator is the electromagnetic energy within the cavity resonator that determines the cavity resonator and its vibration mode. becomes a constant. Therefore, the integral of the numerator in equation (1) is carried out depending on the shape and orientation of the sample, and μ
(A) can be found for the general case. For example, if the sample has various cross-sectional shapes such as square, rectangular or circular, or if the sample is thin such as thread-like where only the elongated direction protrudes outside the slit. The present invention is applicable even to a width shape or a shape smaller than the opening of a cavity resonator.

へ、実施例 第1図は本発明の一実施例を示す。1は矩形断面の空胴
共振器で両端には同軸導波管変換器2゜3が接続される
。同軸導波管変換器2には空胴共振舅励娠用の入力アン
テナ4が挿入してあり、同軸導波管変換器3には受信用
アンテナ5が挿入しである。入力アンテナ4は同軸ケー
ブルによって発振器6に接続され、受信アンテナ5は同
軸ケーブルによって検波回路7に接続されている。空胴
共振器1と同軸導波管変換器3との間には中央に小孔を
有する隔壁があって空胴共振器の端壁となっており、空
胴共振器と同軸導波管変換器2との間のスリットには回
転自在に円板8が挿入されており、この円板が空胴共振
器1と同軸導波管変換器2との間の隔壁になっている。
Embodiment FIG. 1 shows an embodiment of the present invention. 1 is a cavity resonator with a rectangular cross section, and coaxial waveguide converters 2 and 3 are connected to both ends thereof. An input antenna 4 for cavity resonance excitation is inserted into the coaxial waveguide converter 2, and a receiving antenna 5 is inserted into the coaxial waveguide converter 3. The input antenna 4 is connected to an oscillator 6 by a coaxial cable, and the receiving antenna 5 is connected to a detection circuit 7 by a coaxial cable. Between the cavity resonator 1 and the coaxial waveguide converter 3, there is a partition wall with a small hole in the center, which serves as the end wall of the cavity resonator. A disk 8 is rotatably inserted into the slit between the cavity 1 and the coaxial waveguide converter 2, and this disk serves as a partition between the cavity resonator 1 and the coaxial waveguide converter 2.

円板8の中央に小孔が穿たれており、同軸同波管変換器
2内の電気振動がこの小孔がら空胴共振器内に漏れて空
胴共振器を励振する。
A small hole is bored in the center of the disk 8, and the electrical vibrations inside the coaxial wave tube converter 2 leak into the cavity through this hole and excite the cavity.

第2図は円板部分の詳細である。円板外周には段凸部8
aが設けられており、段凸部の内周が空胴共振器1の端
部フランジに嵌着した軸受け9に支承されて円板8は回
転自在になっている。段凸部8aの外周に歯車を形成し
、駆動用モータ(不図示)と連結する。円板8には周側
から切込み10が設けてあって、試料Sは適当なホルダ
にはさんで切込み10から挿入する。この実施例では振
動のモードはEeでに=1であり、磁界の振動の腹は第
1図に示すように空胴共振器の両端にできている。
FIG. 2 shows details of the disk portion. There is a step convex part 8 on the outer periphery of the disk.
a is provided, and the inner periphery of the stepped convex portion is supported by a bearing 9 fitted to the end flange of the cavity resonator 1, making the disc 8 rotatable. A gear is formed on the outer periphery of the stepped convex portion 8a, and is connected to a drive motor (not shown). A notch 10 is provided in the disc 8 from the circumferential side, and the sample S is inserted through the notch 10 while being held in a suitable holder. In this embodiment, the mode of vibration is Ee=1, and the antinodes of the vibration of the magnetic field are formed at both ends of the cavity resonator, as shown in FIG.

既述のように試料のμの効果は空胴共振器の共振周波数
のずれとして表れるので、周波数を試料がないときの共
振周波数に固定しておくと、周波数のずれは検波出力の
低下として観測される。試料として空胴共振器の断面を
カバーする広さのものを用いると試料の回転によって形
状及び位置の因子である前記Aは変化しないから、試料
を回転させながら円板8の回転角と検波出力との関係を
極座標で記録すると侍円状の記録が得られ、その長径と
短径の比率によってμの異方性例えばフェライト微粒子
の配向度が判る。長手だけスリットから外へはみ出るよ
うな細幅形状の試料の場合、回転角によって前記Aの値
が異るから、検波出力と回転角との関係の記録から直ち
にμの異方性は判明しないで(1)式による計算が必要
となる。テープでもそれから導波管の開口部よりも小さ
な試料を切取って測定する場合には、円形に切取ってこ
れを円板8の中央にセットするか、或は試料を無配向性
シート上に無配向性の接着剤で貼着するか2枚のシート
で挟み込むことにより形状及び位置の因子Aは回転によ
って変わらないから、検波出力と回転角との関係を極座
標で記録することにより3次元方向の異方性の同意が直
ちに判明する。
As mentioned above, the effect of sample μ appears as a shift in the resonant frequency of the cavity resonator, so if the frequency is fixed at the resonant frequency when there is no sample, the frequency shift can be observed as a decrease in the detection output. be done. If a sample with a width that covers the cross section of the cavity resonator is used, A, which is a factor of shape and position, does not change due to the rotation of the sample. Therefore, while rotating the sample, the rotation angle of the disk 8 and the detection output When the relationship between .mu. and .mu. In the case of a narrow sample in which only the longitudinal length protrudes outside the slit, the value of A varies depending on the rotation angle, so the anisotropy of μ cannot be immediately determined from the record of the relationship between the detection output and the rotation angle. Calculation using equation (1) is required. If you want to cut out a sample smaller than the opening of the waveguide from the tape and measure it, you can cut it out into a circle and set it in the center of the disk 8, or you can place the sample on a non-oriented sheet. By pasting with a non-oriented adhesive or sandwiching two sheets, the shape and position factor A does not change due to rotation, so by recording the relationship between the detection output and the rotation angle in polar coordinates, it is possible to determine the three-dimensional direction. The agreement of the anisotropy is immediately apparent.

例えば、フェライト微粒子を厚さ方向に配向させたよう
な磁気テープ又はディスクの場合、試料Sは第5図に示
すようにテープ或はディスクから細く切出し、テープ或
はディスク面と平行なZ方向が空胴共振器の軸方向とな
るように空胴共振器にセットする。この試料の厚さを1
幅をWとし、空胴共振器の長さを01断面をaXbとし
、試料を第6図にX、Yで示すようにセットした場合を
考える。振動モードはTE  loeで、&=1とす試
料を第6図Yのようにセットした場合、磁力線Hの方向
に沿って試料の前後で磁束密度が等しいから、試料内の
磁界は!(/μとなる。磁界Hはy方向には一定である
から前記(1)式の分子はこ\でHaは最大磁界強度で
ある。(2) (3)から上式をμについて解くと、 また試料を第6図Xのようにセットした場合、試料断面
が充分に小さいと、試料の有無によって試料外部の磁界
は変らないとみてよく、試料内をX方向に通って空胴共
振器を一周する磁力線の線積分(起磁力)も試料の有無
にか\わらず一定であるから、この場合   である。
For example, in the case of a magnetic tape or disk in which fine ferrite particles are oriented in the thickness direction, sample S is cut out thinly from the tape or disk as shown in Figure 5, and the Z direction parallel to the tape or disk surface is Set it in the cavity resonator so that it is in the axial direction of the cavity resonator. The thickness of this sample is 1
Let us consider the case where the width is W, the length of the cavity resonator is 01, the cross section is aXb, and the sample is set as shown by X and Y in FIG. When the vibration mode is TE loe and &=1 and the sample is set as shown in Figure 6 Y, the magnetic flux density is equal before and after the sample along the direction of the magnetic field line H, so the magnetic field inside the sample is! (/μ. Since the magnetic field H is constant in the y direction, the numerator of the above equation (1) is \ where Ha is the maximum magnetic field strength. (2) From (3), solving the above equation for μ Furthermore, when the sample is set as shown in Figure 6 This is the case because the line integral (magnetomotive force) of the magnetic field lines going around the is also constant regardless of the presence or absence of the sample.

磁界のX方向の強度変化は 、  Tχ 1指。紳で で表されるから、(1)式の分子は (μ−l)げた叉HとA 従って 以上で(4)式はテープ或はディスクの厚さ方向の透磁
率を表わし、(5)式はテープ或はディスクの面に平行
な方向のμを表わす。
The strength change in the X direction of the magnetic field is Tχ 1 finger. Since the numerator of equation (1) is (μ-l), H and A are expressed as The formula represents μ in the direction parallel to the plane of the tape or disk.

ト、効果 本発明によれば試料を空胴共振器に挿入して試料と空胴
共振器を相対的に回して、共振周波数或はQ値の変化(
何れも励振周波数を一定にしておいて検波出力の変化と
して横用できる)を測定することで試料の3次元方向の
磁気的な異方性が判明し、試料としては空胴共振器の断
面より大きな形状のものはもちろん、磁気テープのよう
な長手方向だけが空胴共振器の断面からはみ出すような
細幅形状の試料や、共振器断面より小さな形状の試料に
も適用できるので、この種の試料の3次元方向の磁気的
異方性の測定(第5図の説明を参照)が大変簡便且つ迅
速にでき、このflTI製品の品質管理に大いに寄与し
得るものである。
G. Effects According to the present invention, a sample is inserted into a cavity resonator and the sample and cavity resonator are rotated relative to each other to change the resonance frequency or Q value (
The magnetic anisotropy of the sample in the three-dimensional direction can be determined by measuring the change in the detection output while keeping the excitation frequency constant. This type of method can be applied not only to large-shaped samples, but also to narrow-shaped samples such as magnetic tape where only the longitudinal direction protrudes from the cross section of the cavity resonator, and to samples smaller than the cross section of the cavity. Measurement of the three-dimensional magnetic anisotropy of a sample (see explanation of FIG. 5) can be performed very easily and quickly, and can greatly contribute to quality control of this flTI product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の縦断面図、第2図は同
じく要部の縦断面拡大図、第3図は同じく円板の斜視図
、第4図は空胴共振器におけるTEtoeの振動状態の
説明図、第5図は試料の厚さ方向の異方性測定のための
試料の切出し方の説明図、第6図は上記切出した試料の
空胴共振器へのセット状態を説明する図である。
FIG. 1 is a vertical cross-sectional view of an embodiment of the device of the present invention, FIG. 2 is an enlarged vertical cross-sectional view of the main parts, FIG. 3 is a perspective view of a disk, and FIG. 4 is a TEtoe in a cavity resonator. Fig. 5 is an explanatory diagram of how to cut out a sample for measuring the anisotropy in the thickness direction of the sample, and Fig. 6 shows the state of setting the cut sample in the cavity resonator. FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)空胴共振器内における磁界の腹の位置に相当する
部分に空胴共振器を横断するスリットを設け、このスリ
ットに試料を挿入し、空胴共振器と試料との間に相対的
な回転を与え、そのときの空胴共振器の共振周波数の変
化或は空胴共振器のQ値の変化を検出するようにしたこ
とを特徴とする試料の3次元方向の磁気的異方性測定装
置。
(1) A slit that crosses the cavity resonator is provided at a portion corresponding to the antinode position of the magnetic field within the cavity resonator, a sample is inserted into this slit, and the gap between the cavity resonator and the sample is 3-dimensional magnetic anisotropy of a sample, characterized in that a change in the resonant frequency of the cavity resonator or a change in the Q value of the cavity resonator at that time is detected. measuring device.
(2)上記の試料が、長手方向だけが前記スリットから
外へはみだすような細幅形状のものであることを特徴と
する特許請求の範囲第(1)項に記載の測定装置。
(2) The measuring device according to claim (1), wherein the sample has a narrow shape such that only the longitudinal direction protrudes outside the slit.
(3)上記の試料が、空胴共振器の導波管開口部よりは
小さな形状のものであることを特徴とする特許請求の範
囲第(1)項に記載の測定装置。
(3) The measuring device according to claim (1), wherein the sample has a smaller shape than the waveguide opening of the cavity resonator.
JP61044357A 1986-02-28 1986-02-28 Method for measuring magnetic anisotropy of sheet-shaped sample Expired - Lifetime JPH0781988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61044357A JPH0781988B2 (en) 1986-02-28 1986-02-28 Method for measuring magnetic anisotropy of sheet-shaped sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044357A JPH0781988B2 (en) 1986-02-28 1986-02-28 Method for measuring magnetic anisotropy of sheet-shaped sample

Publications (2)

Publication Number Publication Date
JPS62201355A true JPS62201355A (en) 1987-09-05
JPH0781988B2 JPH0781988B2 (en) 1995-09-06

Family

ID=12689257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044357A Expired - Lifetime JPH0781988B2 (en) 1986-02-28 1986-02-28 Method for measuring magnetic anisotropy of sheet-shaped sample

Country Status (1)

Country Link
JP (1) JPH0781988B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7614479B2 (en) * 2004-05-12 2009-11-10 Jan Plummer Sound enhancement module
JP2017078629A (en) * 2015-10-20 2017-04-27 王子ホールディングス株式会社 Sample measurement device and sample measurement method
CN112924907A (en) * 2021-01-26 2021-06-08 北京邮电大学 High-sensitivity three-dimensional magnetic field detection method using optical microcavity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130896A2 (en) * 2006-05-01 2007-11-15 Massachusetts Institute Of Technology Microwave sensing for determination of loading of filters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227156A (en) * 1984-04-25 1985-11-12 Kanzaki Paper Mfg Co Ltd Measuring method of orientation characteristic of sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227156A (en) * 1984-04-25 1985-11-12 Kanzaki Paper Mfg Co Ltd Measuring method of orientation characteristic of sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7614479B2 (en) * 2004-05-12 2009-11-10 Jan Plummer Sound enhancement module
JP2017078629A (en) * 2015-10-20 2017-04-27 王子ホールディングス株式会社 Sample measurement device and sample measurement method
CN112924907A (en) * 2021-01-26 2021-06-08 北京邮电大学 High-sensitivity three-dimensional magnetic field detection method using optical microcavity
CN112924907B (en) * 2021-01-26 2021-11-09 北京邮电大学 High-sensitivity three-dimensional magnetic field detection method using optical microcavity

Also Published As

Publication number Publication date
JPH0781988B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
Netzelmann Ferromagnetic resonance of particulate magnetic recording tapes
Fischer et al. Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics
US3786672A (en) Two-dimensional coils for electro-magnetic generation and detection of acoustic waves
Belyaev et al. Magnetic imaging in thin magnetic films by local spectrometer of ferromagnetic resonance
JP4072601B2 (en) Apparatus for measuring complex permittivity using cavity resonators
Grimes et al. A new swept-frequency permeameter for measuring the complex permeability of thin magnetic films
US4801862A (en) Method for measuring complex dielectric constant or complex magnetic constant of materials in three-dimensional directions
He et al. High-speed switching in magnetic recording media
JPS62201355A (en) Three-dimensional magnetic anisotropy measuring instrument for sample
JPH0542725B2 (en)
US3748605A (en) Tunable microwave filters
Kung et al. Experimental modal analysis technique for three‐dimensional acoustic cavities
JPH03505917A (en) Resonance-assisted domain and domain wall spectroscopy
US5150617A (en) Magnetostrictive resonance excitation
Labeyrie et al. Characterisation of strontium hexaferrite for millimeter waves applications
Gibson et al. Applied field/frequency response of planar gyromagnetic discs
CN113932939A (en) Ferromagnetic resonance temperature measurement method based on field sweeping method
JP3342701B2 (en) Composite with anisotropy to microwave
Tsai et al. Microwave absorption measurements using a broad-band meanderline approach
Pelzl et al. Locally resolved magnetic resonance in ferromagnetic layers and films
Laval et al. Microwave-assisted switching of NiFe magnetic microstructures
US3271667A (en) Method of determining the dielectric constant of irregularly shaped crystals
JPH11101863A (en) Method for measuring ac magnetic characteristics of sample to be measured
Fessant et al. A broad-band method for measuring the complex permeability of thin soft magnetic films
EP4277020A1 (en) Dielectric microwave resonator device with a small mode volume